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ON HYBRID SEMI-ITERATIVE METHODS"

M. EIERMANN', X. LI}, AND R. S. VARGA?

Abstract. Given a large sparse system of linear algebraic equations in fixed point form x =
Tx--c, one way to solve this system is to apply a sema-tterative method (SIM) to the basic iteration
method Xm = TXm—1 +¢. It is known that if the spectrum, o(T), of T is contained in some compact
subset Q0 of the complex plane (where 1 ¢ (1), then there are asymptotically optimal SIMs, associated
with the basic iteration and (1, whose asymptotic rates of convergence are best possible for the class of
all matrices T with o(T) € Q. However, for a given compact set 2, an asymptotically optimal SIM
for (1 is usually not well suited for efficient numerical computation unless this SIM can be generated
from a k-step recurrence formula.

In this paper, hybrid semi-iterative methods are investigated which consist of two independent steps:
First, x = Tx-c is transformed into a consistent linear system, namely x = Tx+¢, where T := tn(T)
and where tn(2) is a complex polynomial in z, and then asymptotically optimal SIMs are considered
with respect to x = Tx 4+ & and 1 := £,(Q). In Theorem 6, a geometrical characterization is given of
those tp(z) for which the asymptotically optimal hybrid SIMs for {1 give the same effective asymptotic
convergence rate as do asymptotically optimal SIMs applied to the original matrix problem x = Tx+c
and 1.

Finally, three examples are given (one arising from neutron-transport theory) to show how specific
hybrid SIMs can give asymptotically optimal rates of convergence, and also, that these associated
hybrid SIMs, generated by k-step recurrence formulas, are numerically effective.

Key words. semi-iterative methods (SIMs), asymptotically optimal SIMs, maximally convergent
polynomials, k-step recurrence formulas, Chebyshev SIMs, Green’s functions
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1. Background and terminology. The motivation for our work comes from Davis
and Hageman [2] (cf. also [9, §11.3]), who considered the numerical solution of the
neutron-transport equation in z-y geometry. If the discretized form of this equation is
written, in matrix fixed point form, as

x=Tx+¢,

then Davis and Hageman showed that the eigenvalues of T' are either real or purely
imaginary. More precisely, these eigenvalues of T are contained in a cross-shaped
region of the form

Cop = [—a,a]U[——iﬁ,iﬁ], where 0 < @ <1 and 8> 0.

With o(T) denoting the spectrum of T', then o(T) C Cq,p, and the following different
iterative methods for solving the above equation can be considered.

Assuming (as in Davis and Hageman [2]) that 0 < B < a < 1, then the Jacob:
iterative method for this problem, defined by

Xm+1 = Txm +c (m > 0),

is necessarily convergent (for any starting vector Xp) to the unique solution x of x =
Tx+e¢, and the asymptotic convergence factor £(T") (cf. [5, §4]) for the Jacobi iterative
method satisfies

k(T) < Kk i=a<l.
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Since Cq,p and thus, the spectrum of T, is contained in an elliptic region with foci
+/a? — 82 (cf. Fig. 1, where a = 0.8 and 8 = 0.6 have been chosen), the well-known
Chebyshev acceleration method (cf. Golub and Varga (6], Manteuffel [11]), applied to
the Jacobi iteration, improves the speed of convergence substantially. It can be shown
that the asymptotic convergence factor of the Chebyshev method is bounded above
by

a+p
Ko 1= .
1++/1-0a%+p2

Note that ko is strictly smaller than «; if a # B. Next, “embracing” o(T) by a
stretched hypocycloid (cf. Fig. 1) and applying the resulting stationary four-step
method Yo = po(T¥m—1 + €) + p2¥m—2 + La¥m—4,m > 4 (the parameters p;,j =
0,2,4, depending only on « and f; cf. Niethammer and Varga [12, §9]) leads to the
asymptotic convergence factor

K4 := p, where p € (0,1) is uniquely determined by

(1—2))p* —2(1 = 30)p* —4(A\@)p+1=0, and A := B%/(a® +2B%).

FiG. 1
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There is another approach to iteratively solve (I-T)x =c¢. Obviously, x = Tx+c¢
is equivalent to x = T?x + (I + T)e, and from o(T) C Cq g, there follows o(T2) C
[=8?,a?]. Thus, we can apply the optimal Chebyshev acceleration method (cf. [11])
to the transformed system x = T?x + (I + T')c, yielding the asymptotic convergence
factor Az(a, 3). But since we have essentially doubled the amount of work per each
iteration step (instead of multiplying by T we now have to multiply by T2 in every
step), we should consider

X e 1+32 - 1—a?
K= K2 (a: ﬂ) = \/ ) 3
va?+ 32
in order to compare the different methods fairly. Table 1 shows the convergence factors
K9, k4 and K for some values of a and &.

TABLE 1
o 8 K9 K4 tildex
0.8 0.5 0.72992 0.72541 0.54911
0.8 0.6 0.75736 0.68796 0.56619
0.8 0.7 0.78046 0.65705 0.58386
0.8 0.8 0.80000 0.63188 0.60159
0.9 0.5 0.84169 0.83056 0.66256
0.9 0.6 0.86172 0.80421 0.67516
0.9 0.7 0.87689 0.78109 0.68829
0.9 0.8 0.88957 0.76107 0.70151

These numbers indicate that the Chebyshev method applied to x = T?x + (I +T)c
is superior to the other two methods. We shall show that this method is even asymp-
totically optimal with respect to the given information that o(T) C Cy . In a more
general framework, we shall further investigate conditions under which this technique,
of transformating a linear system by a polynomial mapping, leads to a more efficient
numerical iterative scheme.

To go beyond the previous specific example, we need some terminology. Given a
linear system

(1.1) Ax=hb, Aec CVV be CV,

we assume that A is nonsingular. A splitting of the matrix A4, i.e., A= M — (M — A)
with M nonsingular, leads us to the equivalent fixed point form

(1.2) x=Tx+c,

where T':= I — M1 A4 and ¢ := M~'b, and where 1 is not an eigenvalue of T It is
well known that the basic iteration

(1.3) Xm+1 = TXp + ¢ (m > 0); Xo = a,

converges, for arbitrary a, to the solution x of (1.1) and (1.2) if and only if the spectral
radius of T', denoted by p(T'), satisfies p(T') < 1.
For any infinite lower triangular matrix P = [Tm ], Le.

?

70,0

71,0 71,1 Q
72,2

(1.4) p=| 0 721
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with complex entries 7, ; and row sums identically equal to 1, i.e.,

m

(1.5) Y mmi=1 (m>0),
i=0

we can define the vector sequence

(1.6) Ym = Z”rm,ixi (m >0).

t=0

Varga ([16], [17, §5.1]) calls (1.6) a semi-iterative method (SIM) with respect to the
basic iteration (1.3). Other authors frequently use the term polynomial acceleration
method applied to (1.3) (see, e.g., Hageman and Young [9, p. 40)).

For any m > 0, the associated error vector e,, := x —y,, for the vector y,, of
(1.6) satisfies

(1.7) em = pm(T)eo,

where p,, is the polynomial defined by
m .

(18) Pm(2) = 3 it (m 2 0).
1=0

Clearly from (1.5), pp (1) = 1, for all m > 0.

Since the SIM (1.6) is completely determined by either the infinite matrix P of
(1.4) or the polynomial sequence {pm }m>o of (1.8), we shall say that (1.6) is induced
by P or by {pm}mZO-

We now assume that we have a priori information that the spectrum a(T) of
the iteration matrix T' is contained in some compact subset Q of the complex plane.
Since A =1 cannot be an eigenvalue of T (otherwise the matrix A in (1.1) would be
singular), we also assume that 1¢ Q.

We next define the root-convergence factor «(7T, P) by

1/m
(1.9) W(T, P) = “HHT{ sup [”em“] }

m—o0 | o0 | [l€ol|

(which is independent from the chosen vector norm), which is a measure for the
asymptotic decay of the norm of the error vectors (1.7). (T, P) is also called the
asymptotic convergence factor for the SIM induced by P. The asymptotic convergence
factor for £ is then defined by

(1.10) w(Q) := i%f {sup [K(T,P) :T € CMY for some N 21lando(T)C Q] },

where the infinum is taken over all infinite matrices P of the form (1.4) which satisfy
(1.5). For any SIM (induced by P), there is a matrix T' with o(T) C Q for which
&(T,P) > k(2). On the other hand, there exist infinite matrices P of the form
(1.4) (generating SIMs) such that (T, P) < k() for any T with o(T) C Q (cf.
Eiermann, Niethammer, and Varga [5]). If this is valid, or in other words, if the
asymptotic convergence factor for the SIM generated by P with respect to the whole
class {T :T € CVY for some N > 1 and o(T) € Q} is as small as possible, the
induced SIM will be called asymptotically optimal with respect to Q.
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For our later use, we give the following alternate characterization (cf. [5]) of £(£2)
of (1.10):

(1.11) k(Q) = lim ~L/™;
m— 00

Ym 1= min {meag%(]pm(z)[ 1 pm € I, and pp(l) = 1} ,
=

where I1,, denotes the set of all complex polynomials of degree m. The minimization
problem (1.11) has a unique solution for each m > 0 (see, e.g., Smirnov and Lebedev
[15, p. 367]), provided that the cardinality of Q (i.e., the number of distinct points of {2)
is infinite. (We henceforth assume that any  considered here satisfies this condition.)
We remark that, with additional assumptions on 0, the asymptotic convergence factor
k() for © can be nicely described in terms of a conformal mapping (cf. (3.3") of §3),
or more generally in terms of a Green’s function for C\2 (cf. (3.3) of §3). This will
be considered in detail in §3.

Besides the polynomials {p.,}m>0 of (1.8), we introduce another polynomial se-
quence, namely {¢gm—1}m>0, associated with a given SIM, where

1 - z
(1.12) gm-1(2) == _T%@;J (m > 0).
Since we have p,, (1) = 1, gm-1 is indeed a polynomial of degree m — 1. Moreover, it
can be shown that ¢,,_1 is the uniquely determined Hermite interpolation polynomial
interpolating the function g(z) := 1/(1 — z) at the zeros of p,, (cf. [5]). The iterates

¥m of a SIM, as defined in (1.6), can now be expressed (cf. Eiermann and Niethammer
[4]) as

(1.13) Ym = Pm(T)a+ gm-1(T)e.

A SIM is asymptotically optimal with respect to € if and only if the associated inter-
polating polynomials g,,_; converge mazimally to g on Q (cf. [5, Cor. 12]). Maximal
convergence of polynomials to analytic functions is a well-known concept from com-
plex approximation theory (see, e.g., Walsh [18, Chap. IV]). Since several classes of
maximally convergent polynomials are known, this concept can be used to construct
fast convergent SIMs, e.g., SIMs which are generated by orthogonal polynomials (see,
e.g., Gragg and Reichel [7]), by Faber polynomials (cf. [5, §7]), or by generalized
Chebychev polynomials (see, e.g., Opfer and Schober [13]).

We remark that, for a given set , it may be difficult and computationally ex-
pensive to explicitly construct maximally convergent polynomials. Moreover, we are
only interested in those polynomials which in addition satisfy some recurrence rela-
tion which then can be used to construct effective schemes for the computation of
the vector sequence {ym}m>0 of (1.6) (cf. [5, §3]). We therefore consider a different
approach to solve the problem of (1.2). This can be described roughly as follows.

We transform the system (1.2) into an equivalent system

(1.14) x=Tx+¢,

where T' := tn(T) with t, €11, and t,(1) = 1.

Since o(T) C Q, we have o(T) C Q := {z = to(w) : w € Q}.
We therefore seek to select the polynomial t, in such a way that an
asymptotically optimal SIM, with respect to Q (or at least a SIM whose
corresponding convergence factor is only slightly larger than k(Q)), is
either known or can be constructed with a reasonable amount of work.
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Further, we also require that this SIM permits an effective computa-
tion of the associated iterates y,, (cf. (1.6)).

Then we apply this optimal, or “nearly optimal”, SIM to the trans-
formed equation (1.14).

We call such a composite acceleration scheme a hybrid semi-iterative method with
respect to the basic iteration (1.3). It is obviously completely determined by a trans-
formation polynomial t,, € II,, (where ¢,(1) = 1), and a SIM with respect to (1.14)
which may be induced by an infinite lower triangular matrix P (cf. (1.4)), or equiv-
alently, either one of the polynomial sequences {pm }m>0 (cf. (1.8)) and {gm—1}m>o0
(cf. (1.12)).

In §2, we shall study some of the properties of hybrid SIMs and their relation to
other procedures for solving linear systems. To judge the practical applicability of
a hybrid SIM, it is necessary to compare the convergence factors associated with an
“ordinary” SIM to those of a hybrid method. For that purpose, we will investigate in
§2 the relationship between x(Q) and [x(Q)]'/", where Q := , ().

One of the main results (cf. Theorem 6) of this paper is the result, which depends
on certain regularity condition on €2, that

R(Q) < [,
and that
R(Q) = [s(Q))/7,

if and only if 2 ¢ Q implies ¢,(z) & Q. This means that, for a given € and for a given
polynomial t,(z), the associated hybrid SIM generates an asymptotically optimal SIM
for Q if and only if 2z ¢ Q implies t,(z) ¢ Q.

Finally, in §4 we shall illustrate the effectiveness of hybrid SIMs by several ex-
amples, one example having an application to the numerical solution of the neutron-
transport equations.

2. Some properties of hybrid SIMs. Our first proposition gives conditions on
the transformation polynomial ¢, which imply that the transformed system (1.14) is
consistent with the original one of (1.2).

PROPOSITION 1. Let t,, € I, satisfy t,(1) = 1. Then, the (uniquely determined)
solution x of (1.2) is also a solution of

(2.1) x=Tx+¢,

where T := t,(T), € := tp_1(T)c and un_1(2) = (1 — tn(2))/(1 —2) € l,,_1. More-
over, if t,(A) # 1 for any eigenvalue A of T, then the linear systems (1.2) and (2.1)
are consistent, i.e., they both have the vector x as a unique solution.

Proof. If x denotes the unique solution of (1.2), we have by induction that
x=TFx+ (I +T+...+T* Ve=TFx+ (I -THYI = T) ¢ (k> 0).

Writing t,(2) = Y ) _gckz® where t,(1) = Y }_ocx = 1, then on multiplying the
above equation by ¢, and summing on k, directly gives the first assertion. The second

assertion is simply a consequence of the identity o(T) = {t,(A) : A€ o(T)}. O
By definition, any pair (¢,, P ) completely determines a hybrid SIM. Recall that t,,
denotes an arbitrarily fixed polynomial of degree n (with ,,(1) = 1 ) which transforms

the original linear system (1.2) into the linear system x = Tx + ¢ of (2.1), and that
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the infinite lower triangular matrix P of (1.4) induces a SIM with respect to the
corresponding basic iteration x,, = Txm_l +¢, m > 1. Such a SIM can also be
generated by polynomial sequences {pm }m>o (cf. (1.8)) or {gm—1}m>0 which implies
that the iterates y,,—1 of the given hybrid method can be expressed as

(2-2) Ym = pm(T>a + Qm—l(T)é = pm(tn(T>)a + Qm~1(tn(T))un—l(T)c

(cf. (1.13) and the definitions in Proposition 1). With pmn(2) 1= pm(ta(2)) € mn
(obviously, Pmn(1) = 1) and gmn—1(2) := (1 = pmn(2))/(1 = 2)) € Mpp_1, it can be
shown that Gmn—1(2) = gm—1(tn(2))un_1(2) for any m > 0. Hence, it follows that
(2.2) is equivalent to

(2'3) Ym = ﬁmn(T)a + (}mn-l(T)c (m > 0)'

In other words, the iterates ¥,, of the hybrid SIM can be considered as a subsequence
of the approximants belonging to an “ordinary” SIM with respect to the basic iteration
(1.3) (cf. also (1.13)).

If we approximate the solution of (1.2) by a SIM, we normally use a recursion of
the form (cf. [5, §3])

(24)  Ym = tmo(Tym—1+¢) + b, 1¥m—1+ - - + fln,m¥0 (m>1),

where pmo # 0 and Y 0% ftms = 1 for all m > 0. Besides the standard SIMs,
other iterative schemes for the solution of linear systems (e.g., the conjugate gradient
method) can be represented in the form (2.4), too. (Of course, the only methods
(2.4) which are of practical interest are those for which there is an integer k such that
Km, = 0 for any m >4 > k. In this case, (2.4) reduces to a so-called k-step method.)

In applying (2.4), the main problem consists in determining parameters i, ;(m >
i > 0) such that the sequence {ym, }m>0 tends rapidly to the solution of x = Tx+c (1.2).
To overcome this difficulty, we apply a method of the form (2.4) to the transformed
system x = Tx + € (2.1), i.e., we consider the iterates

(2~5) S'm = ﬂm,O(Tym—l + é) + ﬁm,li’m—l +...+ ﬁm,mS'O (m 2> 1)7

where we naturally try to choose the transformation in such a way that the problem
of selecting the parameters {fim ;}o<i<m is easier to solve than the original one. (It
will be shown in §4 that there are indeed cases for which such transformations exist.)
Calculating y,, according to (2.5), we have to multiply by the transformed matrix
T. If the original iteration matrix 7" is large and sparse, it certainly is not appropriate
to compute and store T' = t,,(T) explicitly. One way to avoid this is described in the
following proposition, which easily can be proven by induction on the degree of t,,.

PROPOSITION 2. Let the transformation polynomial t,, € Il,,t,(1) = 1, be fac-
tored, according to

(2.6) tn(z) = [[(z = &)/ (1 = &),
Jj=1

and define

(2.7) aj=1/(1-¢) (1<j<n).

Then, the iterates ¥,, of (2.5) may be computed by



ON HYBRID SEMI-ITERATIVE METHODS 159

~(0 ~ (5 ~(j~-1 ~(j—1
(2.82) Ty = Fmo1, Foli = 05(TFY71 +¢) + (1 — ay)g=D
(1<j<n-1),
and
2.8b Fom = i 73" D fim 0(1 — a)§" D
( . ) Ym —,U'm,Oan( Ym—1 +c) +#m,0( an)ym_l
+[‘m,l§'m~1 +...+ ﬁm,mi’Oa
form > 1.

The algorithm proposed in (2.8) consists of an inner iteration (2.8a), which cor-
responds to n — 1 steps of a nonstationary first-order Richardson method, and of an
outer iteration (2.8b), which itself can be considered as one step of a SIM with re-
spect to the basic iteration (1.3). Note further that (2.8) requires n (the degree of t,,)
matrix-vector multiplications by 7.

To conclude this section, we present a slightly different approach to hybrid SIMs,
which establishes a connection to the so-called polynomial preconditioned conjugate
gradient methods (see, e.g., Dubois,Greenbaum, and Rodrigue [3]). Recall that the
basic iteration (1.3) was constructed via a splitting A = M — (M — A) of the coefficent
matrix A (cf. (1.1)). Roughly speaking, the “quality” of this splitting, i.e., the
speed of convergence of the associated basic iteration (1.3), depends on how well M~1
“approximates” A~'. Since A7! = [ - M~Y(M - A)]"IM-! = (I-T)y M1,
it may be possible to improve this quality by replacing (I — T)~! by a polynomial
approximation u,—1(T), with u,—; € II__;, i.e., by considering the new splitting

(2.9) A= M — (M - A), where M := Mlu,_1(T)]71.

Now, M exists if and only if un—1(A) # 0 for every A € o(T), or equivalently, if and
only if £, (A) := 1= (1= A)uy—1(A) # 1 for every A € o(T). Note that the relationship
between u,_; and ¢, is exactly the one established in Proposition 1 and further, that
the existence of M is equivalent to the consistency of (2.1) with (1.2). Then (2.9)
leads to another fixed-point formulation of (1.1):

(2.10) x = Tx+¢, where T := M~(# — A) and & := 3~b.

Using the definitions of M and t, as well as the identity A = M(I — T), we easily
see that T = ¢,(T) = T and & = u,_1(T)c = ¢ (cf. Proposition 1). Thus, it is
obvious that a SIM, with respect to (2.10), is just an hybrid SIM with respect to
(1.3). Moreover, if the iterative procedure (2.4) represents the conjugate gradient
method, the algorithm (2.8) is known as a conjugate gradient method with polynomial
preconditioning, an algorithm which is of recent interest because of connections with
parallel architectures (cf. Johnson, Micchelli, and Paul [10]).

3. The asymptotic convergence factor. In the previous section, we have assumed
that the spectrum of the iteration matrix T is contained in some compact subset
2 of the complex plane, where 1 ¢ Q. From (2.8), we have seen that one step of
a hybrid SIM with respect to (1.3) essentially requires n (the degree of t,,) matrix-
vector multiplications by 7. Further, we know from (1.10) that () is the best
possible convergence factor that we can obtain with this information on o(T). On
the other hand, we have to perform only one matrix-vector multiplication by T if we
apply a SIM with respect to (1.3) (cf. (2.4)), and (1) is then the associated optimal
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convergence factor. Thus, to fairly compare both schemes, namely (2.4) and (2.8), we
must study the relationship between x(Q) and [s(Q)]'/™.
To do so, we need some further restrictions on €2, namely, we require that

belongs to the following class M:

M:={Q C C :Qiscompact, 1 &,
(3.1) Q has no isolated points
and C\Q is of finite connectivity}.

If © € M, then from theorems of Lebesgue and Osgood (cf. Walsh [18, §4.1]), there
exists a (uniquely determined) Green’s function G for C\Q with pole at infinity (where
C := C U{oo}). The function G is a positive real-valued function defined on C\Q
which is characterized (cf. [18, §4.1]) by the following three properties:

G is a harmonic function in C\Q,

G(z) — log|z| is harmonic in a neighborhood of infinity, and

lim G(z) = 0 for every ¢ € 0%,

z—¢
where 92 denotes the boundary of .
From a generalized version of Bernstein’s Lemma (cf. [18, §4.6]), the inequality

(3.2) r;leag!pm(Z)l > [exp(—G(1)]™

is valid for any polynomial p,, of degree m which satisfies pp, (1) = 1. From (1.11),
this implies, for any €2 € M, that

K(2) 2 exp(~G(1)).

Using the Theorem of Kalmar and Walsh (cf. [18, Chap. VII]), it can be shown (cf.
[5, §4]) that equality holds above, i.e.,

(3.3) k() = exp(—G(1)).

If C\Q is simply connected, then by the Riemann Mapping Theorem, there exists a
conformal mapping ® from C\Q onto C\{z : |z| < 1} such that the points at infinity
correspond to each other. In this case, the Green’s function G of C\ is given explicitly
by G(z) = log |®(z)| and therefore, we obtain (cf. [5, §4])
(3.3") k(Q) = 1 .
(1)
For our later use, we need the following generalization (to the more general sets
of class M) of the “Comparison Theorem” of Niethammer and Varga ([12, Thm. 3]).

PROPOSITION 3. If the sets Q1 and §g belong to M and if Q is a proper subset
of Qq, then

(3.4) k(1) < K£().

Proof. Let G; and G2 denote, respectively, the Green’s functions with pole at
infinity for C\Q; and €\Qy. Their difference G7 — G is harmonic in C\Qy (with
a removable singularity at oo). Further, G;(z) — G2(z) approaches a nonnegative
value if z tends to the boundary of 22, and for { € 8022\09; (such points existing by
hypothesis), we have ‘

lim (G1(z) — G2(z2)) = G1(¢) > 0.

z—r¢
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The minimum principle for harmonic functions now implies G1(z) —Ga(2) > 0 for any
z € C\Q2. In particular, this holds for z = 1, and, in view of (3.3), then inequality
(3.4) follows. O

The purpose of this section is to study the relationship between k(§2) and /{(52),
where Q := t,(Q) and t, € Il,, with ¢,(1) = 1. Assuming that { belongs to the class
M, then the condition 1¢ Q, or equivalently the condition

(3.5) th(z) =1=2¢Q

is necessary and sufficient for 2 € M to hold. Note that (3.5) is also sufficient for (1.2)
and (2.1) to be consistent (cf. Proposition 1). }
We first show that x(Q) is always a lower bound for [(Q)]*/".

LEMMA 4. Let Q € M and assume that the nth degree polynomial t, satisfies
tn(1) = 1 and condition (3.5). With Q := t,(2), there holds
(3.6) r(Q) < [s(Q)].

Proof. If the polynomial sequence {fm }m>o consists of the solutions of the mini-
mization problem (1.11) for 2, there holds (cf. (1.10), (1.11))

(@) = T {maxlim ()7}

m-—+00

But by (3.2) and (3.3), we obtain

ffeagli?m(Z)l = max|pm (tn(2))] 2 £(Q)™" (m 2 0),

because P, (tn(2)) is a polynomial of degree mn with p,,(¢,(1)) = 1. This implies
(3.6). O
Next, we give a condition which implies strict inequality in (3.6).

LEMMA 5. Let Q@ € M and assume that the nth degree polynomial t,, satisfies
tn(1) = 1 and condition (3.5). Further, we assume that there exists a point 2o ¢ §
with tn(20) € to(Q) = Q. Then,

(3.7) £(Q) < [(E)]H".

Proof. Consider Q := {z € C: t,(z) € Q}. Then, Q is certainly compact. Under
the given assumptions on tn,fl does not contain z = 1, and as a pre-image of a set
with finitely many components under a polynomial transformation, it has also only
finitely many components, none of which is an isolated point. All this implies that Q
belongs to the class M (cf.(3.1)). By construction, t,(2) = t,(Q) = © and Q C Q.
But since zg € Q\Q, then § is a proper subset of €2.

From Proposition 3 and Lemma 4, we deduce that

R(Q) < £(Q) < [K(E Q] = [R()]/7,

the desired result of (3.7). O
We are now in a position to prove the main result of this section.

THEOREM 6. Let Q € M, and assume that the nth degree polynomial t,, satisfies
tn(1) =1 and condition (3.5). With 2 :=t,(Q2), then

(3.8) K(Q) = [k(M)/™
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iof and only if the following condition is satisfied:
(3.9) 2E Q= ta(2) ¢ Q,

or, in other words, t, induces not only a mapping from 0 onto Q, but also one from

C\Q onto C\.

Proof. From Lemma 5, it follows that | (3 7) is necessary for k() = [&(Q)]}/"
to hold. We have only to prove that it is also sufficient. Since Q € M (this follows
from (3.5)), there exists a Green’s function G for C\Q with pole at infinity. We
define a positive real-valued function G by G(z) := (l/n)@(tn(z)) for all z € C\Q.
By a straightforward calculation, it can be verified that G is harmonic in C\(, that
G(z) approaches 0 if z tends to a boundary point of Q, and that G(z) — log|z| =
1/n[G(tn(2 )) — loglta(2)|] + 1/nlog|tn(2)/2" is harmomc in a neighborhood of 0.
Therefore, G must be the Green’s function for €\ with pole at infinity. Because of
(3.3), this implies

() = exp(=G(1)) = exp (=Gt (1) ) = lexp(-GN" = (@],
which is the desired result of (3.8). O

4. Examples. We now describe some examples where hybrid SIMs can be suc-
cessfully applied to the matrix equation of (1.2). We shall first consider polynomial
transformations ¢, € I, of Q, where € M for which ¢,(2) is a real interval [(, 7],
where 1 ¢ [(,n]. It is known that the SIM induced by the translated and scaled
Chebyshev polynomials

is asymptotically optimal with respect to [, 7], i.e., its asymptotic convergence factor
is given by (cf. Manteuffel [11])

(4.2) K= r([C,7)) = (n=Q/(VI=C+T=7n) if¢<n<1,
' BN (= Q/(WVT=1+va=1)? if1<(<n.

Moreover, the corresponding iterates {ym, }m>o satisfy a three-term recurrence relation
of the form

(4.3) Ym = tm,o(T¥m—1 +&) + fhm 1¥m—1 + ftm 2¥m—2 (m > 2)
(cf. [16, §5.1]), and these coefficients {pm i}o<i<2 in addition satisfy (cf. Golub and
Varga [6])
m  pim,0 = po == Ko B pigny = g = =20 +'Cn,
(4.4) m—eo T=( mee n—¢
lim Hm,2 = H2 = —Iﬂ2.

m—00

In other words, if m tends to infinity, the recurrence relation (4.3) approaches the
stationary two-step method

(4.5) Ym = #0(T¥m—1 +C) + m¥m  + paYm-2 (m>2),
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the parameters u;(0 < 7 < 2) being defined by (4.4). This method is also asymptot-
ically optimal with respect to [(,n], i.e., it has the convergence factor & of (4.2) (cf.
(12]).

Ezample 1. Returning to our introductory example (cf. §1), we assume that o(T'),

the spectrum of the iteration matrix 7' (cf. (1.3)), is contained in a cross-shaped region
of the form

Cap = [~a,a] | J [iB,iB], where 0 < & < 1 and 8 > 0.

(Note that, in contrast to §1, B8 can now be any positive number.) Obviously, we
have Cy s € M, and the polynomial t2(2) := 2%, which maps Cq,g onto the interval
[—32, 2], satisfies the conditions of Theorem 6. Thus, we obtain from (4.2)

V1482 =1 -a?
(46) K’(Ca,ﬁ) =V K([—,@2,02]) = m .

By Proposition 2, the application of the stationary two-step method (4.5) to the
transformed linear system (2.1) is equivalent to the following procedure:

With arbitrary initial guesses yo and ¥, we compute the vector sequence {¥m }m>0
according to the following recurrence relation:

(4.72) 7O =Fmo1, 7 =159 +c
and B
(4.7b) = 1o(TFS 1 +€) + 1 Fmer1 + p2¥m—s (m 2 2),
where

4 : a? -2 9
(47C) Ho = mﬁ, ,U% = —2mn, Ho = —K",

and where & := [£(Cqy 5)]?, as in (4.6).
In Table 2, the convergence factor ks of the optimized Chebyshev SIM applied
directly to (1.3) is compared to the convergence factor resulting from (4.7).

TABLE 2
o B K9 £(Ca,p)
0.5 0.5 0.50000 0.35639
.0.5 1.0 0.64575 0.49031
0.5 5.0 0.90542 0.84240
0.5 10.0 0.95131 0.91724

Ezample 2. We next consider a linear system (1.2), where o(T) is contained in
the union of two disjoint intervals

(4.8) U=la-p, a=—eb] | Jla+eb a+g]

where a € R, 3> 0, and 0 < € < 1. (Similiar problems have recently been studied
by de Boor and Rice [1] and Saad [14].)

Assuming U € M (i.e., 1¢ U), we must distinguish between two different cases:
If a # 1, then t5(2) := ((z — @)/(1 — @))? maps U onto [e26%/(1 — )%, 82/(1 — @)?],
and if a = 1, then t,(2) := —2? + 22 maps U onto [1 — 8%, 1 — ¢23?]. Since in each

ey
e
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case the assumptions of Theorem 6 are satisfied, we can proceed as in Example 1.
The case o = 1 is of special interest, because every Chebyshev-SIM applied to (1.3)
will diverge in this situation, whereas the hybrid SIM consisting of the transformation
ty(2) = —2% + 2z and the two-step method (4.5) not only converges but also has the
best possible (i.e., optimal) asymptotic convergence factor

1—¢

k(U) = i

Two further remarks should be added. At first, it is of course possible to handle
the case o(T) C U € M (cf. (4.8)) with complezx parameters o and § in exactly
the same way. (The reason for this is that such an optimal Chebyshev iteration for
complex intervals is given in [12] and [5].) Secondly, if U := [a, B]U[v, 6] € M, where
a< fB<y<é but B—az#b—~,itis always possible to find a polynomial {5 € Ilg,
with #2(1) = 1, such that t2(U) is a real interval not containing z = 1. It is however
impossible to choose a polynomial 5 that fulfills the conditions of Theorem 6, i.e., for
any to € Iy, there exist complex numbers z ¢ U with t2(z) € t2(U). In other words,
the hybrid SIM (4.7) (with appropriately chosen p;,0 < i < 2) converges in this case,
too, but it is no longer asymptotically optimal.

Ezample 3. Suppose that the iteration matrix T of (1.3) is weakly cyclic of index
p (cf. [16, p. 39]), i.e., there exists a permutation matrix @ € C™'V such that

0 0 0 0 T
T, 0 O 0 0

(4.9) QreT=| 0 T3 0 0 0,
0 0 0 T, 0

where the diagonal submatrices are square. The eigenvalues of T are contained in the
following star-shaped regions (cf. [16, §2.3] and Wild and Niethammer [19])

(4.10a) Sg ={z€ C:z=ve®*? y€[0,6,0<k<p-1}
if o(T?) C [0, #P], where § := p‘(T) (we shall refer to this case as the nonnegative case,
cf. Fig. 2), or

(410b) S5 e={ze€ C:z=vel®*VT7 e (0,6,0<k<p—1)

if o(T?) C [—BP,0], where 8 := p(T) (the nonpositive case, cf. Fig. 3).

Clearly, Sg’ € M (cf. (3.1)) if and only if 0 < 8 < 1, and S; € M for any
B > 0. Since t,(z) := 2P maps S5 onto [0, 7] (and S5 onto [-fP,0]) and since
the conditions of Theorem 6 are then fulfilled, (4.2) implies that the corresponding
convergence factors are given by

(4.11) K(SF) and £(S5) =

- p p
AT iop A+ vispeh

Thus, the following hybrid SIM is asymptotically optimal in our situation: With arbi-
trary starting vectors yo and ¥; compute

(4.122) 7O =§mor, 79, =759V 4 1<i<p-1)
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and
(4.12b) T = wo(TFE™ 4 ¢) + p1Fmor + p2Fm—1 (m > 2).

The parameters p;(0 < ¢ < 2) are given by

4
(4.12c) Ho = Zpkp, p2 = —2kg, pa = —(rp)?
in the nonnegative case, and

4
(4.12d) Ho = Zokps H2 = 265, pa = —(rg)’

in the nonpositive case, where (cf. (4.11))

' . [/~;(S’3’)]7’J if o(T%) C [0, 57],
(4.12¢) kg = { [rc(S'g)]p if o(TP) C [_gp,o]_

The matrix QT'QT of (4.9) is consistently ordered (cf. [16, p. 101}); we assume
now that T'is already given in this form and consider the cyclic reduction of the linear
system (1.2) (cf. [16, §5.4]). If we partition the vectors x and ¢ according to the
partitioning of (4.9), (1.2) can be written as

T1 0 0 0 0 T z1 c1

T2 T2 0 0 0 0 ) Co
(4.13) ; z3 | =| 0 T3 O 0 o0 zy | 4| €|,

Tp o 0 0 -~ T, O Tp Cp

and thus, the transformed system x = T?Px+¢ (&:= (I +T + ...+ TP 1)c) is block-
diagonal:

T Tl Q 0 0 I C1

To 0 T, O 0 Zo C2
(4.14) T3 | — 0 0 T3 0 3 | 4 C3 ’

Ty 0 0 0 T, Tp Cp
where
(4.15) Tj=TiTj—1.. . T\ TpTpo1... Tipn (1< j<p)

Thus, (1.3) is therefore equivalent to the p uncoupled equations (4.14), and in view of
(4.13), it is sufficient to solve the reduced matrix problem

(4.16) xp = Tpxp + &p-

_To solve (4.16), we can again make use of (4.12), because the nonzero eigenvalues
of T, and T® are the same:

~{0 ~ ~{7 (f— .
(4.17a) yﬁn)_l = ¥m~1, yﬁi)_l = ngz#i) +¢; 1<j<p—-1),

(4.17b) Fm = po(T7 P70 + ¢) + taFm1 + p2Fm—a (m>2),
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where the parameters p;(0 < 7 < 2) are chosen according to (4.12¢) or (4.12d). In
comparison to (4.12), the amount of work has been reduced substantially. In each
step of (4.17), we have to multiply only once by each of the submatrices T1,Ts,...,T)
which corresponds to one multiplication by T'. Thus, the convergence factor of the
iteration (4.17) is given by

[ B+ TR if o(TP) C [0, 57),
(4.18) kg "{ B )1+ VTF )2 if o(TP) C [-87,0].

If the block Jacobi matrix T' of the coefficient matrix A of (1.1) is a consistently
ordered cyclic matrix of index p, the block successive-overrelazation (SOR) method (cf.
[16, Chap. 4]) is often used to solve (1.1) and (1.2), respectively. Using the notation
of (4.13), the SOR method is described by

™=V o ™Y e
xgm) = (1~ w)xgmnl) +w Tgxgm) +w €2
(4.19) o (m>1),

X =1 -w)x™ Y +w T, xz(,rf)l +w ¢y

where w(0 < w < 2) is the associated relaxation parameter. Comparing (4.19) to
(4.17), we find that the amount of work, for both the hybrid SIM and the block SOR
method, is the same. To decide whether (4.19) or (4.17) yields faster convergence,
we compare Kg to the spectral radius p(L,,-) of the block SOR iteration matrix with
optimal relaxation factor w*. In the nonnegative case, there holds p(L,-) < 1 if and
only if 8 < 1. Here, w* is the (unique) solution of

(4.20) (p = 1P wPBP —pPlo—1] =0

which is contained in the open interval (1,p/(p—1)) (cf. [16, §4.3]). In the nonpositive
case, we have p(L,-) < lifand only if 0 < 8 < p/(p—2) (0 < 3 < oo for p =2). Now
w* is the (unique) solution of (4.20) which lies in ((p — 2)/(p — 1), 1) (cf. Hadjidimos,
Li, and Varga [8] and Wild and Niethammer [19]). Further, there holds in each of
both cases

(4.21) L) = (p— Dl 1.
From (4.21) and (4.18), we easily conclude that
R =p(Ly) iff p=2
and, for |8| > 0,

kg < p(Ly-) iff p > 3.

In Fig. 4, kg and p(L,,-) are plotted, for p = 5, as a function of B(—o00 < f < 1).

It is worth noting that in the nonpositive case, the block SOR method diverges
if 8>p/(p—2) (p>2), whereas the hybrid method (4.17) will converge for every
. There is a more intuitive reason for this better performance of the hybrid methods
(4.17). These methods are indeed asymptotically optimal for the star-shaped regions
Sg and Sy (cf. (4.10) and Figs. 2, 3). The p-cyclic block SOR method however can
be considered as a certain p-step relaxation (cf. [19]) which is only optimal for the
closed interior of certain hypocycloids shown in Figs. 2 and 3.
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