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A UNIFIED THEORY FOR REAL VS,
COMPLEX RATIONAL CHEBYSHEV APPROXIMATION
ON AN INTERVAL

ARDEN RUTTAN AND RICHARD S. VARGA

ABSTRACT. A unified approach is presented for determining all the constants
Ymn (m 2> 0,n > 0) which occur in the study of real vs. complex ratio-
nal Chebyshev approximation on an interval. In particular, it is shown that
Ymm+2 = 1/3 (m > 0), a problem which had remained open.

1. INTRODUCTION

Let n:n and nfn denote, respectively, the sets of polynomials of degree at
most m, with real and complex coefficients. For any pair (m,n) of nonnega-
tive integers, n,’n » denotes the set of rational functions of the form p(x)/q(x),
where p € n; and g € 7/, and we define m,, , analogously as the set of ra-
tional functions of the form p(x)/g(x) where p e m,, and g € n{. Let |- I,
denote the supremum norm on [-1, 11, ie, |If], = SUD.cr_ 1 [f(x)]. If
C'[~1,1] denotes the set of all continuous real-valued functions on [-1,1],
then, for f in C'[-1,1], we set

E, (f)i=inf{|f —g|:gen, },
E;, (f)=inf{|f - g|: gen’ ).

For f € C'[-1,1], it is well known that there exist functions / en, , and
gEemn.  satisfying E, (/)=I|f~h|, and E, ()=If-gl,. Infact, h

m.n
can be characterized by the length of the alternation set of S —h (cf. Meinardus
[2, p. 162]). Less is known about the g for which Efn 2 =1 - gll, - Since

r

m,, . C 7, , then evidently E, (f) < E, .(f), but it is not obvious that

m.n — B
strict inequality can hold. What is surprizing here is that, for each m > 0 and
n > 1, there is a real continuous function f on the real interval [-1, + 1] for
which

(1.2) E, J(N/Ey, () <1
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(For a recent treatment of this, which covers the early contributions of A. A.
Goncar, K. N. Lungu, and Saff and Varga, see [6, Chapter 5].)

Saff and Varga [4] raised the question as to how small the ratio E;, ,(f)/E,, (/)
can be for a fixed integer pair (m,n). More precisely, they asked which values
the numbers y,, n take on, where

Py = 0E(Ey, (N)/E;, (f): f € CTT-1 I\, )}

Three recent papers have described the behavior of y,  in terms of (m,n).
First, Trefethen and Gutknecht [5] established, by means of a direct construc-
tion, the surprising result that

(1.4)

(1.3)

=0, for each pair (m, n) of nonnegative integers with
n>m+3.

ym N

Next, Levin [1] established the complementary result that

(1.5) = 1/2, for each pair (m, n) of nonnegative integers with

ym NG

m+1>n2>1.

Levin’s proof of (1.5) consisted of a direct construction to show that y, = < 5 s
and an algebraic method“to show that y n < 2 was impossible for m + 1 >
n > 1. The results of (1.4) and (1.5) leave open only the case 7, .., (m =>0).
For this case, Ruttan and Varga [3], also by means of a direct construction, have
more recently shown that

(1.6) <1/3  (m>0).

ym ,m+2

This result, however, leaves open the question of the actual values of y,, ey M2
0, allowing speculation that perhaps 7, ., might be zero or even that y,
might take on different values as m varies.

Our object here is to complete this topic by showing that
(1.7) =1/3 (m >0).

ym m+2

In the process of establishing (1.7), we develop two results for general complex
rational functions which provide a unified approach to the problem of deter-
mining the values of 7, .

2. UPPER BOUNDS FOR 7,

Table 1 lists the values of y, = established in [5] (n > m+3) and in [1]
(1 <n < m+l),together with the values of Y o (n=m+2) which follow from
[3] and the results to be developed below. Ev1dently, Y o takes on only four
distinct values: 0,1/3,1/2, and 1. The value 1 occurs only when n =0 and
is a consequence of the well known fact that the best uniform approximant, from
n:n 0> of any real-valued continuous function on [—1,1] is a real polynomial,

whence E,  (f)=E, ,(f). The remaining values 0,1/3, and 1/2 occur in
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0 1 1 1 1
112 12| 1/2 | 1)2
21 1/3 172 1/21/2
310 |1/3]1/2]1/2
41 0 |0 |1/3]1/2
50001 0 |1/3
6| 0| 0] 010
7

TABLE 1. Values of y, , (m>0;n2>0)

the regions R, = {(m,n) :n>m+3}, Ry:={(m,n) :n=m+12}, and
Ry:={(m,n): 1 <n<m+1}, respectively, of Table 1.

In establishing the sharp upper bounds for y, = for a given region R,,
i=1,2 or 3, the aforementioned authors constructed families of functions
F(m,n,e) C C'[-1,1\x,, . where (m,n) € R, and where ¢ >0, with
the property that

Ymon :inf{E,C,,,,,(f)/E:,,‘n(f):fe?(m,n,e) and ¢ > 0}.

In this section, we give a unified approach to calculating a sharp upper bound
for y, , in each of the regions R, ,R,, and R, of Table 1. In addition to
providing a consistent framework for calculating upper bounds of 7, ., the
details presented below also provide the foundation required for the sharpness
results given in Theorem 4.

Our first result provides a new tool for obtaining upper bounds for y, .

Proposition 1. For a fixed pair (m,n) of nonnegative integers, let
pe(n, \m,. JnC[-1,1],

and let S be a continuous real-valued function on [—1,1] for which there are
L > m + 2 distinct points {Xj}jL-:p with =1 < x, < x, <---<x, <1, such
that

(2.1) (-1)3(S(x,) +Re ¢(x)) >0 (j=1,2,....L),
where & is a constant which is either +1 or —1. Then,

(2.2) Von NS —i1Im @l /M,
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where

(2.3) M = 1rSnjiSnL]S(xj) +Reg(x))].

Proof. Set f(x) := S(x)+ Re ¢(x). Then, as condition (2.1) states that the
error function for the zero approximation to f oscillates in L > m + 2 points,
the de la Vallée Poussin Theorem [2, p. 83] gives (cf. (2.3)) that E,'n W) =2M.
Butas E, (f) <|f—¢ll, =IIS—iIm¢|,, wemusthave from (1.3) that
Vo SIS iImol,/M O

Given a pair of nonnegative integers (m,n) with n > 1, Proposition 1
suggests a procedure for finding a sequence of functions {f,} € C -1, 1]\7t,rn n
for which Efn’ 2 (f2) /E,'n ,(f,) is minimized. One first chooses a continuous
rational function ¢, € 7, \n, . on [-1,1] with the property that Re ¢,(x)
has at least m + 1 sign changes in [~1,1] and for which |[Im ¢, ||, is small.
Such a function may be obtained (see Theorems 2, 3, and 4 below) by placing, in
an astute manner, the zeros and poles of ¢, near the interval [-1, 1]. Suppose

(-1YRe ¢,(x)>0(j=1,2,...,m+2), where -1 <x, < <x,,<l.
The function S, is then chosen so that
(2.4) sgn Ss(xj)zsgn Re qbe(xj) g=1,2,... m+2),
(25)  IS,(x)—ilme,(x)~ mel, (=12, ,m+2),
and
(2.6)
m+2

S,(x)=0, forx ¢ U (xj —-&, X, + e), for some sufficiently small ¢ > 0.
j=1

The condition of (2.4) is used to make

M= min {|IS (x;)+Re ¢(x;)[}

1<j<m+
as large as possible, while conditions (2.5) and (2.6) are used to guarantee that
IS, = iIm ¢,||, = [[Im ¢,||, . These choices make the ratio ||S, —iIm ¢ || ,/M
in (2.2) nearly as small as possible.
As a concrete example of the above procedure, consider the integer pair (0, 2)
and, for any ¢ > 0 sufficiently small, set

¢,(x):= 338—1 [ : : ] ,

x+1l—ie x—-1-ig

1—x
, xe[-1,1],
mn:{1+ﬁ =1
0 otherwise ,

s (224 (229)]

and
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The function ¢,(x), an element of 7, ,\7 ,, can be verified to satisfy

Re ¢ (~1)= -2+ 0(e’) <0, and Reg¢,(1)=2%+0() >0,

for all ¢ > 0 sufficiently small. Next, on setting x, := —1 and x, := +1, the
function S (x) then directly satisfies (2.4) and (2.6), and, as a short calculation
shows, it also satisfies (2.5), up to an additive term O(e), i.e.,

L+ 0(%) = [8,(x,) ~ i Im ¢£(xj)| = im ¢, +06) (=1.2).

In addition, it can be similarly verified that
IS, - i1m g, =+ 0).

and
M = min {
j=1,2

S,(x,) +Re ¢E(xj)'} =1+ 0.

By (2.2) of Proposition 1, we thus have the upper bound

IS, —iIm ¢ || 1
Vo2 < IL——M——————?J—I=§+O(8),
for all ¢ > 0O sufficiently small, whence on letting ¢ — 0,
Vo2 <3

To establish the known upper bounds for y, n associated with the regions
R, i=1,2, and 3, of Table 1, the authors of [1], [3], and [5] each, in
essence, applied a variant of Proposition 1, with appropriate choices for ¢, and
S,, to obtain upper bounds for y, e Normalized forms of their choices of
¢, and S, are detailed in the next three theorems. For notation, H;"zl d; =1
when m < 0.

Theorem 1 (Trefethen and Gutknecht [S]). For any m > 0 and € > 0 suffi-
ciently small, set

e [I7, [-1+(2j - 1)e—x]
2. = = ’
(2.7) & (%) I+ (4™ (iVe-x)(1+e-x)

so that g, , €™, and set

m ,m+3\n:n m+3’
G o(X) =8, (X)/Im g, (X),, and S,(x):=0.

Then, there is a constant ¢ > 0, independent of ¢, such that for all ¢ > 0

sufficiently small, there are m+2 distinct points {xj(e)};f'ztz, with =1 < x,(¢) <

x,(e) << x,.,() <1, for which

(2.8) (-1)Re ¢, (x,(&)>c/Ve (j=1,2,....,m+2),
(2.9) IS, —iIm ¢, |, =IIme, [,=1,

and

(2.10) M = 15’,";&2‘56("1(8)) +Re ¢, (x,(e))l 2» c/Ve.
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Theorem 2 (Levin [1]). For any nonnegative integers n and k with n > 2 and
k even, set

(2.11) 8 n (X)) =T (x)- <x—z:e>

X + 1€

where T, (x) is the normalized (i.e.,||T,||, = 1) Chebyshev polynomial of the
first kind of degree k, and set ¢, , .(x) = g, (x)/|[Im g (%), and
S,(x) =S8, , (x):=Re ¢, (x). Then, there is a constant ¢ >0, indepen-
dent of ¢, such that for all ¢ > 0 sufficiently small, there are k +2n+1 distinct
points, {xj(s)}f:f"“, with —1 < x,(e) < x,(8) < -+ < X, ,..,(e) < 1, for
which

(212) 1-ce<(-1)""Re ¢, , (x;(e)) <IS,,,—iIme, , I, <1+ce,
and

(2.13) M = 1§jg1&nzn+1l v one(X;(€)+Re g, (x(e))] 22— 2ce.

Theorem 3 (Ruttan and Varga [3]). For any m >0, let

26 T (=1
(2.14) g (X)) 1= ;
me 3 jzox—1+%ﬁ—aujz

where {uj };":(')l are any m + 2 fixed positive numbers satisfying

m+1 ) m+1 .
O<u; <1, > (=1p,=0 and 3 j(-1)u; #0,

j=0 j=0

so that g, ,em, . \n, .., andlet

l—x2
, ef[-1,1],
=4 15,2 Yl
0, otherwise.

Set ¢, (x):=g, (x)/|[Img, (x)|, and

m+1 +_2L_
Sy(x) = (Z(—l) h ( )) NMm g, (-

Then, there is a constant ¢ > 0, independent of € such that for all ¢ > 0
sufficiently small, there are m+2 distinct points {xj(e)};";z, with —1 < x,(¢) <
x,(e) < <x, . ,() <1, forwhich

(2.15) (-0 Re ¢, (x(e)22-cc (j=1,2,....m+2),
where & is a constant which is either +1 or —1,

(2.16) IS, ,—ilme, | <1+ce,
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and

(2.17) M= min IS, (x(e)+Re g, ve(xj(a))l >3 ce
On combining the results of (2.9) and (2.10) of Theorem 1 with (2.2) of

Proposition 1, it is evident that 0 < y a3 < Vve/c for all € > 0 sufficiently

small, so that (cf. Trefethen and Gutknecht [5])

=0 (m>0).

ym ,m+3

But as nfn‘m% o, 3 forall k>3, the same function ¢, . of Theorem

1 can be used to deduce (as was pointed out in [5]) that
Yma=0 (@lrn>m+3;m>0).

In a similar fashion, on combining the results of Theorems 2 and 3 with Propo- )
sition 1 gives the upper bounds of ‘

(2.18) <l (m+12n>1); <l (m>o0.

ym n ym ,m+2

3
(We remark that the case n = 1 of the first inequality of (2.18) requires special
handling. For details, see Levin [1].)

3. OSCILLATION OF THE REAL PART OF A RATIONAL FUNCTION

For a given real or complex polynomial p, let dp denote the exact degree of
p.If R=p/q is continuous on [—1, 1] where p and g are real polynomials,
it is evident that Re R = R can have at most dp sign changes (as, for example
in (2.1)) since each sign change of R corresponds to a zero of p. But, what
can be said about the number of sign changes when R = p/q is a continuous
complex-valued rational function on [—1,1]? As we shall show in our next
theorem, the number of possible sign changes of Re R depends not only on
the degrees of p and ¢, but also on the size of the oscillations of Re R. For
additional notation, let |x| denote the greatest integer N satisfying N < x.
Then, we have the new result of

Theorem 4. Let ¢ = p/q be a complex rational function with no poles in [—1, 1]
which satisfies ||Im ¢||, <-1. Assume that there are real numbers d > 0 and

{xj}]L.:l, with =1 < x, <x,<---<x, <1, forwhich
(3.1) S(-1YRep(x)>d (j=1,2,3,....,1),

where & is a constant which is either = +1 or —1. If 9g <dp and if d > 1,
then

(3.2) L<ap+1
Similarly, if 6q > O0p, then
(3.3) L <dq wheneverd > 1,
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and

ap +9q + 1

(3.4) L< { :

J whenever d > 2.

The upper bounds for L given in (3.2)-(3.4) are sharp in the following senses:

there exist rational functions, satisfying the ap-
propriate hypotheses, for which the upper bonds

(3.3) for L given in (3.2)-(3.4) are attained (i.e., equal-
ity can hold in (3.2)-(3.4));
Jor any d < 1 (d < 2 respectively), there exists
(3.6) rational functions satisfying all but the hypothe-

ses on d in ,(3.3) ((3.4) respectively) for which the
bound on L is exceeded.

Proof. As the proofs associated with (3.5) and (3.6) are more direct, we first
consider the sharpness results expressed in (3.5) and (3.6). To establish (3.5),
we must exhibit rational function ¢, ,¢,, and ¢, which satisfy the hypotheses
for (3.2), (3.3) and (3.4), respectively. To that end, first set ¢, = p/q where
g(x):=1, andset p(x):= T, (x) = cos(marccosx)(for —1 < x < 1). Then,
Op =m, 0 = |Im ¢||, <1, and, with the known m + 1 extremal points
{)“cj = cos(jn/m)};"=0 for the Chebyshev polynomial 7, (x), (i.e., Tm(fcj) =
(=1)), then (3.1) is valid for d = 1 and for the L := m + | points {%} -
In this case, equality then holds in (3.2). To verify that equality is attainable
in (3.3), let ¢, = ¢, e =DP/q where ¢ isgiven in Theorem 3. By Theorem
3, ¢, (an element of nfn,m+2\n:n,m+2) satisfies (3.1) with 4 > 1 whenever
¢ 1is sufficiently small. But 9p = m, ¢ = m+2, and L = m+ 2, so,
consequently, equality also can hold in (3.3).

It remains to verify that equality can hold in (3.4). Let ¢ = p/q be the
rational function ¢, . given in Theorem 1. By (2.8), ¢, (an element of
Moy a3\ mys) satisfies (3.1) with L = m +2 and d > 2, provided & > 0
is sufficiently small. Since 9p = m and 8¢ =m +3, wehave L =m+2 =
| 222241 | which shows that equality can hold in (3.4). This completes the
proof of the sharpness in (3.5)

To establish the claimed sharpness (cf. (3.6)) of (3.4), consider first the func-
tion ¢, . (in nt ,m+2\7t:n ‘m+2 ) of Theorem 3. From Theorem 3, we see that

m

¢,, . = P/q satisfies |Im ¢, ¢l <1 and hypothesis (3.1) of Theorem 4 with
L=m+2 and d < 2 (for all & > 0 sufficiently small). But in this case, as
Op=m, andas 9g=m+2, then L=m+2> LQKS’“—’J , which shows that
the inequality of (3.4) of Theorem 4 can fail if the condition d > 2 is deleted.
In a similar constructive manner, using ¢, (x) = Ppe p (X)) (1 + sx)k+l where
®; » . 1s defined in Theorem 2, one obtains the sharpness, as claimed in (3.6),

for the inequality of (3.3).
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FIGURE 1

We now establish (3.2)-(3.4). We remark that inequalities (3.2) and (3.3)
can be deduced from the results found in [1], but for completeness we include
a proof here.

To establish (3.2) of Theorem 4, we use a geometrical argument, suggested by
the work of Levin [1]. Assume d > 1, and consider a circle C :={z:|z| =1}
and a rectangle B with vertices +d 4 asindicated in Figure 1. Condition (3.1)
and the assumption that |[Im ¢|, < 1 imply that the curve (in the extended
plane) I', := {z = ¢(x) : x € (—o00,00)} intersects the vertical sides of B,
and, hence the circle C in 2(L — 1) points as x increases from x, to X, .
(Here, points where I, is tangent to C are counted twice.) If x gives such an
intersection of the curve I') and C, ie,

2

2 _|p(x)
X [ =
Bl =05
then x is also a zero of the polynomial
2 2
(3.7) P(x) = [p()" —lg(x)[".
The above discussion shows that there are at least 2(L — 1) zeros of P(x) in
[x,,x,].

If &p > 6gq, then P(x) of (3.7) is a polynomial in x with degree at most
28p . Therefore, it must follow that 2(L — 1) < dP(x) < 29p, from which we
obtain (3.2).

Next, to establish (3.3) of Theorem 4, assume that hypothesis (3.1) is valid,
that &g > dp, and that d > 1. As in the previous case, we know that that
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FIGURE 2

portion of the curve I';, as x increases from x, to X, , intersects the circle
C at least 2(L — 1) times. Since d > 1, it is geometrically clear that ¢(x,)
and ¢(x,) both lie outside of C (cf. (3.1)) if any of the following statements
is valid:

(i) d>1;
(3.8) { (i) d(—1)Re ¢(x,) > 1 and 6(—1)LRe (x;) > 1;
(iii) Im ¢(x1) #0# Im ¢(xL).

But, in this case (i.e., g > dp ), it follows that ¢(x) — 0 as x — +oo. As 0 is
an interior point of C, then there is evidently an additional intersection of T’
and C in each of the intervals (-oco,x,) and (x, , +00). (This is illustrated
in Figure 2.) Thus, P(x) of (3.7) must have a total of at least 2L zeros. As
0q > 0p, then OP = 20q, sothat 2L < 29q . This establishes (3.3) whenever
#(x,) and ¢(x,) both lie outside of C.

For the remaining case, suppose (in contrast with equations (3.8)) that
d(-1)¢(x,) = 1 = d and, for convenience, assume J = +1, so that ¢(x,) =
—1. If T', is not tangent to C at —1 (this possibility is shown on the left of
Figure 3), then it is possible to find a real %, sufficiently near x, for which
—Re ¢(x,) > 1 and |[Im "5”[5:1 1 S 1 are both satisfied. With a possible linear
change in scale (mapping [X,, + 1] into [~1, +1]), then ¢(%,) is outside C,
and the previous argument can be applied. Finally, if I', is tangent to C at
x =1 (as indicated on the right of Figure 3), this contact implies that x = 1
is a zero of multiplicity at least two of P(x), and we conclude in all cases that
P(x) must have at least 2L zeros, which gives (3.3).

Now, for the remaining inequality (3.4) of Theorem 4, assume dg > dp and
d > 2. Again, consider the rectangle B with vertices +d & i. The assumption



COMPLEX RATIONAL CHEBYSHEV APPROXIMATION ON AN INTERVAL 691

FIGURE 3

that d > 2 means that the circles C, := {z: |z+1| =1} and C, :={z:|z—1| =
1} each lie within the rectangle B. As in the cases above, condition (3.1) and
the assumption that ||Im ¢||, < 1, imply that that portion of the curve I,

intersects C, in 2(L — 1) points as x increases from x, to x, . (Again,

points of tangency are counted twice). Let {v j}i(:Ll”” be the 2(L — 1) points

with x, < v, <v, < <y, < x, for which {¢(v)}}";"" licon C,.
Thus, the points v, ,v,, ..., ¥y, satisfy

2 .
(3.9) lp(v;) + 1" =1 (j=1,2,...,2(L-1)).

Similarly, we see that I'; intersects C, in 2(L — 1) points. Let {uj}f(:Ll_l)
be the 2(L — 1) points with x; < u, <u, <.+ < Uy S Xp for which
{o(u j)}i(:l“l—l) lies on C, . This situation is illustrated in Figure 4.

Currently, the polynomials p and g are determined only up to a multiplica-

tive constant. So, without loss of generality, we may assume that

op oq
(3100 p)=[Jx-e) and a(x)=p[J(x-8) (B#0),
j=1 j=1

oq

j=1 are the poles of ¢ . With this

where {aj}fi , are the zeros of ¢ and {8}
representation, (3.9) implies that

(311) P i=1p(x) + () - la(x)* =2 Re {p¥)q(x)} + |p(x)f
has 2(L — 1) zeros {vj}f(le_” in [x,,x,]. And similarly,
(312)  Pyx):=p(x) = () = la(x) = ~2 Re {p(x)a(x)} + p(x)/

has 2(L — 1) zeros {uj}i(:ﬁ”” in [x,,x,]. How the proof now proceeds de-
pends on the sign of Re f. If Re f < 0 we will find that P (x) has enough
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FIGURE 4

additional zeros to establish (3.4). If Re 8 > 0, P,(x) can be used to establish
(3.4). We treat only the case Re § > 0, the case Re f < 0 being completely
similar. Our goal is to find two additional zeros for P,(x) when K := dq — dp
is an even positive integer and one additional zero when K is an odd positive
integer. Note, first, that if I, is tangent to C, at x,, then Xx, is a zero of
P,(x) with multiplicity at least 2. In that case, we have an additional zero
associated with x, . In a similar fashion, we find an additional zero associate
with x, if I', is tangent to C, at X, .

There are three cases to consider: K even and Re f > 0, K odd and
Re >0, and Re f=0.

Case 1: K evenand Re > 0. As we observed above, if I, is tangent to C, at
x, , then there is an additional zero of P,(x) associated with x, . If ', is not
tangent to C, at x,, then since |Re ¢(x,)| > d > 2 we proceed as in the proof
of (3.3) to show that there is a real X, arbitrarily near x, (and possibly equal to
x, ) for which sgnRe #(x,) = sgnRe ¢(X,) and |Re ¢(X,)| > d . If one replaces
x, with X,, then the hypotheses of the theorem still hold (after a possible
linear change in scale). Therefore, without loss of generality, we may assume

|Re ¢(x,)| > d > 2, and hence |4(x,)| = Zl((ﬁ—):) > d > 2. Consequently, it
follows that
q(x,) i(I(X )| 1
3.13 Re Ll < | = < =
G Re S5l < ol <2
Using the (3.10), we see that
(3.14) Re ax) = (Re ,B)xK + lower order terms in x.

p(x)
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Since Re f > 0 and K is an even positive integer, then as x — —oo, (3.14)
shows that Re %%% — +o0o0. This together with (3.13) establishes that there is
an % in (—oo,x,) for which

(3.15) Re 4 _ 1

p(x) 2
But (3.15) may be rewritten as

~2Re {p(Ma(%) } + (R =0,

which shows that P,(x) has a zero in (—oo,x,), when I'| is not tangent to
C,. So, in either case (I'; tangentto C,, or I', not tangent to C, ), we find
an extra zero associated with x, . Similarly, we find an extra zero associated
with x, . Thus, when K is an even positive integer and Re f>0, Py(x) has
2L zeros. But then,
2L < 0P, <0p+dq <dp+0q+1.
Hence,
L<

< |27

which establishes (3.4) for this case.

Case2: K oddand Re > 0. If T'| istangentto C, at x, , the tangency then
gives the required additional zero. When T, is not tangent to C, at x, then,
after a possible substitution of x, with a point X, sufficiently close to x, ,
followed by a possible linear substitution, we find that |¢(x,)| > 2, from which

glx)| _1
p(x;)

6p+6q+1J

(3.16) Re

2

follows. As Re > 0, (3.14) shows that Re %%% — +00 as x — +oo. Arguing
as in Case 1, this together with (3.16) yields that P,(x) has an additional zero
in (x; , +00). Thus, we find that P,(x) has 2L — 1 zeros, and therefore

2L <0P,+1<0p+0dq+1

Consequently,
L< [?!Li_gl’_“J ,

Case 3: Re f =0. Since dg > 9p, it follows from (3.10) and (3.12) that
Py(x) = =2 Re (p(x)a(x)) + |p(x)|’

= —-2(Re ﬂ)xaqu + (Re u)xa‘”ap ~! }+ lower order terms,

for some constant x. But, as Re f = 0, we have that 2L -2 < 0P, <
O0p + g — 1. Therefore
I < [8p+8q+1J ,
- 2
which gives (3.4). O
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4. LOWER BOUNDS FOR } "

With the aid of Theorem 4, we will now establish that Y omaz = 1 /3 for all
m > 0, and show that the previously mentioned lower bounds for Voponr M2
n+ 2, hold.

Theorem 5. Let (m,n) be a pair on nonnegative integers with n > 1, let
fecC[-1, 1]\7t:n o andlet r and R be respectively the best uniform approx-
imation of f on [~1,1] from =, . and n, . Then,

(4.1) If =R/ =rl,>1/2 fm+12n
and

(4.2) If = RIS =rl, > 1/3 ifm+2>n
Hence,

(4.3) Tmon = 1/2 ifm+1>n,

and

(4.4) Yo =1/3 ifm+2=n.

Proof. Let S := | f~R|,/IIf—rll,. Set e:= f—r, R:=p,/q,, and r := p,/4,
where the pairs (p,,q,) and (p,,q,) are assumed to have no common factors.
Since f ¢ n,’n > then by multiplying f',r, and R by an appropriate constant,

we may assume that [le||, = 1. As r is the best uniform approximant of f,
there exist at least L := m + n + 2 — min(m — dp,;n — dq,) distinct points
{xj}f:1 , with =1 < x; <x, <---<Xx, <1, such that e(xj) = (=1)’6 for
all 1 <j <L, where ¢ is a constant which is either +1 or —1. Again, on
multiplying by —1, if necessary , we may take J = 1, i.e., e(x;)=-1.

With this normalization,

S:= | = Rll; 2 1/ (x) = Rx)| = (=1 +r(x) - R(x)| (1<j<L),
which is possible only if
(4.5) (~1YRe (R(x)) = r(x)) 2 1 =8 (1<j<L).

Let ¢(x) := (R(x) —r(x))/S := p(x)/q(x) where p and ¢ are polynomials
with no common factors. Then, as

(4.6) S=If—-Rl,=lle=R+r|, > |Im (e = R+r)||, = |Im R[],
(4.5) implies

(4.7) (—1)Re ¢(x) >

g =d (1<j<1),

and (4.6) implies
(4.8) [Tm ¢, < 1.
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To establish (4.1) of Theorem 5, it suffices to establish the contrapositive of
(4.1)ie,if S <1, then m+1<n, orequivalently
(4.9) ing%,thenm+2§n.

Similarly, to establish (4.2) of Theorem 5, it suffices to establish that if S < % ,
then m +2 < n, or equivalently

(4.10) if <1 thenm+3<n

To this end, first assume that S < 1/2. Then from (4.7), d > 1, and on
applying Theorem 4 to (4.7) and (4.8), we obtain

(4.11) L<op+1 ifop>oq,
and

(4.12) L <9q ifdp<aog
Since

¢(x) = p(x)/q(x) = (R(x) - r(x))/S
_ P{(X)g,(x) = py(x)g,(x)
Sq,(x)g,(x)

it follows that

Op < max(dp, + 0q,;0p, + dq,), and
(4.13) {p_ X(0p, +9q,;0p, + 9q,)

0q = 0q, + 0q,.
If Op > 8q, then (4.11) holds and thus
(4.14) m+n+2——min(m—8p2;n——8q2)
=1L <dp+ 1 < max (dp, +0q,,0p, + dq,) + 1.

But, we claim that (4.14) is impossible for any m,n,oq,,0q,,0p,, and op,
with n > 99, >20,n>0q,>0,m> dp,, and m > dp, . To see this, suppose
that max(dp, + 9q,;0p, +0q,) = dp, + 0q, . In this case, (4.14) becomes

m+n+2—min(n~6q2;m—8p2) <adp, +dq,+1,
or equivalently
(4.15) {m—-0p}+{(n- 94,) — min(n — dg,;m — dp,)} < —1,

which is impossible as each term in braces on the left side of (4.15) is nonneg-
ative. A similar argument gives a contraction if it is assumed that

max{0p, + 9q, + dq,} = Op, + oq,.

Therefore, it follows that dg > dp .
With dg > dp, (4.12) implies from (4.13) that

L::m+n+2—min(n—0q2;m—8p2)§8q=0q1+6q2,
or

(4.16)  {(n—-08q,)}+{(n—- 9q,) —min(n — dg,;m — dp,)} < n — (m+2).
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Because each term in braces on the left side of (4.16) is nonnegative, we conclude
that 0 < n — (m+ 2), which establishes (4.9).

Now, assume S < 1/3. Then d > 2 from (4.7), and (4.8) and Theorem 4
combine to give

(4.17) L<op+1 ifop>aq,
and
(4.18) Lg[@ifgq—ﬂj if 8q > dp.

Arguing as above, it similarly follows that assuming dp > dg leads to a contra-
diction. This leaves only the possibility that dg > dp. Using (4.18), we then
have

(4.19) L:=m+n+2——min(m—8p2;n—aq2)5[MJ,

2
Inequality (4.19) then implies

2m+2n+4—2min(m—8p2;n—8q2) <9dp+0q+1,
and on using (4.13), we have that

2m+2n+ 4 — 2min(n —0dq,;m — dp,)
< max(dp, + 9q,;0p, + 0q,) + 0q, + g, + 1.
If max(dp, + 0q,;0p, + 9q,) = dp, + dq, , then (4.20) may be rewritten as

(4.20)

{m —0p,} +2{(n - dq,) — min(n — dq,;m — dp,)}
<9¢g,—(m+3)<n-(m+3).

But, as each term in braces on the left side of (4.21) is nonnegative, it is clear
that (4.10) holds in this case. A similar argument establishes (4.10) when it is
assumed that max(dp, + 9q, ;0p, +9q,) = 0p, +0q, .

To complete the proof of Theorem 5, we see that (4.1) implies

(4.22) >1/2 ifm+1>n>1,
while the reverse inequality holds from (2.18). Thus, we have
Pmn=1/2 ifm+1>n>1,

(4.21)

ym n

the desired result of (4.3). Similarly, (4.2) implies
(4.23) y >1/3 foranym >0,

m.m+2 =

while the reverse inequality holds from (2.18). Thus, we have

Y me2 =1/3 foranym >0,

the desired result of (4.4). O

Remark. We note that Trefethen and Gutknecht conjectured in [5] that .
could only be zero if m < n+ 3. Theorem 5 thus establishes the validity of
their conjecture!
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