REAL VS. COMPLEX RATIONAL CHEBYSHEV APPROXIMATION ON AN INTERVAL

ARDEN RUTTAN AND RICHARD S. VARGA¹

Dedicated to Professor A. Sharma on his retirement from the University of Alberta

1. Introduction. Let π_m^r and π_m^c be respectively the sets of polynomials of degree at most m, with real and complex coefficients. For any pair (m,n) of nonnegative integers, $\pi_{m,n}^r$ and $\pi_{m,n}^c$, then respectively denote the sets of rational functions of the form p(x)/q(x), where $p \in \pi_m^r(\pi_m^c)$ and where $q \in \pi_n^r(\pi_n^c)$. Let I denote the real interval [-1,+1] and let $||\cdot||_I$ denote the supremum norm on I, i.e., $||f||_I := \sup_{x \in I} |f(x)|$. If $C^r(I)$ denotes the set of all continuous real-valued functions on I, then for $f \in C^r(I)$, we set

(1.1)
$$E_{m,n}^{r}(f) := \inf\{||f - g||_{I} : g \in \pi_{m,n}^{r}\}, \\ E_{m,n}^{c}(f) := \inf\{||f - g||_{I} : g \in \pi_{m,n}^{c}\}.$$

For $f \in C^r(I)$, it is known (cf. Meinardus [3, p. 161]) that there is a unique $g \in \pi^r_{m,n}$ such that $E^r_{m,n}(f) = ||f - g||_I$, while in the complex case, there is also a $g \in \pi^c_{m,n}$ for which $E^c_{m,n}(f) = ||f - g||_I$, but g is in general not unique (cf. Lungu [2], Saff and Varga [4], and [6].)

Since $\pi^r_{m,n} \subset \pi^c_{m,n}$, then evidently $E^c_{m,n}(f) \leq E^r_{m,n}(f)$ for any $f \in C^r(I)$, and it was shown in [4] that, for each (m,n) with $n \geq 1$, there is an $f \in C^r(I)$ for which

(1.2)
$$E_{m,n}^{c}(f)/E_{m,n}^{r}(f) < 1.$$

Thus, on setting

(1.3)
$$\gamma_{m,n} := \inf\{E_{m,n}^c(f)/E_{m,n}^r(f) : f \in C^r(I)/\pi_{m,n}^r\},\$$

Recieved by the editor on October 8, 1986.

Research supported by the Air Force Office of Scientific Research.

Saff and Varga [4] asked in essence how *small* the ratios of (1.2) could be for each pair (m, n) of nonnegative integers with $n \ge 1$.

Recently, two major results on the precise determination of $\gamma_{m,n}$ have appeared. First, Trefethen and Gutknecht [5] established, by means of a direction construction, the surprising result that

(1.4)
$$\gamma_{m,n} = 0$$
, for each pair (m,n) of nonnegative integers with $n > m + 3$.

Then, Levin [1] established the complementary result that

(1.5)
$$\gamma_{m,n} = \frac{1}{2}$$
, for each pair (m,n) of nonnegative integers with $m+1 \ge n \ge 1$.

Levin's proof of (1.5) consisted of a direction construction to show that $\gamma_{m,n} \leq 1/2$, and an algebraic method to show that $\gamma_{m,n} < 1/2$ was impossible when $m+1 \geq n \geq 1$.

Thus, to complete the precise determination of all $\gamma_{m,n}$ $(m \ge 0, n \ge 1)$, it remains only to determine the $\gamma_{m,n}$'s on the "missing diagonal", i.e., $\gamma_{m,m+2} (m \ge 0)$. It turns out that Levin's direct construction applies also in this case, so that

(1.6)
$$\gamma_{m,m+2} \leq \frac{1}{2}$$
, for each integer $m \geq 0$.

(We remark that some mathematicians have privately speculated that $\gamma_{m,m+2} = 0$ for each $m \ge 0$.)

Our object here is to show that

(1.7)
$$\gamma_{m,m+2} \leq \frac{1}{3}$$
, for each integer $m \geq 0$,

which improves (1.6). What may be of independent interest is that our direct construction to establish (1.7) is quite *different* from the direction constructions of Trefethen and Gutknecht [5] and Levin [1].

2. Main result. We have the

THEOREM. For each nonnegative integer m,

$$(2.1) \gamma_{m,m+2} \le \frac{1}{3}.$$

PROOF. First, suppose that m is an arbitrary (but fixed) even nonnegative integer, and suppose that ε is any number satisfying $0 < \varepsilon < 1/(m+1)$. For any complex number z, set

(2.2)
$$\ell_j(z) = \ell_j(z; \varepsilon, m) := \frac{\frac{-2\varepsilon i}{3}(-1)^j}{z - 1 + \frac{2j}{m+1} - \varepsilon i}, \quad j = 0, 1, \dots, m+1.$$

It is evident from (2.2) that

(2.3)
$$\ell_j \left(1 - \frac{2j}{m+1} \right) = \frac{2}{3} (-1)^j$$
, and $\ell_j \left(1 - \frac{2j}{m+1} \pm \varepsilon \right) = \frac{(1 \pm i)(-1)^j}{3}$,

for $j = 0, 1, \dots, m + 1$.

Since $\ell_j(z)$ is a linear fractional transformation, it maps the real axis $-\infty < x < +\infty$ onto some (generalized) circle in the complex plane. As $\ell_j(\infty) = 0$, this (generalized) circle necessarily passes through the origin. Moreover, as the pole of $\ell_j(z)$, namely $1 - \frac{2j}{m+1} + \varepsilon i$, when reflected in the real axis, is the point $w_j := 1 - \frac{2j}{m+1} - \varepsilon i$, then from (2.2),

$$\ell_j(w_j) = \frac{1}{3}(-1)^j, \quad j = 0, 1, \dots, m+1.$$

Thus, the image of the real axis under $\ell_j(z)$ is the circle with center $\frac{1}{3}(-1)^j$ and radius 1/3 (since this circle passes through the origin). It is then geometrically clear that

(2.4)
$$||\ell_j||_{(-\infty,+\infty)} = \frac{2}{3}, \text{ and } ||\operatorname{Im} \ell_j||_{(-\infty,+\infty)} = \frac{1}{3},$$

$$j = 0, 1, \dots, m+1,$$

where, for any subset K of the infinite interval $(-\infty, +\infty)$, we use the notation $||f||_K := \sup_{x \in K} |f(x)|$.

To extend the statements of (2.4), consider the real intervals $I_k(m)$, defined by

$$(2.5) \quad I_k(m) := \left[1 - \frac{2k+1}{m+1}, 1 - \frac{2k-1}{m+1}\right] \cap I, \quad k = 0, 1, \dots, m+1,$$

so that these intervals cover I := [-1, +1]; that is,

$$\bigcup_{k=1}^{m+1} I_k(m) = I.$$

From the definitions of $\ell_j(x)$ and $I_k(m)$, it follows (as m is fixed) that

(2.6)
$$||\ell_j||_{I_k(m)} = O(\varepsilon), \text{ as } \varepsilon \to 0 \quad (k \neq j),$$

and from (2.3) that

$$(2.7) \quad ||\ell_j||_{I_j(m)} = \frac{2}{3}, \text{ and } ||\operatorname{Im} \ell_j||_{I_j(m)} = \frac{1}{3}, \quad j = 0, 1, \dots, m+1.$$

Next, consider the complex rational function g(x) defined by

(2.8)
$$g(x) = g(x; \varepsilon, m) := \sum_{j=0}^{m+1} \ell_j(x).$$

On rationalizing g(x),

(2.9)
$$g(x) = \frac{\frac{-2\varepsilon i}{3} \sum_{j=0}^{m+1} (-1)^j \prod_{\substack{k=0\\k\neq j}}^{m+1} \{x - 1 + \frac{2k}{m+1} - \varepsilon i\}}{\prod_{\substack{k=0\\k\neq j}}^{m+1} \{x - 1 + \frac{2k}{m+1} - \varepsilon i\}},$$

so that g is at least an element of $\pi_{m+1,m+2}^c$. However, the numerator of g(x) of (2.9) is

$$\frac{-2\varepsilon i}{3} \Big\{ x^{m+1} \sum_{j=0}^{m+1} (-1)^j + \text{ lower terms in } x^s (0 \le s \le m) \Big\}.$$

But, since m is assumed even, it follows that $\sum_{j=0}^{m+1} (-1)^j = 0$, which shows that g(x) is an element in $\pi_{m,m+2}^c$. More precisely, it can be verified from the above definition that the coefficient of X^m in the numerator of g(x) is

$$\frac{2(m+2)\varepsilon i}{3(m+1)} \neq 0,$$

so that g(x) is not an element of $\pi_{s,m+2}$ for any s < m. (We remark that the representation of g(x) in (2.8) is just the partial fraction decomposition of g(x).)

Consider now the real continuous function s(u) on $(-\infty, +\infty)$ defined by

(2.10)
$$s(u) := \begin{cases} \frac{1-u^2}{1+u^2}, & -1 \le u \le +1, \\ 0, & \text{otherwise,} \end{cases}$$

so that $s(0)=1, s(\pm 1)=0,$ and 0< s(u)<1 for 0<|u|<1. Recalling that $0<\varepsilon<1/(m+1),$ set

(2.11)
$$S(x) := \frac{1}{3} \sum_{j=0}^{m+1} (-1)^j s\left(\frac{x-1+\frac{2j}{m+1}}{\varepsilon}\right), -\infty < x < \infty.$$

It follows from (2.11) that S(x) is a real continuous function on $(-\infty, +\infty)$, with

(2.12)
$$S\left(1 - \frac{2j}{m+1}\right) = \frac{1}{3}(-1)^{j} \text{ and } S\left(1 - \frac{2j}{m+1} \pm \varepsilon\right) = 0,$$
$$j = 0, 1, \dots, m+1.$$

Geometrically, we note that S(x) has m+2 alternating spikes on I := [-1, +1].

With the above definition of S(x) and g(x), set

$$(2.13) f(x) = f(x; \varepsilon, m) := S(x) + \operatorname{Re} g(x) \quad (x \in I),$$

so that $f(x) \in C^r(I)$. From (2.3), (2.6), (2.8), and (2.12),

(2.14)
$$f\left(1 - \frac{2j}{m+1}\right) = (-1)^j + O(\varepsilon)$$
, as $\varepsilon \to 0$ $(j = 0, 1, \dots, m+1)$.

Now, for $\varepsilon > 0$ small, (2.14) asserts that f(x) has m+2 near "alternants" in the distinct points $\{1 - \frac{2j}{m+1}\}_{j=0}^{m+1}$ of I. On choosing the identically zero function in $\pi^r_{m,m+2}$, an application of the de la Vallée-Poussin Theorem (cf. Meinardus [3, p. 161]) gives us that

(2.15)
$$E_{m,m+2}^{r}(f) = 1 + O(\varepsilon), \text{ as } \varepsilon \to 0.$$

To determine an upper bound for $E_{m,m+2}^c(f)$, note from (2.13) that

(2.16)
$$f(x) - g(x) = S(x) - i \text{Im } g(x) \quad (x \in I).$$

On considering the particular interval $I_k(m)$, it follows from (2.6)-(2.7) that

$$(2.17) S(x) - i \operatorname{Im} g(x) = S(x) - i \operatorname{Im} \ell_k(x) + O(\varepsilon), x \in I_k(m).$$

Moreover, a short calculation shows that

$$||S(x) - i \operatorname{Im} l_k(x)||_{I_k(m)} = \frac{1}{3} + O(\varepsilon), \quad k = 0, 1, \dots, m+1,$$

so that with (2.16) and (2.6),

(2.18)
$$||f - g||_{I} = ||S - i \operatorname{Im} g||_{I} = \frac{1}{3} + O(\varepsilon).$$

Then, since g(x) is an element of $\pi_{m,m+2}^c$.

(2.19)
$$E_{m,m+2}^{c}(f) \le ||f - g||_{I} = \frac{1}{3} + O(\varepsilon), \text{ as } \varepsilon \to 0,$$

from (1.1) and (2.18). With (2.15), we see that $E_{m,m+2}^c(f)/E_{m,m+2}^r(f) \le 1/3 + O(\varepsilon)$. Letting $\varepsilon \to 0$ then gives

$$(2.20) \gamma_{m,m+2} \le \frac{1}{3},$$

which establishes the desired result of (2.7) when m is an even nonnegative integer.

For the case when m is an odd positive integer, the above discussion is easily modified. Set

$$(2.21) \ \ell_j(z) = \ell_j(z, \varepsilon, m) := \frac{-\frac{2\varepsilon_i}{3} \mu_j(-1)^j}{z - 1 + \frac{2j}{m+1} - \varepsilon \mu_j i}, \ j = 0, 1, \dots, m+1,$$

where $\{\mu_j\}_{j=0}^{m+1}$ are any m+2 fixed positive numbers satisfying $0 \le \mu_j < 1$ and

(2.22)
$$\sum_{j=0}^{m+1} (-1)^j \mu_j = 0, \text{ and } \sum_{j=0}^{m+1} j(-1)^j_{\mu_j} \neq 0.$$

With (2.22), it follows that $\sum_{j=0}^{m+1} \ell_j(z)$ is an element of $\pi_{m,m+2}$, but not an element of $\pi_{s,m+2}$ for any s < m. Then exactly the same construction can be carried out to deduce the desired result that $\gamma_{m,m+2} \leq 1/3$ in the case when m is an odd positive integer. \square

To conclude, we conjecture that

(2.23)
$$\gamma_{m,m+2} = \frac{1}{3}$$
 for each nonnegative integer m ,

i.e., we conjecture that the upper bound of (2.1) is *sharp* for each nonnegative integer m. If this conjecture is true, then the "missing diagonal" $\gamma_{m,m+2}$ is, in fact, structurally different from the remaining cases treated in [5] and [1].

REFERENCES

- 1. A. Levin, On the degree of complex rational approximation to real functions, Const. Approx. 2 (1986), 213-219.
- 2. K.N. Lungu, Best approximation by rational functions, (Russian), Mat. Zametki 10 (1971), 11-15.
- 3. G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967.
- 4. E.B. Saff and R.S. Varga, Nonuniqueness of best complex rational approximations to real functions on real intervals, J. Approximation Theory 23 (1978), 78-85.
- 5. L.N. Trefethen and M.H. Gutknecht, Real vs. complex rational Chebyshev approximation on an interval, Trans. Amer. Math. Soc. 280 (1983), 555-561.
- **6.** R.S. Varga, *Topics in Polynomial and Rational Interpolation and Approximation*, University of Montréal Press, Montréal, 1982.

Institute for Computational Mathematics Kent State University Kent, Oh $44242\,$

