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1. Introduction. Let 77, and 7% be respectively the sets of
polynomials of degree at most m, with real and complex coeflicients.
For any pair (m,n) of nonnegative integers, =, , and 77, ., then
respectively denote the sets of rational functions of the form p(x)/q(x),
where p € 77, (n¢,) and where ¢ € m(75,). Let I denote the real
interval [—1,+1] and let || - ||; denote the supremum norm on I, i.e.,
[[£]r := sup,e; | f(2)]. If C"(I) denotes the set of all continuous real-
valued functions on I, then for f € C™(I), we set

Bl (f) s =imf{llf = gllr 1 g €m0k

(L1) |
E’I{H ’VI(f) L= lnf{”f - -gHI : g E w;'l.’ll}’

For f € C"(I), it is known (cf. Meinardus [3, p. 161]) that there is a
unique g € wh, . such that E, , (f) = |[f — glls, while in the complex
case, there is also a g € 5, ,, for Which ES L (f)y=1f —gllr, but g is
in general not unique (cf. Lungu [2], Saff and Varga [4], and [6].)

Since 7, , C 7¢, ., then evidently Ef, ,(f) < Ej, . (f) for any
f € C™(I), and it was shown in [4] that, for each (m n) with n > 1,
there is an f € C"(I) for which

(1'2) 77! TL /E771 g < 1'

Thus, on setting

(1~3) Ymon = mf{Em n f)/EZ” n( cfec(I )/ m. 71}
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Saff and Varga [4] asked in essence how small the ratios of (1.2) could
be for each pair (m,n) of nonnegative integers with n > 1.

Recently, two major results on the precise determination of +,,.,, have
appeared. First, Trefethen and Gutknecht [5] established, by means of
a direction construction, the surprising result that

Y. = 0, for each pair (m, n) of nonnegative integers

(1.4) ]
with n > m + 3.

Then, Levin [1] established the complementary result that

1 . .
Vm.n = =, for each pair (m,n) of nonnegative integers

(1.5) 2

withm+1>n>1.

Levin’s proof of (1.5) consisted of a direction construction to show that
Yma < 1/2, and an algebraic method to show that v,,., < 1 /2 was
impossible when m +1>n > 1.

Thus, to complete the precise determination of all v, ., (m > 0,n >
1), it remains only to determine the 7, ,’s on the “missing diagonal”,
ie, Vinnga(m > 0). It turns out that Levin’s direct construction
applies also in this case, so that

1
(1.6) Yon otz < 3 for each integer m > 0.
(We remark that some mathematicians have privately speculated that

Ym.oan42 = 0 for each m Z 0)

Our object here is to show that
1 :
(L.7) Ymam42 < 3 for each integer m > 0,

which improves (1.6). What may be of independent interest is that
our direct construction to establish (1.7) is quite different from the
direction constructions of Trefethen and Gutknecht [5] and Levin [1].

2. Main result. We have the
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THEOREM. For each nonnegative integer m,

1
(21) Yo +2 S g

PRrOOF. First, suppose that m is an arbitrary (but fixed) even
nonnegative integer, and suppose that ¢ is any number satisfying
0< e < 1/(m+1). For any complex number z, set

Y
(2.2) ti(z) =Lj(z;e,m) = , j=0,1,... ., m+1
z—=1+ — &t

m+1

It is evident from (2.2) that

(2.3) ¢, (1-—%%3) —»g(w1)& and€j<1~

for j =0,1,...,m+ 1.

Since ¢;(z) is a linear fractional transformation, it maps the real axis
—00 < x < 400 onto some (generalized) circle in the complex plane.
As ¢;(00) = 0, this (generalized) circle necessarily passeq through the
origin. Moreover, as the pole of £;(z), namely 1 — - +1 -+ 1, when

reflected in the real axis, is the point w; := 1 —
(2.2),

2j
P — €1, then from

1

@@Uy:y—nﬂ j=0,1,...,m+1

Thus, the image of the real axis under £;(z) is the circle with center
3(—1)7 and radius 1/3 (since this circle passes through the origin). It
is then geometrically clear that

2 1
(2.4) N1 (= o0t00) =3 and |[Im €[]~ 40c) = T

j=0,1,....m+1,
where, for any subset K of the infinite interval (—oo,4+00), we use the
notation |||k := sup,ex [f(2)].

To extend the statements of (2.4), consider the real intervals Ij(m),
defined by

(2.5) Ii(m) =

2%k+1  2k-—1
-

- AL k=0,1,...m+1,
m+1’ m+J me
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so that these intervals cover [ := [~1,+1]; that is,

Up Ly (m) = 1.
From the definitions of £;(z) and I;(m), it follows (as m is fixed) that
(2.6) Willnuom) = O(e), ase = 0 (k # j),

and from (2.3) that

1
= -, J:O,l,,m“}‘l

2
(27) ||€.7'H11(m) = g, and ||Im€j||19(m) §

Next, consider the complex rational function g(z) defined by

m+1

(2.8) g(z) = g(z;e,m) Z 4(

7=0

On rationalizing g(z),

P +1 +1 .
_—%ﬂ Z""’ ( ) H"” -1 + m+1 - EZ}

(2.9) glx) = — : ,
k=0 -1+ m—|—1 62}

so that g is at least an element of 7y, ., ., ,». However, the numerator
of g(x) of (29) is

m—+1
{x""+1 Z (—=1)7 + lower terms in 2°(0 < s < m)}

J=0

—2¢1
3

But, since m is assumed even, it follows that Zm_j;l( 1)/ = 0, which
shows that g(z) is an element in nf, . . More precisely, it can be
verified from the above definition that the coefficient of X™ in the
numerator of g(x) is

2(m + 2)ei

3(m+1)
so that g(z) is not an element of 7,40 for any s < m. (We remark

that the representation of g(z) in (2.8) is just the partial fraction
decomposition of g(x).)

£
7‘07
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Consider now the real continuous function s(u) on (—o00, +-00) defined
by

1—u?
(2.10) s(u) = { Lw, —1<u< 4,
0, otherwise,

so that s(0) = 1,s(+1) = 0, and 0 < s(u) < 1 for 0 < |u| < 1. Recalling
that 0 <e < 1/(m+ 1), set

1 m-+1 ) -1+ 2]
(211 S(@) = Z(—ws(-——g—’lﬂ), —00 < 7 < 0.
J=0

It follows from (2.11) that S(x) is a real continuous function on
(—o0, +00), with

5(1 - 2—3) :%(—-1)3 and 5(1 - mﬁ +5> —0,

(2.12) m+1

j=0,1,...,m+1

Geometrically, we note that S(z) has m + 2 alternating spikes on
I=[-1,+1].

With the above definition of S(z) and g(z), set
(2.13) flz) = f(z;e,m) := S(z) + Reg(z) (xel),
so that f(z) € C™(I). From (2.3), (2.6), (2.8), and (2.12),

27 ;
2.14 (1—-——~): 1) +0(e), 0 (j=0,1,...,m+1).
(2.14) f(1-—=7) = (-1 +0(e), ase =0 (=0 m+1)
Now, for ¢ > 0 small, (2.14) asserts that f(z) has m + 2 near
“alternants” in the distinct points {1 — %_% }’;Bl of I. On choosing
the identically zero function in 7, ., an application of the de la

Vallée-Poussin Theorem (cf. Meinardus [3, p. 161]) gives us that

(215) :;1,7n+2(f) =1+ 0(8)7 ase — 0.

To determine an upper bound for Ef, |, . »(f), note from (2.13) that

(2.16) f(z) —glz) = S(z) —ilmg(x) (ze€l).
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On considering the particular interval I;,(m), it follows from (2.6)-(2.7)
that

(2.17)  S(x) —ilmg(z) = S{z) - ilm i (z) + O(e), z € I (m).

Moreover, a short calculation shows that

1
IS (z) — dm ()| 1, (m) = 3 +0(e), k=0,1,...,m+1,

so that with (2.16) and (2.6),

(218) 1f = glls = IS ~ itmglls = 5 +Ofc).

Then, since g(z) is an element of 7y, ., 0.

1
(2.19) B mi2(f) < |If = glli = 5+ 0(e), ase =0,

from (1.1) and (2.18). With (2.15), we see that Ef, ., o(f)/E}, ;nia(f) <
1/3 + O(e). Letting ¢ — 0 then gives

1
(220) Ym.m+2 S §7

which establishes the desired result of (2.7) when m is an even nonneg-
ative integer.

For the case when m is an odd positive integer, the above discussion
is easily modified. Set

—2€1 j
pi(=1)!
(2.21) {(z) = £j(2z,e,m) := 2 ; ,J=0,1,...,m+1,
z—1+ m—{—l WS/'L]JL'

where {4; };’:{)1 are any m + 2 fized positive numbers satisfying 0 <

p; < 1and

m+1 m-+1

(2.22) > (=1Yp; =0, and Y j(=1)] #0.

3=0 j=0
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With (2.22), it follows that Z;";Bl {;(z) is an element of 7, ,n2, but
not an element of 7,12 for any s < m. Then exactly the same
construction can be carried out to deduce the desired result that
Ym.m+2 < 1/3 in the case when m is an odd positive integer. O

To conclude, we conjecture that

1 ..
(2.23) Vrnom42 = 3 for each nonnegative integer m,

i.e., we conjecture that the upper bound of (2.1) is sharp for each
nonnegative integer m. If this conjecture is true, then the “missing
diagonal” v, m+2 is, in fact, structurally different from the remaining
cases treated in [5] and [1].
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