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Relaxation Methods for Non—Hermitian Linear
Systems

W. Niethammer and R. S. Varga*

Abstract

For the matrix equation Ax = b, we consider here two splittings
A = My — Ny = Mz — N, of the matrix A, where M; := (A + A")/2
is the Hermitian part of A, and M, := I + (A — A”)/2 is the identity
plus the skew—Hermitian part of 4. To these two splittings of A, we ap-
ply an extrapolation, with extrapolation factor w, and we find associated
regions for w, in the complex plane, for which these extrapolated split-
tings yield convergent iterative methods. From this, further applications
to semiiterative methods are indicated.

Dedicated to Professor Karl Zeller on the occasion of his 65th birthday.
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1 Introduction

Given a nonsingular system of linear equations
(1.1) Ax =b (A €C™™),

let A = M — N be any splitiing of A, i.e., M and N are in C™" with M
nonsingular. From this splitting, we have

(1.2) Mx = Nx+b,

or equivalently, on setting T':= M~!N and ¢ := M~'b,
(1.3) x=Tx+c.

This last equation induces the iterative method

(1.4) Xm+1:=Txm + ¢ (m=0,1,...).

It is well-known that the vector iterates {xm}m_o of (1.4) converge (for an
arbitrary starting vector xo) to the unique solution of (1.1), iff p(T) < 1 (where,
as usual, p(T) := max{|};| : A; is an eigenvalue of T'}).

To introduce an extrapolation in (1.4), consider the splittings of A = M, —N,,
where

1
(1.5) Mu::(———l)I—i—M, and N, ::(l——l)I-i—N,

w w

for any w # 0 for which M, is nonsingular. Then, with

(1.6) T, := M;'N, and c, := M 'b,

we have, in analogy with (1.4), the associated eztrapolated iterative method
(1.7) Ymt1:=Toym + ¢co (m=0,1,...).

Since the iterative method of (1.7) reduces to that of (1.4) when w = 1, the idea
1s to select appropriate values of w which either produce convergence in (1.7)
(when (1.4) is divergent), or produce faster convergence in (1.7) than that of
(1.4).

Returning to (1.2) and (1.5), it is tacitly assumed here that equations of the
form My = g or M,y = g can be directly solved when g or g is given. This
obviously places restrictions on the matrices M and M,,. If we represent the
original matrix A of (1.1) as

(1.8) A=D-L-U,

where D is a nonsingular (block) diagonal matrix and L and U are, respectively,
strictly lower and strictly upper triangular matrices, then the choice M := D
and N := L + U in (1.2) defines the (block) Jacobi iterative method, while the
choice of M := D — L and N := U in (1.2) defines the (block) Gauss-Seidel
iterative method. Similarly the (block) Jacobi overrelaxation method (called
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JOR) and the (block) succesive overrelaxation method (called SOR) have, as is
well-known (cf. Young [15]), the associated iteration matrices:

(1.9) Jo =D '{(1-w)D+w(L+U)} (JOR),
and
(1.10) Ly,:=(D—-wl)"*{(1-w)D+wU} (SOR).

Much is known in the literature (cf. Varga [14] and Young [15]) about the
influence of the extrapolation (or relaxation) parameter w on the convergence
behavior of the matrices J, and £, of (1.9) and (1.10), especially in the case
when A is an Hermitian positive definite matrix.

The last twenty years have produced new fast direct methods for solving
particular matrix equations such as the model problem (i.e., the finite difference
approximation to the Dirichlet problem in the unit square), and these fast direct
methods can be used to define the matrix M in the splitting A = M — N.
The same is true of the powerful preconditioned conjugate gradient method
(pcg), i.e., one ‘peels off’ from the matrix A that part, M, to which such pcg
methods can be used to rapidly solve equations of the form Mx = g. Such uses
of fast direct solvers and the pcg method are generally applied to Hermitian
positive definite matrix systems. Our interest here is in applications to non-
Hermitian non-positive definite matrices, since such matrices arise naturally in
the numerical solution of convection—diffusion equations.

A brief outline of our paper follows. In §2 we discuss some lesser known
results on JOR and SOR when applied to general complex linear systems. In §§3
and 4, two new methods are examined which arise from a splitting A = M — N
where M is either the Hermitian part of A, or the identity plus the skew-—
Hermitian part of A. We study the influence of the relaxation parameter w on
convergence rates, and we describe regions in the complex plane which contain
the spectrum of the corresponding iteration operators. The knowledge of these
eigenvalue regions is useful for further applications of semiiterative methods.

2 Remarks on JOR and SOR

In the general framework (1.7) of extrapolation applied to arbitrary complez ma-
trices, there is no reason to confine attention to real values for the extrapolation
factor w. Thus, we assume that w is a complex parameter in what follows.

One of the most useful results in the general SOR theory for the convergence
of the matrix £, of (1.10) (in terms of complex values of w) is the following
well-known result of W. Kahan:

Lemma 2.1 (Kahan [9]). For A = D — L — U, assume that D is nonsingular
with D™L and D~ U respectivly strictly lower and strictly upper triangular
matrices. Then, L, of (1.10) satisfies

(2.1) p(Ly) 2 |w— 1],

with equality only if all eigenvalues of L, are in modulus |w — 1|. Thus, a
necessary condition for L, to be convergent is that w be contained in the open
disk with center 1 and radius 1.

Niethammer and Varga
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We next discuss some lesser known results of Buoni and Varga (2,3] on
necessary and sufficient conditions for the convergence of J,,. Writing again
A=D—L—U, we now assume only that D is nonsingular, i.e., we do not as-
sume that D is block—diagonal, nor that D=L and D~U are triangular. With

o(E) := {A : det(A] — E) = 0} denoting the spectrum of an arbitrary matrix E
in C™™, then we set

(2.2) K(D~'4) := closed convex hull of o(D~14),

and we let K°(D~"A) denote the interior of X(D~14). With this notation, we
state the following result:

Lemma 2.2 (Buoni and Varga [2]). J., of (1.9) is divergent for all complez w
of
(2.3) 0 € K(D14).

Moreover, if 0 € K°(D~1A), then there is a ro > 0 such that C,, of (1.10) also
diverges for all complez w with 0 < |w| < 7.

This geometrical use in Lemma 2.2 of the convex set X(D~!A4), to determine
convergence and divergence criteria for both J,, and £,, also gives geometrical
conditions for the simultaneous convergence and divergence of J, and L, in
the spirit of the classical Stein-Rosenberg Theorem (cf. [14] and [15]). With
the notation of

(2.4) { Qr:={w€C:p(Lu)<1}; Dc:={weC:p(L,)>1},
) Q7 ={weC:p(J,) <1} Dy:={weC:p(J,)>1},

then the second part of Lemma 2.2 gives

oL, A //O‘/
DsNDe 2 {w € C:fw| < ro&hd w for some g,

which is a simultaneous divergence result. For simultaneous convergence, we
similarly have

Lemma 2.8 (Buoni and Varga [2]). With A = D — L — U where D is nonsin-

gular, then
(2.5) QenNQr#0 iff 0¢K(DA).
More precisely, if 0 ¢ K(D~1A), there are real values of 6 such that
(2.6) min Re {e‘éf : €€ a(D_lA)} >0,
and
(2.7) P(T,,5) <1 forallr > 0 sufficiently small, and
' P(L,.5) <1 forallr > 0 sufficiently small.

In the case when D4 is strongly stable, ie., Re{ >0forall € € o(D~14),

we see that (2.6) of Lemma 2.3 is satisfied for § = 0. This gives us the useful
result of the
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Corollary 2.4 (Buoni and Varga [2]). With A = D~ L—U where D is nonsin-
gular, assume that D' A is strongly stable. Then L, and J,, are simultaneously
convergent for allw > 0 sufficiently small.

Assuming 0 ¢ X(D~*4), then from (2.7), there are real values of 6 such
that both T, s and L, are convergent for all > 0 sufficiently small. Clearly,
this implies, for each fixed r > 0 sufficiently small, that there is a best real
§,(r) which minimizes p(T,.«) as a function of 6, and a best real 8,(r) which
minimizes p(L,is ) as a function of 6. It turns out (cf. Buoni and Varga [3]) that
there is a unique path re'(") in the complex plane (for all r sufficiently small)
which minimizes p(7;..« ), and this unique path in the complex plane of refa(®)
is determined solely for r > 0 sufficiently small, by the convex set K(D~1A).
(Similar results for £ . are given in (3].)

If the Hermitian part (A+A*)/2 of A is positive definite, then A is evidently
strongly stable as can be deduced from Bendixson’s Theorem (cf. (13, p. 395]).
Thus, from the Corollary 2.4, it follows that there exists an wg > 0 such that
the matrix £, of (1.10) is convergent for all w with 0 < w < wg; in Niethammer
[10,11], w, is determined as a function of the extremal eigenvalues of some
matrices related to A. If A is moreover Hermitian and positive definite, then
the upper bound on w for convergence becomes wy = 2, as is well-known from
the Theorem of Ostrowski [14, p. 77); from this theorem, in addition, it follows
that if, for a linear system with an Hermitian matrix 4, £, is convergent for all
w with 0 < w < 2, then A is necessarily positive definite.

Now, let us assume that SOR, applied to a linear system with a non-—
Hermitian matrix A4, converges for 0 < w < wy with 0 < wy, < 2; one may
ask, analogous to Ostrowski’s Theorem, if it follows that (A + A*)/2is positive
definite? In general, this is not true, as can be seen from the following example:

Let
1 O
A._[a 1].

Then SOR converges for 0 < w < 2 and arbitrary complex a, but (A + A*)/2is
positive definite only for |a| < 2.

3 Hermitian Splittings

Starting with the matrix equation of (1.1), assume that D := diag(A) is non-
singular. Since both splittings A = M — N and D 'A=D"'M—D"'N lead
to the same iteration operator, we may assume, without loss of generality, that

(3.1) A =1 — B, where diag(B) = O.

It is convenient to regard any splitting M — N of A = I — B as having the
identity incorporated into M, and we thus write

(3.2) M :=1- Mg, and N := B — Mp.

(For example, on writing B = L + U where L and U are strictly lower and
strictly upper triangular matrices, then the choice Mp = L gives the standard
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Gauss-Seidel iteration matrix.) The corresponding extrapolated form of the
splitting of (3.2) is, from (1.5),

1 1
3.3 M,=~-I-Mpg;and N, = | ——-1|I+ N,
w

w

whose assoclated iteration matrix is
(3.4) T, = (I —wMp) Y {(1 —w) +wN}.

The following useful result is essentially well-known in the literature, but
we include its proof, as it is quite short.

Lemma 3.1. If I —wMp 1is nonsingular and if T is an eigenvalue of T, of (3.4)
with eigenvector v, normalized by v*v = 1, then
1—
(3.5) T = g______‘f’_)_i_“’_ﬂ’ where 1 := v'Nv and m := v Mpv.
1—wm

Proof. Using (3.4), we obtain from T,v = 7v that ((1 — w)I + wN)v =
7(I — wMp)v, so that v*{(1 —w)I + wN}v = 7v*(I — wMp)v. Thus, with
the definitions of 7 and m, then 1 —w +wn = 7(1 —wm), which gives (3.5). O

We remark that Albrecht [1] has applied the representation (3.5), in the case
of the matrix £, to obtain convergence results for the SOR iterative method
for Hermitian positive definite matrices A for 0 < w < 2. (This is of course
related to Ostrowski’s Theorem (cf. Varga [14, p. 77]).) Similarly, Niethammer
(10,11] examined systems Ax = b where (A + 4*)/2 was positive definite, and
he obtained, using (3.5), an interval (0,w,) for which the SOR iterative method
is convergent for all 0 < w < wy. (It should be remarked here, that the first
author did his thesis [11] with Professor Karl Zeller, who is being honored with
this volume).

The (generally complex) numbers m and n appearing in (3.5) are all elements
of the field of values for the matrices M and N, respectively. It is, of course,
well-known (see, e.g., Stoer-Bulirsch [13, p. 85]) that the field of values of
a matrix @ is the convex hull of the eigenvalues of Q when Q is a normal
matrix. Because Hermitian and skew—-Hermitian matrices are particular normal
matrices, the numbers m and 71 of (3.5) can be directly estimated in these special
cases. This is done below.

We next remark that Concus and Golub [5] describe a generalized conjugate
gradient method for non—-symmetnc systems of linear equations. They use the
splitting A = M — N with M := (A+ A*)/2, and they assume that M is positive
definite. Then, M is used as a preconditioner which means that in each step
a system My = g has to be solved. This was in fact the motivation for this
section.

From A =1 — B in (3.1), we write

(3.6) A=I-B=1-(F+QG)
where F := (B + B")/2 and G := (B - B")/2,
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and we assume that the Hermitian part, namely M := I — F, of A is positive
definite. This ‘Hermitian’ splitting leads, by (3.4), to the iteration operator

(3.7) Th = (I — wF)" (1 - w)I + wG}.

If {f;}7=1 denotes the eigenvalues of F, with a := f; < fa... < fu =: B, then
as diag(B) = O implies diag(F) = O, it follows that « < 0 < 3, and since I — F
is assumed to be positive definite, then 8 < 1, i.e.,

(3.8) a<0<pB<1,

Our next result has its analogue in {10, Theorem 1].

Theorem 3.2. If the Hermitian part (A + A*)/2 of A of (3.1) is positive defi-
nite, then T of (3.7) is convergent for

2(1 -
(3.9) 0<w<wy:= 1+;)(2(G)ﬁ1ﬂ2'

Proof. Let T be any eigenvalue of T*. It follows from (3.5) of Lemma 3.1 that

1 .
(3.10) T = g————-l—(ﬂ—j—ﬁd—?-, where i := v*Gv and v := v' Fv.

Since the eigenvalues {f;}7-,, of F lie in the interval [a,B], then n and v
necessarily satisfy

(3.11) a <y <P, and - p(G) < n < p(G).

Let us assume that
(3.12) 0<w< 1/B.

Then, 7 in (3.10) is defined since, by (3.11), we have v < 3. Now we have to
show that there exists an wgy such that, in (3.10), |7| < 1 for all possible values
of 7, v and wy with 0 < w < wy. The absolute value of 7 in (3.10) becomes
maximal, when = p(G) and v = 8. Thus, the inequality |7| < 1is guaranteed
if (with p = p(G))

(1-wB)? > (1-w)? +w?p’
1-2wB+w?B?>1-2w+w?+wp?
w[2(1 = B) +wB? —w(14p%)] >0
2(1-p)
I<w <wy = 1—_*_—;2——_:—52'

A direct calculation shows that w, < 1/8 holds, i.e., T satisfies |7| < 1 for all w
with 0 <w <wy. 0O

To decide whether it is worthwile to apply a semiiterative method (SIM)
with respect to 7" (see [8]), we need first to determine a region Q, in the




Niethammer and Varga A 315

complex plane which contains the spectrum of 7*. We can directly see from
(3.10) that Q, can be taken to be the following rectangle in the complex plane:

(3.13) Q,={z€C:c SRez <d, [Imz| < f}
. 1-w 1—-w wp
theci= ——, d:= d f:= .
M e T e _ 1-wp and f 1-wp

This is indicated in Figure 1 below.

-1
A+g

Figure 1: The set Q2 for 7.*

Let us first consider the case w = 1; here, Q, = Q; of (3.13) degenerates to
the interval

(3.14) M :={z=1t: —p <t <pwhere g:= p/(1- )}

(This was observed, too, in Concus and Golub [5]). A two-step method, which
is an asymptotically optimal semiiterative method (AOSIM) with respect to 0,
is described in Niethammer and Varga [12] and has the asymptotic convergence
factor (see [12], formula (7.3) with a := —ip, 8 :=ip)

(3.15) k() = p

14+ /142

Now, for the case when w # 1, Q, is the rectangle indicated in Figure 1.
An AOSIM with respect to Q, exists, but such a method requires storing all
preceeding iterates of the associated iterative method. However a four-step
method which approximates the AOSIM very well, is studied by Eiermann ([6]).
A decision about the optimal choice of w, i.e., about the optimal choice of Q,,,
can be made using the hybrid results in Eiermann, Li and Varga ([7]).
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4 A Skew—Hermitian Splitting
Let us again begin with the splitting (3.6) of a non-Hermitian matrix A:
A=I-B=I-F-G, F=(B+B")/2, G=(B-B")/2

where the Hermitian part I — F is assumed to be positive definite. We now
consider the ‘skew—Hermitian’ splitting

(4.1) A=M-N with M:=I-G, N:=F.

As this splitting requires the solution of a system with matrix I — G in each
iteration step, we will assume that such systems can be easily solved.
From (3.4), the resulting iteration operator is

(4.2) T! = (I -wG) (1 —w)l +wF}.

From Lemma 3.1, for an arbitrary eigenvalue 7 of 7] with normalized eigenvec-
tor v, we have

(1 —-w)+wy

4.3) 7 =
(4.3) 7 g

, where v := v*Fv € R and in:= v'Gv (n € R).

For v and 7, again (3.11) holds: @ < v < 8 < 1, —p(G) < 1 < p(G) where «
and g satisfy (3.8).

In order to describe a region (2, in the complex plane containing the eigen-
values of 7, we remark that 7 in (4.3) is of the form

(4.4) r=s/(1+it)

where 1 —w —wa < s < 1—w+wf, and —wp(G) < t < wp(G). Now, 1/(1+ it)
is on the circle with center 1/2 and radius 1/2; thus for fixed s, the complex
number 7 moves on a circle with center s/2 and radius |s|/2. It does not traverse
the full boundary of this circle, but only moves through those values for which
0 < t? < w?p?(G). All these circles are contained in the two ‘extremal’ disks D,
and D, having centers ¢; and cz, with both disks touching at the origin, where

(4.5) 1= (1-w+wB)/2, c2:=(1-w+wa)/2.

This is indicated in Figure 2.

We remark that Chin and Manteuffel ([4]) found a similar region (cf. Figure
2) which contains the eigenvalues of the block SOR operator when applied to
a discretized convection—diffusion equation. Because of its shape, they call this
region a bow-tie-region. The slopes of the straight-line portions of these regions
increase when the spectral radius p(G) increases, but, independent of the size
of p(G), the eigenvalues of T, are always contained in the two disks D; and D,.
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Figure 2: The set Q,, for 7.

From Figure 2, it is clear that 7! is convergent if ¢, > —1/2, which yields
w<2/(1-«a).

Increasing w means that the disk D; is increased, while the disk Dy 1s de-
creased. Thus, an optimal value wq arises from the condition that the disks D,

and D, have equal radii. This means ¢; = —c;, and this gives

2 8-«
4.6 = —, T =1(1-— = -
( ) Wo 2-—(a+ﬁ) P( w) ( w0)+w0ﬁ 2—(ﬂ——a)

Thus, we have established

Theorem 4.1. Let the Hermitian part (A + A*)/2 = I — F of A be positive
definite, and let the eigenvalues of F satisfy o := f; < ... < fa =:B. Then, T}
18 convergent for

(4.7) 0 <w <wg:=2/(1-a).

A near optimal relazation factor wg is

(4.8) wo = 2‘”_“‘(‘;—_—(;5
with ‘
(4.9) p(Ty) = P
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Remark: For a = —f8 we get wg = 1 and p(77') = B, i.e., relaxation does
not yield any acceleration of convergence. On the other hand, wg and wq are
independent of p(G), i.e., the non-Hermitian part of A has no influence on Wy
and wo.

For the application of semiiterative methods, we can use the above infor-
mation on the spectrum o(7!) of 7. Assuming w = wy, as in (4.8), we may
assume that, for arbitrary G, o(7!) C D;UD, (see Figure 2) where the disks D,
and D; have equal radii. To apply a one- or a two-step semiiterative method is
equivalent (see [8]) to enclosing the set Dy U D, by disks or ellipses, respectively.
Since such an enveloping disk would have its center at the origin, no acceleration
could be expected from the corresponding one—step semiiterative method. Even
inclosing these disks by an ellipse (a two—step method) would yield only to a
minor improvement in convergence rates. But, hybrid methods, introduced in
(7], can be successfully applied here. This will be examined in a forthcoming
paper.

5 Final Remarks

Many iterative methods for the solution of systems of linear equations Ax = b
arise from a splitting A = M — N; the requirement that only such splittings are
useful when the system My = g can be easily solved, resulted traditionally in
choosing, for M, either diagonal or triangular matrices (or their corresponding
block forms). Now, because of the development of very fast direct methods for
the solution of special systems, and because of the construction of new (parallel)
computer architectures, it is in order to think of new splittings.

We proposed two possibilities. The advantage of both may be that it is
very easy to determine the Hermitian and the non—Hermitian part of A4; a
disadvantage may be (as it is indicated by the example at the end of §2) that
the domains in the complex plane for the eigenvalues of the Hermitian and the
skew-Hermitian parts of A, can be much larger than those of A, resp. the Jacobi
matrix B.

Our aim here in this paper was to show how Lemma 3.1 can be used to
describe regions in the complex plane which contain the spectrum of the cor-
responding iteration operators. It should be remarked that Lemma 3.1 can be
used for other splittings in the same way. In a second step (which will be done
in a forthcoming paper), this information concerning the spectrum will be used
to define appropriate semiiterative methods through the use of hybrid methods.

Acknowledgment. We thank Dr. Michael Eiermann for his careful reading of
the manusript and for his useful comments.
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