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§1. Introduction.

For a given positive integer n, define
zp = z4(n) = — (k=0,1,--+,2n - 1), (1.1)
n
so that {z;}iz5" is a set of 2n equidistant points, called nodes, in {0,2_71'). Next, assume that

{m;}?., are any p distinct positive integers (p > 1). (1.2)

We consider here the following 2-periodic lacunary trigonometric interpolation problem, denoted

by

(0 = mOamla"'7mp;m1am27"'7mp)7 (1'3)
on the 2n equidistant nodes {z;}3Z5'. For arbitrary data consisting of complex numbers { aj’,}?;&’g’o
and {5;. ?;5”,:':__"1, we ask if there exists a unique trigonometric polynomial of the form

y ;
tm(z) = ao+ Y (ar coskz + by sin kz) (1.4)
k=1
or of the form
M-1 -
tm(z) =ao+ D (akcoskz + bysinkz) + ay cos (Ma: + 7) (1.4")
k=1
(where ¢ = 0 or where ¢ = 1), such that .
tg\tlny)(x%) = jv (] =0,1,--,n—L v= O)fia T vp)v and
‘ . (1.5)

tg\tInV)("I"?j'H) = ﬁj,u (.7 - 07 l,ooyn— Lv= 1723 e )p),
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Note that as the number of nodes in (1.1) is even (namely, 2n), we see that interpolation
conditions of (1.5) are broken into interpolation conditions on two disjoint sets of n nodes,
from which the term, namely, 2-periodic lacunary trigonometric interpolation, is derived.

By way of background, the problem of lacunary trigonometric interpolation on

equidistant nodes in [0, 27) was initiated in 1960 by O. Kis in [Ki], and the question con-
cerning the regularity of the more general k-periodic lacunary trigonometric interpolation
was proposed and solved in 1981 by Sharma, Smith, and Tzimbalario in [S]. But, these
necessary and sufficient conditions given in [S] involve the nonvanishing of a number of
determinants of large order; in this form, these necessary and sufficient conditions are
generally impractical to apply.

But, there are known results in this area, such as those of Cavaretta, Sharma, and
Varga [C] and Sharma, Szabados, and Varga [SSV], which give necessary and sufficient
conditions for the regularity of lacunary trigonometric and 2-periodic lacunary trigono-
metric interpolation respectively. These results depend only on the number of even and
odd integers in (1.2) and on specific choices of € in (1.4"). Such results seem to be more
practical, as they can be easily checked and as they avoid the evaluation of determinants.

Our goal in this paper is to derive, as in [C] and [SSV], necessary and sufficient con-
ditions for the regularity of the 2-periodic lacunary trigonometric interpolation problem
(1.5), which similarly depend only on the number of even and odd integers in (1.2) and
on a specific choice of € in (1.4)

Continuing, the total number of interpolation conditions in (1.5) is evidently
N:=n(2p+1). (1.6)

Thus, N is odd iff n is odd, and the sought unique trigonometric interpolant tp(z) is
necessarily of the form (1.4) (which has an odd number of parameters), and in this case
M = (N — 1)/2. Similarly, N is even iff n is even, and the sought unique trigonometric
interpolant tas(z) is necessarily of the form (1.4') with M = N/2, where ¢(= 0 or 1) is to

be appropriately determined. To summarize,

M :=(N—1)/2 when N isodd, and

(1.7)
M :=N/2 when N is even.

We say that this (0,mq, -, my;myq, -+, m,) 2-periodic lacunary trigonometric interpola-

tion problem is regular if, for arbitrary data, (1.5) admits a unique solution tps(z), where
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rsz(:z:) is of the form (1.4) when NV is odd, or of the form (1.4') when N is even.

Next, we use the notation of

e, 1= number of even integers in the set {my,ms,---,m,}, and
(1.8)
0p := number of odd integers in the set {my,mq, -, m,},
so that
ep+ 0, = p. (1.9)

Our result can be stated as
Theorem 1. Let {m;}i_, be p distinct positive integers and let {zx(n)}i%s! be

the 2n equidistant nodes in [0,27) of (1.1).

1. If N :=n(2p+1) is odd, so that n 13 also odd, then the 2-periodic lacunary trigono-
metric interpolation problem (1.5), with ty(z) of the form (1.4), is regular if and
only if p is even and (cf. (1.8))

ep = 0p = p/2. (1.10)

2. If N := n(2p + 1) is even, so that n is also even, then the 2-periodic lacunary
trigonometric interpolation problem (1.5), with tar(z) of the form (1.4}, is regular if
and only if p is even, (1.10) is satisfied, and ¢ =0 in (1.4").

In particular, the interpolation problem (1.5) is never reqular when p is odd.

For N odd, necessary and sufficient determinantal conditions are given, in Proposition
1 of §2, for the regularity of the associated 2-periodic interpolation problem (1.5). From
Proposition 1, the necessary conditions that p is even and that (1.10) holds for regularity
are derived in Corollary 1 in §2 for this case. These necessary conditions are then shown
in 84 to be sufficient when N is odd.

For N even, necessary and sufficient determinantal conditions are derived in Proposi-
tion 2 of §3. From Proposition 2, the necessary conditions that p is even and that. (1.10)
holds for iegularity are given in Corollary 2 of §3 for this case. Then, these necessary
conditions are used in §5 to complete that part of the proof of Theorem 1 when N is
even; this hinges on the proper choice of & (namely, 0) in (1.4').

Next, we give two simple examples (one for n odd and one for n even) to illustrate that
the trigonometric interpolation problem (1.5) is never regular when p is odd Consider

first the case when n is odd and when p is odd. One such problem is n = p = 1 with,
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say, m; = 2. In this case, N = 3 from (1.6), and (1.3) reduces to
(0,2;2). (1.11)

It is easy to verify that the specific trigonometric polynomial sin z and the identically zero
trigonometric polynomial both satisfy (1.5) in this case of null data (i.e., aj, = §;, =0
in (1.5)), so that interpolation is clearly not unique in this case. Similarly, for the case
when n is even, and p is odd, suppose that n = 2 and p = 1, so that N = 6 from (1.6),

and (1.3) reduces in this case, for my =1, to
(0,1;1). (1.12)

In this case, the specific trigonometric polynomial 1 — cos2z and the identically zero
trigonometric polynomial both satisfy (1.5) in this case for null data, so that interpolation
is again not unique here. Note also in this case that M = N/2 = 3 from (1.7), so that
1 — cos 2z is of the form (1.4") with M = 3, independent of the choice of e = 0 or e = 1.

To conclude this section, we remark that the determination, as in [SSV], of the associ-
ated fundaemental polynomials for the interpolation problem of (1.5), will be carried out
in a subsequent paper.

§2. Necessary and Sufficient Determinental Conditions for Regularity:

N odd.

We assume here that N := n(2p+1) is odd, so that n is necessarily odd, and we write
n = 2r + 1. In this case,, we have (cf. (1.7))

N-—-1
M:Tznp—{-r, where n = 2r + 1, (2.1)

and the sought trigonometric polynomials must be of the form (1.4).

The derivation of necessary and sufficient determinental conditions for a unzque trigono-
metric interpolant of (1.5) is based on the elementary notion that the interpolation of
null data is unique if and only if certain associated determinants are monzero. To begin,
we use the familiar device of identifying (in a 1-1 way) trigonometric polynomials with

iz

algebraic polynomials, through the transformation z = ¢". Then, any trigonometric

polynomial ¢p(z) of the form (1.4) can be expressed as

tu(z) = 2 M qam(2), (g2m(2) € mamr), (2.2)
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where 7, denotes the set of all complex algebraic polynomials of degree at most s. The
case v = 0 of (1.5), in the case of null data, shows that 2" — 1 is a factor of gap(2) in

(2.2). Thus, with (2.1), we can express (2.2) as

2p—-1

tu(z) = 27 M (2" —1)22/\”QA(2) (Qa(2) € mper; A=0,1,--+,2p ~1). (2.3)

n—1
Writing Qx(z) := Y _ay;27, then tar(z) takes the form

=0
n—1 2p-1 ) .
M(m) — Z Z ax; {Zj+()\+1)n—M . z]-lv\n——M} ) (23/)
7=0 A=0

Then since z = €* implies d/dz = izd/dz, the remaining conditions of (1.5) for null data

reduce respectively, with zg 1= € and zgp4q 1= 2641 to
n-1 2p—1
PN {Z ari {G+ A+ Dn = M)™ — (j+ An — M)m”}} =0,
=0 A=0
(v=1,2,-,p;k=0,1,---,n~1),

R (2.4)
PR {Z (=1 ax; {( + A+ 1n = M)™ + (j + An — M)m”}} =0,

7=0 A=0

(1/:1,2,"',]);]{?:0,1,"',71—1),
where we have used the facts (cf. (1.1)) that 23, = 1 and 23, = —1. Next, if the

quantity in square brackets in the first display of (2.4) is defined to be Bj;, and if we set
n—1

DPn-1(z) 1= Zsz], then p,_1(z) is an element of m,_; and (2.4) implies that Pa—1(z2k) =0
J=0

for k = 0,1,---,n — 1. But as the n associated nodes {z3;}7Zy are all distinct, then

Pr-1(2z) = 0; whence, B; =0forall j =0,1,---,n — 1. As the same argument applies to

the second display of (2.4),we thus have

2p—1

S ai{(G+OA+Dn =M™ —(G+In—M)™}=0
A=0

(j=0,1,"-,n—1v= 1,2, p),
2p—1 (2.5)
S (=1 an {G+ A+ D= M)™ + (G + dn— M)™} =0
A=0

(J :0,1,)7}—1,1}: 17271))

Recalling from (2.1) that M = np + r and that n = 2r + 1 in the case when N is odd,

then on dividing out a factor of n™ in each equation above and on setting

a; = (G=0,1,-,n—1), S 26
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we have, for each j = 0,1,---,n — 1, that

2p-1
Za/\»j {(O(] =+ A +1 _p)mV - (CY]' + A —”p>mv} =0 (V = 1727' T >p)7
A=0
2.7)
2p—1
(D e {(a +A+1=p)™ (e +A-p)™ =0 (v=1,2,,p).

X=0
But, for each choice ;)fj =0,1,---,n — 1, the equation (2.7) represents 2p homogeneous
linear equations in the 2p unknowns {ay ;}37". If A(e;) denotes the determinant of order
2p of the coefficients of ay ; in (2.7), then A(e;) # 0 for all j = 0,1,---,n — 1 if and only
if tpr(z) = 0 in (2.2). Consequently, we immediately have the result of
Proposition 1. Let N = n(2p + 1) be odd, so that n(= 2r + 1) is also odd.
Then, in order for the 2-periodic lacunary interpolation problem (1.5) to be regular on the

2n equidistant nodes {zy}ins! in [0,27), 1t is necessary and sufficient that

L
Alay) #0 (o5 =15 j = 0,1, ,n - 1), (2.8)

where Aa;) denotes the determinant of order 2p of the coefficients of ay; in (2.7).

We now use the result of Proposition 1 to derive (cf. Corollary 1) particularly necessary
conditions for regularity of the interpolation problem (1.5) when N is odd.

For convenience, first let A(a) denote the determinant (of order 2p) of the coeflicients
of ay; in (2.7) when «; is replaced by the variable a. Then, border the determinant A(«)
on the left by the column vector (of length 2p), defined by

((Ot - p>ml7(a - p)m27 e ,(O& - p)mpv "(a - p>m17 —(a - p)m2 T _(a - p>mp>T ’
and then add the row vector (of length 2p + 1), defined by
(1,0,0,---,0),

to the top of A(a), thereby forming a determinant Z&(a) of order 2p + 1. It is evident

from this construction that A(a) = A(a) for arbitrary «, so that the conditions

~ j__r
Aa;) #0 (o = o 1

7 7=0,1,---,2r) (2.8")

are necessary and sufficient for the regularity of the interpolation problem (1.5) when N

is odd.
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To make the following determinantal operations clearer, we examine in detail the
specific case p = 2. In this case, the determinant A(a), of order 5, is, from (2.7), given

by

1 0 0 0 0
(a=2)™ J{a=1)™ —(a=2)™ | o™ —(a=1)™ | (a+1)™ —a™ | (a+2)™ - (a+ 1)m™
Ae) = (0=2)" | (=)™ = (a=2)"2 | ™ = (a=1)™ |(a+1)"2 —a™ | (a+2)™ — (o + 1)™2
—(a=2" (o =)™+ (@ =2 | —a™ — (@ = 1)™ | (@ + )™ +a™ | —(a+2)™ = (a+1)™
—(@=2)" [ (e =1)™ + (0 =2)™ | o™ — (@ =1)72 | (@ + )™ + 0™ | —(@ +2)™ — (a+ 1)
(2.9)
On adding the first column of A(a) to its second column, on adding the second column of
the resulting determinant to the third column, etc. (which clearly leaves A(«) invariant),

we obtain from (2.9)

1 1 1 1 1
{(a=2)" (a=-1)™ o™ (a+1)™ (a+2)™
Al@) =] (@=2)™ (a=1)" o™ (a+1)™ (a+2)™ | . (2.10)
—(a=2)™ (a-1)™ —a™ (a+1)™ —(a42)™
—(a=2)™ (a—-1)™ —a™2 (a+1)" —(a+2)™

On adding the fourth row of the above determinant to the second row and the fifth row to
the third row, on taking out a factor of 2 from the resulting rows 2 and 3, on subtracting
the second row from the fourth and the third row from the fifth, and on changing the
signs of the last two rows, we obtain, up to a nonzero scalar which is indépendent of a,

that

1 1 1 1 1
0 (a—1)m™ 0 (a+1)m™ 0
Ala) = 0 (a=1)m 0 (a41)™ 0 (2.11)
(a0 — 2)™ 0 a™ 0 (a+2)™
(a—2)m 0 am 0 (a+2)ym™

Then, on rearranging the rows and columns of A(a) above, the determinant of (2.11)
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becomes, up to a sign change,

1 1 1 1 1
(@=2)™ o™ (a+2)™ 0 0
Al@) =|(a=2)" o™ (a+2)™ 0 0 (2.12)
0 0 0 (@ —1)™ (a+1)™
0 0 0 (a—1)" (a+1)™

Because of the upper block-triangular structure of the partitioned determinant in (2.12),
it immediately follows that A(a) can be represented as the following product of determi-

nants:

] (a= 1™ (ot 1
Aa)=|(a—2m am (atym| - | ¢ , (2.13)

(Of - 2)m2 a™ (a + 2)m2 (a e ]_)mz (a + 1)m2

again up to a nonzero multiplicative factor which is independent of a.
For the regularity of the 2-periodic interpolation problem (1.5), we know from (2.8)

that it is necessary and sufficient that A(a;) # 0 for each a; = (7 =0,1,---,2r).

s}
Because o, = 0 is one such value, we consider the special case a = 0 of (2.13). This gives

us in this case p = 2 that

1 1 1
" (=1)™ 1
A(O)‘—‘ (___2)m1 0 om1 (214)
(-Dm 1
(—=2)m 0 2m

The second determinant on the right in (2.14) is just (—1)™ —(—1)™2, which is evidently
nonzero only if the positive integers m; and my are of different parity, i.e., in this case of
p =2, that (cf. (1.8)) e =0, =1.

Having carefully worked through the specific case p = 2 of (2.9), the general case
follows similarly, the general analogue of (2.12) being given by the following determinant
of order 2p + 1:
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1 1 1 1 1 1
(a—=p)™ (a—p+2)™ (o +p)™ 0 0 0
Ala) = (a=p)™ (a—p+2)™ ... (a4p)™ 0 0 0 ,
0 0 0 (a—p+1)™ (e¢=p+3)™ ... (a4+p-1™
0 0 0 (a—p+1)" (a—p+3)™r ... (a+p—1)"

(2.15)
up to a nonzero multiplicative factor which is independent of «, where the upper-left
diagonal subdeterminant of (2.15) is of order p + 1. As in (2.12), the upper block-
triangular structure of the partitioned determinant A(a) in (2.15) allows us to express

Z&(a) as the following product of two determinants:

1 1 1 (Q—P-i’l)m’ (Ol—p+3)m1 (Cl-i-pwl)ml

[k(oz) _ (o “.P)’"i (a—p+ 2)m (« +.p)m1 » (o — p‘+ 1)ma (a—p+3)m (a -{-p.— 1yme
(=)™ (a=p+2™ o (a4p)™ | | (a—p+ D)™ (@—p+ 3T o (atp—1)m

(2.16)

Again, as in the special case p = 2 of (2.13), we consider the special case o = 0 in
(2.16), for which we know, from (2.8'), that A(0) # 0 is a necessary condition for the
regularity of the interpolation problem (1.5). But from the factorization in (2.16), it is
then clear that a necessary condition for the regularity of the interpolation problem (1.5)

is, for this case a = 0, that the last determinant (of order p) of (2.16) is not zero, i.e.,

(=p+ 1™ (—p+3)™ - (p—1)™
(-pfl)”‘z (—=p+3)m (p—vl)"” 40 (2.17)
(=p+1)™ (=p+3)™ - (p—1)™

We consider two cases:

Case 1: p is odd. If p is any odd positive integer, set p = 25 + 1. But as
the middle column (i.e., the s + 1-st column) of the determinant of (2.17) has only zero
entries, the determinant of (2.17) is necessarily zero; whence, A(0) = 0 from (2.16). Thus
from Proposition 1 (with j = r), we see, in this case when N = n(2p + 1) is odd, that

the trigonometric interpolation problem (1.5) is never regular if p is odd.
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Case 2: p is even. If p is an even positive integer, set p = 2s and let (cf.
(1.8)) e 1= ey, and o := o0y, be respectively the number of even and odd integers in
{m;}%,. Since the integers {m;}?2, of (1.2) can be applied in (1.5) in any order, we
may assume, without loss of generality, that mq,m,, -, m. are all even positive integers,
and that megq, -+, my, are all odd positive integers. Assume first that e > s. Because
my, My, -+, m, are all even, then on subtracting the first column in (2.17) from the last

column, the second column from the second last column, etc., the determinant of (2.17)

takes the form (up to a multiplicative factor of a power of 2)

(25— 1)m (2s=3)™ ... 1[0 .- 0 0

95 — 1)me 2 —3)% ... 110 .- 0 0

(2s-1) (25 - 3) (2.18)
—(25 — 1)+t —(2s = B)Mett .o 1|1 .. (25— B)mert (25 — 1)mens
—(2s —1)™s  —(25—3)m ... —1[1 ... (2s—3)me (25— 1)ma

What is important here is that there is a e X s block of zeros in the upper right corner of
the partitioned determinant above. But because e > s by assumption, each term of the
Laplace expansion (cf. Karlin [K, p. 6]) of the above determinant, in terms of its first s
columns, is necessarily zero; whence, A(O) = 0. Similarly, if e < s, we again have (now
adding the first column to last column, the second column to the second last column, etc.)
that the determinant of (2.18) is again zero; whence, [l((]) = 0. Thus, from Proposition
1 (with j = r), we have established, in this case when p = 2s, that ey; = 05, = sis a
necessary condition for the regularity of the interpolation problem of (1.5). Combined
with the previous case, we have established

Corollary 1. Let N = n(2p+ 1) be odd, so that n is also odd. Then, necessary
conditions for the 2-periodic lacunary interpolation problem (1.5) to be regular on the 2n

equidistant nodes {zj} o' in [0,27), are that p is even and that (cf. (1.8))
ep =0, =p/2. (2.19)

§3. Necessary and Sufficient Determinental Conditions for Regularity:
N Even.

We assume here that V = n(2p+1) is even, so that n is necessarily even, and we write
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n = 2r. In this case, we have (cf. (1.7))

N
M = 5 = np + r, where n = 2r, (3.1)

and the sought trigonometric polynomials must be of the form (1.4'), (which depend on
an even number of parameters) with an appropriate choice of € = 0 or ¢ = 1. Because of
the special form of the last term of the trigonometric polynomials of (1.4"), the previous
steps used in §2 must be altered.

As in §2, a straight-forward calculation shows, on setting z = €, that we can express
the trigonometric polynomial of (1.4"), which interpolates null data for the case v = 0 of

(1.5), as (cf. (2.3))

2p—1
tM(.’L') = z—M(Zn —_ 1) {Z Z)‘HQ/\(Z) + cz?m y (32)
A=0
n—1 .
where Qx(2) := ) ay;2’ (for A=0,1,---,2p — 1), with the added condition that
=0
a0,0 + C(—l)s =0. (33)
Next, on expressing tpr(z) of (3.2) as
n—1 2p-1
tM(:z) — Z Z‘IM {Zj+(A+1)n—M _ Zj-Mn——M} + C{Z(2p+l)n—M B Zan——M} ,
J=0 =0

the remaining interpolation conditions of (1.5) for null data similarly require, as in (2.4),

that

n—1 2p—1
i My v ry™ T\
DoAY ani{la A+ 1= p)™ — (aj + A—p)" }+C{(p+1—;> —( —;) }:0:
=0 A=0
(r=1,2,---,p;k=0,1,---,n — 1),
n—1 2p—1

D A D s (e 4 A1 =)™ (a4 A=) e { (1= D) 4 (5 1)) 2,

n
=0 A=0

(r=1,2,p;k=0,1,-,0—1),
(3.4)

where, as in (2.6),

aji=(j—r)/n (j=0,1,---,n~1). (3.5)

With the reasoning used in §2 to deduce (2.5) from (2.4), we similarly obtain the following
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set of linear equations for each 7 =1,2,---n —1:

2p—1
2oani{laj +A+1-p)™ —(e; +A=p)™} =0 (v=1,2,,p),
1 (3.6)
Yo (D ari{(e +A+1=p)™ +(a; +A-p)™} =0 (v=1,2,---,p),
A=0
and for the remaining case j = 0 (noting from (3.5) that ag = —1/2 in this case since
n=2r):
2p1 my my my my
SO AT
N b =bten, e (5.7
;(wl)'\a,\,o{(-i-%-i-/\—p) + (—%+/\—p) }+C{(p+1~%> + ( - 5) } =0
v=12,---,p)

For each choice of § = 1,-+-n — 1, (3.6) gives 2p homogeneous linear equations in the

unknowns {ay;}%g, while (3.7) and (3.3) give 2p + 1 homogencous linear equations in

the remaining unknowns ¢ and {a,\,o}?\i—ol. Thus, if A(a;) denotes the determinant, of

order 2p, of the coefficients {ay;}37%" in (3.6) for j = 1,2,---,n — 1, and if A, denotes
the determinant, of order 2p + 1, of the coefficients ¢ and {ay0}32 from (3.7) and (3.3),
we have, in analogy with Proposition 1 of §2, the result of

Proposition 2. Let N = n(2p+1) be even, so that n(= 2r) is also even. Then,
in order for the 2-periodic lacunary interpolation problem (1.5) to be regular on the 2n

equidistant nodes {xx}img! in [0,27), it is necessary and sufficient that

L
Aay) #0 (=15 =1,2,--,20 - 1), (38)

and that
Ao #0 (a0i= L =—%5 j=0) (3.9)
0 Qg 1= o o J=V) .
where Aa;) denotes the determinant of order 2p of the coefficients of ay; of (3.6) for
j=1,2,---,2r—1, and where Ay denotes the determinant of order 2p+1 of the coefficients
of ¢ and ayg of (3.7) and (3.3) for j = 0.
Noting that the equations (3.6) are ezactly those of (2.7) (except that n = 2r in this
present case as opposed to n = 2r 4+ 1 of §2), we can use the bordering technique and the

column operations of §2 to form the determinant A(a) of order 2p+1 of (2.9). Now, « is

a real variable with 12_71" <a< %_71, which corresponds to the cases j = 1,2,-++,2r — 1 of
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(3.6). As @ = 0 falls in this range and corresponds also to the case j = r, the conclusions

of §2, culminating in Corollary 1, can be applied without change. We state this as
Corollary 2. Let N = n(2p+ 1) be even, so that n is even. Then, necessary

conditions for the 2-periodic lacunary interpolation problem (1.5) to be regular on the 2n

equidistant nodes {xx}325" in [0,27), are that p is even and that (cf. (1.8))
ep = 0, = p/2. (8.10)

§4. Proof of Theorem 1: N odd.

As in §2, we assume that N = n(2p + 1) is odd, so that n is necessarily odd, and we
again write n = 2r 4 1. For the regularity of the interpolation problem (1.5) in this case,
Corollary 1 gives us the necessary conditions that p is even (so we write p = 25s), as well
as €z, = 05 = s. The object of this section is to show that these necessary conditions are

also sufficient for the determinants A(a) of (2.8") to satisfy
Aa;) #0 (j=0,1,---,2r). (4.1)

From (2.8'), this will establish Theorem 1 for the case when N is odd. Note that since
n = 2r + 1, then from (2.6), a; := 57;_;_7—1 for j =0,1,---,2r, so that
1

r .
laj|§m<§ (4 =0,1,---,2r). (4.2)

To begin, since ez, = 03, = s and since the integers {m;}32, can be applied in any

order in (1.5), we assume (without loss of generality) that

{ {mj}jzl are even positive integers with O<my<me < - <my; (4.3)

{m;}%,,, are odd positive integers with 0 < my,,; < Mepay <+ < Mo

Next, for ease of description again, consider the determinant A(a), of order 5, of (2.10).
In this case, p = 2 and s = 1, and, by our convention in (4.3), my is even and my is odd.

On replacing o by —a in (2.10), we have

1 1 1 1 1
2+a)™m  (I4a)™ a™m (1-—a)™ (2—a)™
A@)=|-2+ay ~(14a)™ —a™ (1-a) @-aye | (44

=24+a)ym (14+a)™ —a™ (1-a)™ —(2—a)™
2+a)™ —(1+a)™ o™ (I—a)™ —(2—a)™
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On interchanging columns 1 and 5 and columns 2 and 4, and then changing the sign of
all entrees in rows 3 and 5, (which leaves the sign of A(—a) unchanged), we obtain Ala)
of (2.10), .,
Ale) = A(—a) forall a. (4.5)

Actually, the relation of (4.5), using similar elementary determinantal operations, can be
verified to be valid in the general case as well. With this observation, it then suffices,
from (4.2), to show that Ala) # 0 for all 0 < a < 1/2. In fact, we shall prove more;
namely, that A(a) #0forall 0 < a < 1.

With p = 2s, consider the factored form (2.16), and let Fi(a) be the first determinant
(of order 2s + 1) on the right side of (2.16), i.e.,

1 1 e 1 1
(@ —25)™ (a—2s+2)™ (a+2s—2)"  (a+25)™
Fi(a) =] (a—25)™ (a—2s+2)7 (425 —2)"  (a+28)™2 | . (4.6)
(0 — 25y (a—2s+2)™ o (o425 —2)" (a+2s)7>

We wish to show now that Fy(a) # 0 for all 0 < a < 1. On interchanging columns of

Fy(a), we have, up to a sign change, that

1 1 1 cen 1 1
a™  (a—2)"  (a+2)™ (o —2s)™  (a+2s)™
Pi(e)=| . , )
o™ (a—2)" (a+ 2™ o (o= 28) (a4 28)"

which can be equivalently written as

1 1 1 1 1
py | @ EEEAIM @ el Coa)™ wn
o [@- @™ (24a)Te e [FRe— ™ (284 a)™

We next quote the following result from Cavaretta, Sharma, and Varga [C, Lemma 2,

last part (in transposed form)]:
Lemma 1. Let mj < mj < --- < m/; be distinct positive even integers, and let

mh .y < mby, <o <my be distinct positive odd integers where 0 < j < g. For any g +1
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positive numbers t1 <ty < -+ < tyi1, the following determinant is nonzero:

1 1 I 1
7 ()™ 1)t ]
O G s
trr (b)) 5" e [(=1)7g4]™
To apply Lemma 1 to Fi(a) in (4.7), set
j =sand ¢ = 2s,
tii=a; ty =2 —a; tai= 24 ;e by, 1= 28 — o gy = 25 + q, (4.9)

mh 1= my (k=1,2,---,2¢).
Then, we see that 0 < ¢y < t; < --- < tg541, provided that 0 < & < 1. Thus, we obtain
from Lemma 1 that Fi(«) # 0 for any o with 0 < a < 1.

For the case F3(0), which is not covered by the above application of Lemma 1, we have

from (4.6) that F1(0) =

1 1 1 1 1 .- 1
(—25)™ (=25 +2)™ (=2)m 0 2m™ (2s)™
(—2s)m (=25 +2)™ (=2)m2 0 2m2 (25)™ | . (4.10)
(—2s)ms (=25 4 2)m2s ... (=2)™2s (22 ... (2s)™20

On expanding about the central column (with the zero entries), then Fi(0) is given by
the following determinant of order 2s:
(=2s)™ ... (=2)m 2m1 ... (23)™
F(0) = : : ; (4.11)
(_25)7”25 . (_2)77‘»25 omzs ... (25)m2s

up to a possible sign change. Since {m;}, and {m;}?,, are respectively even and odd
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positive integers from (4.3), (4.11) becomes

(25)™ cee 2mMm 2m . (25)™
2g)ms ...  oms oms ... (25)™s
Fi(0) = |2 (22) (4.12)
_(gs)ms+1 el —QMsgl | DMt L. (23)m5+1
_(Qs)mzs cee —9mas omas ... (23 )mn

On subtracting the first column from the last column, the second column from the second

last column, etc., and then permuting the first s columns, we have

2m . (25— 2)™ (25)™ (R 0 0
RO) 2me . (25— 2)™e (25)™e 0 - 0 0
1 - ’
—2Matl . (25— 2)Mebt —(2g) et | 241 L (25 — 2)met1 (2g)eH1
—2m2s . (25— 2)M2e —(25)M2s | 2720 ... (25 —2)™2 (25)™2s
(4.13)

up to a factor of +2°. As each diagonal subdeterminant, of order s, in (4.13) is a non-
vanishing generalized Vandermonde determinant (¢f. Gantmacher [G, p. 99]), it follows
that F1(0) # 0.Thus, we have shown that the first factor Fi(a) of (2.16) is nonzero for
any 0 < a < 1.

Next, let Fy(a) be the second determinant (of order p = 2s) on the right side of (2.16),

ie.,

(a=2s+1)™ (a—2s4+3)™ ... (a+2s—1)™

Fy(a):= (o= 28_ O™ (e 2s k™ (ot 23. - , (4.14)

(a—2s+1)"2 (@ —2s+3)™ ... (a+2s—1)"
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where 0 < o < 1. Since {m;}_; and {m;}2}, satisfy (4.3), Fy(«) can be written as

s

(2s —1—a)y™ (1—a)ym™ A4a)™ o (2s—14a)™
Fa(o) = 2s=1=a)y™ ..  (l—a)m (I4+a)m o (2s=1+a)m ' (4.15)
_(23 JR a)ma+l - _(1 — a)mnl-l (1 + a)ms-u .. (25 — 14 a)mH-l
—(2s—1—a)™>» ... —(l=—a)y™ | (14+a)™2= ... (25—1+a)™

Next, divide each entry in the j column of the above determinant by the first entry in
that column, and then rearrange the columns of the resulting determinant so that the
first column contains powers of (1 — @), the second column contains powers of (1 + a),
the third column powers of (3 — ), etc. Then, changing the sign of all entries in the last

s rows, we obtain

1 1 1 . 1
Fy(a) = (1- a).m”ml [Q+ @)z ™ (3 — )™ [~(2s -1 + a)fmem (16)
(1= () (3= a2 e

up to a multiplicative factor which is nonzero for any 0 < @ < 1. Similar to (4.9), we

now set
j=s—1land ¢=2s—1,

tii=1l—a; ta=14aq; - tg; :=25 — 1+ q, (4.17)
my =mpg—my (k=1,2,--- 25— 1).
and we see that the determinant (of order 2s) of (4.16) is of the form (4.8) of Lemma
1. Moreover, since 0 < ¢ < tp < -+ < tg5 in (4.17) for any 0 < o < 1, and since,
from (4.3) and (4.17), m} < mb < --- < ml_; are distinct positive even integers and
ml < mf, < .-+ < my,_, are distinct positive odd integers, we can apply Lemma 1 to
deduce that the determinant F(«) is nonzero for all 0 < a < 1.
As in the treatment of Fi(«), we similarly separately consider the case F4(0), which

was not covered by the previous application of Lemma 1. From Case 2, in §2, we can
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write from (2.18), after a permutation of the first s columns of (2.18), that

1 3™ . (2s—1)™ |0 ... 0
1 3™ ... (2s—1™ |0 ... 0
Fy(0) = , (4.18)
—1 —=83mse+1 ... _(25 — 1)ms+1 1 8Mmet+1 ... (25 - l)m’“
—1 —8ms ... —(2s—1)"s |1 3™ ... (25— 1)

up to a multiplicative factor of £2°. Again because of (4.3), each diagonal subdeter-
minant, of order s, in (4.18) is a nonvanishing generalized Vandermonde determinant;
whence, F5(0) # 0. Thus, with the previous paragraph, Fy(a) # 0 for all 0 < a < 1.
Combined with the same result for the first determinantal factor Fy(a) of (2.16), we de-
duce that the determinant A(e) of (2.16) is also nonzero for all 0 < & < 1. From (4.5),
(4.2), and (4.1), this establishes Theorem 1 when N is odd. O

85. Proof of Theorem 1: N even.

As in §3, we assume that N = n(2p + 1) is even, so that n is necessarily even, and
we write n = 2r. For the regularity of the interpolation problem of (1.5) in this case,
Corollary 2 gives us the necessary condition that p is even (so we write p = 2s), as well
as €gs = 02, = s. The object of this section is to show that, with the above necessary
conditions, the choice ¢ = 0 in (1.4) is both necessary and sufficient for the regularity of
the interpolation problem (1.5). For our use below, the necessary and sufficient conditions

of Proposition 2 can be equivalently formulated as (cf. (3.8))

Be)#0  (a=10Ty j=12-20-1), (5.1)
and (cf. (3.9)) .
Do#0 (a0 =5 j=0), (5.2)

where A(a) denotes the bordered determinant (cf. (2.8')), derived from Ala) of (3.8).
Note also that since n = 2r, the a;’s under consideration in (5.1) satisfy

r—1 1
it i =1.2.... —1). .
5 <3 (U=12--,2r=1) (53)

laj| <

To begin, since e3; = 02, = s = p/2, we assume (without loss of generality) as in (4.3)
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(5.4)

{m;}i., are even positive integers with 0 < my < my < -+ < my;
{m;}%, ., are odd positive integers with 0 < mapq < myys < -+ < Mo,

Next, because the only change from §4 is that n = 2r here (as opposed to n = 2r + 1
in §4), it follows, as in (4.5), that the associated bordered determinants A(a) of (2.8')
satisfy

A(a) = A(—a) for all a, (5.5)

so that it suffices to show, as in §4, that A(oz) # 0 for all 0 < & < 1/2. But as the entire
argument of §4 can be applied without change, then
Aa)#0forall 0 < a < 1. (5.6)

It remains to show that the determinant Aq (of order 2p + 1) of (3.9) is not zero, and
the dependence on (= 0 or = 1) now comes into play. For clarity, assume as in §2,
that p = 2. Then, from (3.3) and (3.7), we have the following determinant Ay (of order
5=2p+4+1) A=

EOm = Eom | Chm =D |G- | @ -G [ - @
(3me = e | (hm = D™ [ G =™ | G- | G- @
R L R O R O R ) R C el B LR O Wl I C LR € utl GRS
™+ D™ | =™ = D™ | G+ D™ | =@ = | (P ()

1 0 0 0 (=1)¢

Then, border Ap on the left by the column vector (of length 5 = 2p + 1), defined by

5\ ™1 5\ ™2 5\ ™ 5\ ™2 T.
_2 20 (=2) o (=2) -
() - () )
and then add the row vector {of length 6 = 2p + 2), defined by
(1,0,0,0,0,0)

to the top to A(a), thereby forming a determinant Ag of order 6 (of order 2p + 2 in the

general case). By construction, we note that
Ao = Do (5.8)

By performing elementary determinantal operations on Ao (exactly as in the transition

of the determinant in (2.9) to the determinant in (2.12)), these operatioﬂs leaving the
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determinant of A, invariant (up to nonzero scalar factors), we obtain (in the case p = 2)

11 101 1 1
0 0 0|1 3m p5m

. |0 0 0|1 —3m 5m

Ao = , (5.9)
1 3m 5m|0 0 0
1 —3m 5m2|0 0 0
0 0 —1(0 0 (=1)

where we have made use of the fact (cf. (5.4) for p = 2) that m; is an even positive integer
and mg is an odd positive integer. We now apply the Laplace expansion of A above in
terms of the first three columns of Ao, i.e., (cf. [K, p. 6])

X i dip izt 22 ilv i2> 7:3 7'./17 ilzv Z:/3
Ag =Y (—1)rtietiatsi A -A ; (5.10)

1, 2, 3 4, 5, 6

the above summation is taken over all integers {ij}?zl with 1 <4y < iy < i3 < 6, and

where 43,175, and 15 denote the complementary rows to 41,142,143 in (1,2,3,4,5,6) with

1 <4 <1y <4 <6. (For notation, A Y " 7 | is the determinant of the
kl, k27 e kj
entries of Ag from rows 1,4, - -,i; and columns ky, ko, -+, k;.)

Because of the two zero rows in the first three and last three columns of A, in (5.9),
there are only fwo nontrivial terms in the summation of (5.10), corresponding to the
choices (1,4,5) and (4,5, 6) of {7;}3_,. Thus, (5.10) reduces (up to a possible sign change)
to

11 1| |1 8w 5m 1 3m 5w (11 1
Ag=|1 3m 5m|.|1 —gme 5m |_|1 _gm 5m | .|1 3m 5w
1 —3m2 pm 0 0 (=1F 0 0 -1 1 —=3m2 5™

which can be factored as

1 1 1 1 3™ 5m 1 3m 5m
AO =|1 gm gmi| . 1 —3m2 gFme | _ |1 _3gm2 pme . (5.11)
1 —3m 5™ 0 0 (=1) 0 0 -1

It is evident from (5.11) that if ¢ = 1, the two determinants in braces in (5.11) are

identical, so that Ag = 0. But this would imply from (5.8) that A¢ = 0, and the
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corresponding 2-periodic interpolation problem, from (3.9) of Proposition 2, could not be
regular.

If, on the other hand, ¢ = 0 in (5.11), then on dividing, by 3™, each entry in the
center column in the two determinants in braces and on expanding the determinants in

braces in terms of their last rows, it follows, up to a nonzero multiplicative factor, that

11 1
. 1 1
Aog=|1 3m 5™ | . (5.12)
1 —3me—m
1 —3m 5m

But, Lemma 1 can be applied to show that each of the two determinants of (5.12) is
nonzero, and so ¢ = 0 implies A, # 0. Thus, for the regularity of the interpolation
problem (1.5) when N is even, it is necessary and sufficient in this case p = 2, that
ey = 03 = 1, and that € = 0 in (1.4).

Having carefully treated the special case p = 2, assume that p = 2s and that (5.4) is
valid. The bordered determinant A, is of order 2p + 2, and (5.9) then takes the form
Ny =

11 1 .. 1 1 11 1 1 1

0 0 0 0 0 1 (=8)m 5m —@p—-D]™ (2p+1)™

0 0 0 - 0 0 1 (=3)™ 5™ ... [—(2p— D" (2p+1)™

1o(=3)y™ 5™ o [—(p— D)™ (2p+1)™ 0 0 0 - 0 0

1 (=3)m 5™ [—(2p-1™ (2p+1)™ |0 0 0 0 0

0 0 0 - 0 -1 0 0 0 .- 0 (1)
(5.13)

up to a nonzero multiplicative factor. As in the case p = 3, the Laplace expansion of A,
of (5.13), in terms of the first p + 1 columns of Ay, contains only two nontrivial terms in

its summation, and, up to a sign change, we similarly have (cf. (5.11))

1 1 I 1 1 (=3)™ 5™ ... (2p+ 1™

N 1 (=)™ 5m 2+ 1™ : :
Ao=| -9 ( ' ) (5.14)
1 (=3)™r 5™ (2p + 1)

1 (=3)™ 5™ ... (2p+1)™s 0 0 0 - (=1F
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L(=3)™ 5™ ()™
L (=3)™ 5™ (2p+ 1)
0 0 0 - -1

Again, since the two determinants in braces are identical if ¢ = 1, then Ag = 0 if ¢ = 1.

If € = 0, then we similarly have, up to a nonzero multiplicative factor, that

11 1 1 1 1 1

T R A 2 I I e e

o
Il

L™ s @ | 1 e ape D
and an application of Lemma 1 shows that each of the factors of Ay above is nonzero;
whence, Ay and Aq are not zero. This completes the proof of Theorem 1 that, if NV
1s even, then the interpolation problem (1.5) is regular iff p is even (say p = 2s), that
€25 = 03, = p/2, and that e = 0 in (1.4'). 0
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