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FOURIER TRANSFORMS AND THE HERMITE-BIEHLER THEOREM

G. CSORDAS AND R. 8. VARGA

(Communicated by Irwin Kra)

ABSTRACT. A new necessary and sufficient condition for real entire functions,
represented by Fourier transforms, to have only real zeros is proved. An appli-
cation of this result to the Riemann ¢-function is also given,

{. InTRODUCTION

The purpose of this paper is (1) to establish necessary and sufficient condi-
tions for real entire functions, represented by Fourier transforms, to have only
real zeros and (2) to apply this result to the Riemann &-function. The present
investigation is a continuation of the work that began with the researches of
Pélya ([P1], [P2]) and de Bruijn [B] (cf. also [CNV], [CV1], [CV2], and [CV3]).

In Section 2, we review some pertinent definitions and provide the statements
of the results required in Section 3. An important assumption in the main
theorem (cf. Theorem 3.4) is that all the zeros of the entire function

o2 .
(1.1) F(x;K):= jf K(te™dt  (xeQ),

oo
lie in a horizontal strip, where K(¢) in (1.1) is an admissible kernel (¢f. Defini-
tion 2.2). The interesting and useful aspect of this result (Theorem 3.4) is that it
combines this geometric condition on the location of the zeros of F(x;K) with
the classical conditions of Jensen (Theorem 2.2) and Pélya (Theorem 2.4). Our
method of proof is based on the Laguerre inequalities (Theorem 2.1), which
are satisfied by functions in the Laguerre-Poélya class (cf. Definition 2.1), and
the Hermite-Biehler theorem for entire functions (Theorem 2.5). With the aid
of the Hermite-Bichler theorem, we generate two families of functions in the
Laguerre~Polya class and we express a classical necessary and sufficient condi-
tion for an entire function to have only real zeros (Theorem 2.4) in terms of
these functions, using a crucial technical result (Lemma 3.3). Finally, we use
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the foregoing results and the known properties of the Riemann &-function (cf.
(3.17)), to obtain (Corollary 3.5) a new condition for the Riemann Hypothesis
to hold.

2. DEFINITIONS AND PRELIMINARY THEOREMS

For the reader’s convenience, we review here the definitions and theorems
which will be needed in the statements and in the proofs of the new results of
Section 3.

Definition 2.1. A real entire function f(x) is said to be in the Laguerre-Polya
class, written f(x) €. — %, if f(x) can be expressed in the form

2.1) f(x)=C “”*’”‘x”H —x/x)e" (@ <),
j=1

where a >0, f and C are real numbers, n is a nonnegative integer and the
. -2
x;’s are real and nonzero with E;":I X; " <oo.

A necessary condition for a real entire function f(x) to be in the Laguerre-
Pélya class is that it satisfy the Laguerre inequalities (2.2).

Theorem 2.1 (The Laguerre Inequalities (cf. [L] or [S])). If f(x) € & — &,
then
22)  "r -V 200 (xeRim=1,2,3,-00),

For a detailed proof of the following theorem of Jensen [J], see [CV 3, Theo-
rem 2.10].

Theorem 2.2 ([J]). Set

f(2)=e " f(z) (@20, f(2)£0),

where f (z) is a real entire function of genus 0 or 1. Then f(z)€ X - if
and only if

(2.3) f(2) 2 Re{f(2)f"(2)}  forall z€C.

Before we apply Theorem 2.2 to real entire functions which are represented
by Fourier transforms, we introduce the following definition.

Definition 2.2. A function K:R — R is called an admissible kernel, if it satisfies
the following properties:
(i) K is integrable over R,
(i) K(:) >0 (teR),
(i) K(t) = K(-1) (teR), and
(iv) for some & > 0, K(1) = O(exp(—|1|**%)), as t — 0.

(2.4)

The Fourier transform of an admissible kernel is a real entire function. More
precisely, Polya [P1] proved the following theorem.
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Theorem 2.3 ([P1], [P3]). Set
(2.5) F(x;K) ::/ K(1)e™ dr,

where K(t) is an admissible kernel. Then F(x,K) is a real entire function of
order p = p(F(x:K)), where, for some ¢ >0 (cf (2.4)(iv)), p satisfies
e+ 2

2.6 < 2.
(2.6) PEEris

While the problem of characterization of the admissible kernels, X(¢), whose
Fourier transform F(x;K) (cf. (2.5)) belongs to the Laguerre-Pdlya class, is a
long-standing open problem (cf. [CV2]), one can apply Theorem 2.2 to F(x;K)
and obtain the following necessary and sufficient conditions.

Theorem 2.4 ([P2, p. 17, formula (18)]). The function F(x;K) defined by (2.5)
is in the Laguerre-Polya class if and only if

(2.7) Alx,y;K)>0  forallx,y R,

where
(2.8)  Alx,y:;K):= / / K(OK(s)e" "V (1 — 5)* dt ds.

In formulating an extension of the classical Hermite-Biehler theorem to
(transcendental) entire functions (cf. [Le, Chapter VII]), it will be convenient
to adopt the following definition (cf. [AK], [Le] or [M]).

Definition 2.3. An entire function w(z) is said to be a function in class HB if
(i) w(z) has no zeros in the open lower half-plane, i.e.,

(2.9) w(z)#0 ifzeH ={zeC:Imz<O0},
and

(i1)
(2.10) ';8 <1 forImz>0,

where @(z) denotes the entire function obtained from w(z) by replacing the
Maclaurin series coefficients of w(z) by their conjugates.

Theorem 2.5 (A Hermite-Biehler Theorem for Entire Functions, (cf. [Le, p.
315, Theorem 4'])). Set

(2.11) w(z) = P(z) +iQ(z),

where P(z) and Q(z) are nonconstant real entire functions. Then &)(z) isa
function of class HB if and only if, for any real constants o and B, the entire
Junction aP(z)+ BQ(z) has only real zeros, and for some x, € R

(2.12) 0'(x,) P(x,) — Q(x,)P'(x,) > 0.
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Remarks. If the entire function w(z) (cf. 2.11) of class HB has order less than
2, then it follows from Theorem 2.5 that P(z) and Q(z) are functions in the
Laguerre-Polya class. Moreover, it is known (cf. [Le, p. 314]) that inequality
(2.12) can be replaced by the stronger condition

(2.13) Q' (X)P(x) - Q(x)P'(x)>0 forallxeR.

3. NEW RESULTS WITH APPLICATIONS

We now introduce a geometric condition on the location of the zeros of the
Fourier transform

(3.1) Flx:K) = / K™ dt,
where K(f) is an admissible kernel, and we use Theorem 2.5 to generate two
families of entire functions in the Laguerre-Pdlya class.

Proposition 3.1. Suppose that all the zeros of the real entire function F(x;K)
(¢f (3.1)) lie in the strip

(3.2) S(t):={zeC|Imz| <t}  forsomet > 0.
Then for each fixed u > 1,

(3.3) P (x) = P (x;K):= 2/oo K (1) cosh(ut)cos(xt)dt € & — P
0

and

(3.3) Q,(x) =0, (x;K) = 2/00 K(t)sinh(ut)sin(xt)dt e & — P .
0

Proof. Fix u > v. Then by Theorem 2.3, F(z—iu;K) is an entire function of

order less than 2, and it follows from the assumptions of the proposition that

all the zeros of F(z — ix;K) lie in the open upper half-plane, Imz > 0.
From (3.1), we have

Flz—iu;K)= /Oo K(t)e" (cos(zt) + isin(zt))d1,

which, since K(z) is an even function (cf. 2.4(iii)), can be expressed in the
form

(3.4) F(z—ip;K) =P (2)+1Q,(2),
where

P (z):= /:) K ()" cos(zt)dt = 2/000 K (t) cosh(ut) cos(zt)dt,
and

Q,(z) = /_OO K(1)e"" sin(zt)dt = 2/000 K(t)sinh(ut)sin(zt) dt .
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Since F(z;K) is a real entire function of order strictly less than 2, and since
by hypothesis all the zeros of F(z;K) lie in the strip S(z), it is known (cf. [B,
Theorem 6]) that there is a sequence {hn(z)}:iI “of real polynomials such that
each £, (z) has all its zeros in S(7), and such that

nli’rgo h,(z)=F(z;K),
uniformly on compact subsets of the complex plane C. Thus, as 4, is a polyno-
mial, it is evident (cf. [Le, p. 307]) that foreach n (n =1,2,3,---), h (z—in)
is a function of class HB and that
Jim h, (z —ip) = F(z —ip;K),

uniformly on compact subsets of C. But the uniform limit (on compact subsets
of C) of functions in class HB is also a function in class HB (cf. [Le, p. 314]),
and therefore F(z — iu;K) € HB. Hence, by the remarks following Theorem
2.5, Pﬂ(z) and Qﬂ(z) (u > 1) are functions in the Laguerre~-Pdélya class. O

As a direct consequence of the foregoing proof, the integral representations
of (3.3) and (3.3"), and inequality (2.13), we obtain the following corollary.

Corollary 3.2. If all the zeros of the real entire function F(x,K) (c¢f (3.1)) lie
in the strip S(t) (cf (3.2)), then forall x e R and p>1

(3.5) / / K(1)K (s) sinh(us) cosh(ut) A(x , s, ) di ds > 0,
where
(3.6) A(x,s,t) := scos(xs)cos(xt) + tsin(xs) sin{x?).

Remarks. We remark that Corollary 3.2 is only one of several consequences of
Proposition 3.1 and Theorem 2.5. Indeed, under the hypotheses of Proposition
3.1, we know from Theorem 2.5 that for any real constants o and f, the
function aP#(x) +p Q#(x) , where 4 > 1, belongs to the Laguerre-Pdlya class.
Hence, in particular, aPﬂ(x) + ﬁQﬂ(x) satisfies the Laguerre inequalities of
(2.2).

Our next result, while elementary in character, is the crucial fact needed, in
conjunction with the foregoing results, to prove Theorem 3.4. The proof of
Lemma 3.3 will be omitted, however, since it merely involves the verification
of the given formulas. (Note that differentiation under the integral sign with
respect to x in (2.5) is readily justified since K(¢) is an admissible kernel.)

Lemma 3.3. If K(t) is an admissible kernel, then for all x,y € R

(3.7) Alx,y  K) ~8/ / K(t Y(x,y,t,s)dtds,
where A(x,y;K) is defined by (2.8) and

(3.8)

Y(x,y.t,s):=

Sz[cos(xt) cos(xs) cosh(vt) cosh(ys) + sin(x?) sin(xs) sinh(y?) sinh(ys)]
+ st[cos(xt) cos(xs) sinh(y?) sinh(ys) + sin(xt) sin(xs) cosh(yz) cosh(ys)].
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Moreover, for each x,y € R, the double integral in (3.7) can be expressed as

(39) §ACYIK) = L) 4 LO,) (= o,
where

(3.10) L)) = [P0 = P,(0)P!(x)  (xeR),
(3.11) LQ,) =10, - 0,(0)Q!(x) (xeR),

and P (x) and Q,(x) are defined by (3.3) and (3.3") respectively.
With the aid of Lemma 3.3, we next prove the following theorem.

Theorem 3.4. Suppose that all the zeros of F(x;K) (cf (3.1)) lie in the strip
S(7) (¢f (3.2)) for some fixed © > 0. Then F(x;K)e X -2 ifand only if

(3.12) Alx,y;K)>0 f0r0<x<ooand0§y<r,

where A(x,y;K) is defined by (2.8).

Proof. The necessity of (3.12) is clear from (2.7) of Theorem 2.4. To prove the
sufficiency, suppose that # 2 7, and consider the functions P (x) and Qﬂ (x)

u
defined by (3.3) and (3.3), respectively. Then by (3.9)

(3.13) %A(x,ﬂ;K) =L(P,(x)) + L(Q,(x)),

where L(Pﬂ(x)) and L(Qﬂ (x)) are given by (3.10) and (3.11). Now, by Propo-
sition 3.1, P#(x) , Qu(x) €Y - forall u>1,and consequently P,(x) and
Qﬂ(x) satisfy the following Laguerre inequalities with m = | (cf. (2.2), (3.10)
and (3.11)):

(3.14) L(P,(x)) >0 and LQ,(x) >0  (xeR,u>n1).
From (3.7) and (3.8) we see that
AlX,y;K)=A(=x,y;K) (x,y€R)
(3.15) and
Alx,y;K)=A(x, —y;K) (x,y€eR)
and thus by (3.14) and (3.15)
(3.16) Alx,y;K)>0 forall |y| > 7 and x ¢ R.

Finally, it follows from (3.12), (3.15) and (3.16) that A(x,y;K) >0 forall
X,y € R, and hence, by Theorem 24, Fx;K)e -2, 0

We conclude this paper with an application to the Riemann &-function &(x),
where

(3.17) 5(%) - 8/O°°q>(z)cos(xz) dr,
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and where

(3.18) @)=Y (2n'n’e” - 3n’ne™)exp(—n’ne").

n=1

For simplicity of notation, we set
(3.19) Flx:®) = / ®(1)e'™ d.
— OO0

Now, it is well-known (see, for example, [CNV, Theorem A]) that ®(¢) satisfies
the properties (2.4), and hence ®(¢) is an admissible kernel. Moreover, it is
easy to check that &(x/2) € & —.% if and only if F(x;®) €. —~F. Now
the Riemann ¢-function is related to the Riemann zeta-function by the formula
(cf. [P2, p. 10])

L2 1N —zpevanfz 1 1
(3.20) E(iz) = 2(2 4)7z F(2+Z)C(z+§).
Thus, as the nontrivial zeros of {(z) lie in the critical strip 0 < Rez < 1 (cf.

[T, p. 30]), it follows that the zeros of &(x/2) lie in S(1) (cf. (3.2)), and a
direct application of Theorem 3.4 yields the following corollary.

Corollary 3.5. If K(t) :=®(1), then F(x;,®) €. —F ifand only if
(3.21) Alx,y,®) >0 forO<x<ocoand0<y<1,
where A(x,y;K) is defined by (2.8).

To underscore the significance of Corollary 3.5, we compare (2.7) and (3.21)
and observe that the Riemann Hypothesis is valid if and only if inequality (3.21)
holds.
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