On a 2-Periodic Lacunary Trigonometric

Interpolation Problem

A. Sharma and R. S. Varga

Abstract. In this paper we obtain simple necessary and sufficient condi-
tions for a particular 2-periodic lacunary trigonometric interpolation prob-
lem on equidistant nodes in [0, 27| to be regular.

§1. Introduction

For a given positive integer n, define

Tk = zk(n) :=kr/n  (k=0,1,---,2n - 1), (1.1)

so that {zx}325" is a set of 2n equidistant nodes in [0, 27). Next, assume that

{m;}?_, are any p distinct positive integers (p > 1). (1.2)

We consider here the following 2-periodic lacunary trigonometric interpo-
lation problem, denoted by the expression

(0 = mO’ml""smp;ml’m27'"amp)ﬁ (1'3)

on the 2n equidistant nodes {z,};"5" in [0, 27). For arbitrary data consisting

- N n—=l,m, , n-—1,m, s ool NN . .
of.complc.\ n.umbers {QlaV}j=0,u=U and {ﬁb"}j=0,u=l’ we ask if there is a unique
trigonometric polynomial of the form

M
tm(z) = ao + Z(ak coskz + by sinkzx), (1.4)
k=1
M-t eT
tm(z) = ag + Z (ak coskzx + by sinkzx) + ap cos(Mx + 3-2——), (1.4
=1
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(where ¢ = 0 or where ¢ = 1), such that

) ' L ov= :
{ t(qT (:E'_)j)=(lj,U (]=0.1§"'3”—17 U_()*lvl.",l’ (1.5)

t(mu)(‘rr)]*'l):zdjau (j'—‘o‘la“'wn—l; ,/=132*?!

Note that as the number of nodes in (1.1) is even, we sce that the inter-
polation conditions of (1.5) break down into interpolation conditions on the
disjoint sets {xo; }J —o and {3 )+l}1 —, of nodes, cach set consisting of n nodes.
From this, the term 2-periodic lacunary trigonometric interpolation is derived.
In addition, we see from (1.5) that the ﬁrst group of integers of (1.3) give the
derivative conditions on the set {z2;}72 ', while the latter group of integers of
(1.3) give the derivative conditions on {z2j4+1 };1;01

It is evident that the total number of interpolation conditions in (1.5) is

N:=n(2p+1). (1.6)

Then, as N is odd iff n is odd, the desired trigonometric interpolant tas(x) in
(1.5) when NV is odd is necessarily of the form (1.4) (which has an odd number
of parameters), and M = (N — 1)/2 in this case. Continuing, as N is even
iff n is cven, the desired trigonometric polynomial ¢t (z) in (1.5) when N is
cven is necessarily of the form (1.4') with M = N/2, where € =0 or 1 is to be
determined. We say that this (0,my, -, mp;my, -, m;,) 2-periodic lacunary
interpolation problem is regular if, for arbitrary data, (1.5) admit a unique
solution, where ¢ () is of the form (1.4) when N is odd, or of the form (1.4")
when NV is even.

The goal of this paper is to derive simple (i.c., non-determinantal) nec-
cssary and sufficient conditions on N, n, the integers {m;}’_,, and ¢ (when
(1.4') is used) for the 2-periodic lacunary trigonometric interpolation problem
(1.3) to be regular. As we shall sce below, this goal is rcached.

§2. Main Result

For notation, let

((',, ;= number of even inteeers in the set {372 of (1.2): ,
. . (<. 1)
1 0p := number of odd integers in the set  {m;}/_, of (1.2),
so that
€p + 0p =D. (2.2)

Our main result is the following
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Theorem 1. Let {mj}§=1 be p distinct positive integers and let {z,(n) i’;};l
be the 2n equidistant nodes in [0,27) of (1.1).

1. If N :=n(2p+1) is odd, so that n is also odd, then the 2-periodic trigono-
metric interpolation problem (1.5), with tyr(z) of the form (1.4), is regular
iff p is even and (cf. (2.1))

€p = 0p = p/2. (23)

2. If N := n(2p + 1) is even, so that n is also even, then the 2-periodic
trigonometric interpolation problem (1.5), with tp(z) of the form (1.4"),
is regular iff p is even, (2.3) is satisfied, and € = 0 in (1.4').
In particular, the interpolation problem (1.5) is never regular when p is odd.

Proof. (Sketch for N odd): Assume that NV is odd, so that n is also odd
from (1.6), and we write n = 2r + 1. In this case, M = (N - 1)/2 = np+ 1,
and the desired trigonometric polynomials ¢s(z) are of the form (1.4). Using
the familiar device for identifying trigonometric polynomials with algebraic
polynomials through the transformation = = e'%, any trigonometric polynomial
tm(z) of the form (1.4) can be expressed as

tu(z) = 2"Maam(2), (2.4)

where g;p(z) is a complex polynomial of degree at most 2M. On considering

null data in (1.5) (i.e., aj, =0 = 3;, in (1.5)), tp(z) can then be expressed
as

2p~1

n-1
tm(z) =2"M(:" -1) Z 2 Za,\‘j:j (n=2r+1), (2.5)
A=0 j=0

where the 2p unknowns {a ,\,j}i‘_’__'(')l can be shown to satisfy (for cach j =
0,1,---,n — 1) the 2p homogeneous cquations:

2p-—1
Yoani{les+A+1=p)™ —(a;+A=p)™} =0 (v=1,2,-,p),
A=0

2p=1

Z (—I)X(L,\._f{((v,‘ A+ =)™ +(a;+ A =)™} =0 (r=1.2.-.p).
A=0

where (since n = 2r + 1)

aji=(j—-7r)/2r+1) (=0,1,---,2r). (2.7)

Thus, if A(a;) denotes the determinant of order 2p of the coefficients of
{ax; 13750, then A(ey) # 0 (for all j = 0,1,---,2r) iff ty(z) = 0 in (2.4).
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In other words, for the interpolation problem (1.5) to be regular in the case
when /V is odd, it is necessary and sufficient that

Ala;) #0  (aj:=(-r)/(2r+1); j=0,1,---,2r). (2.8)

Since a; = 0 when j = r, a close examination of the particular det-rminant
A(0), arising from (2.6) in the case j = r, shows that A(0) # 0 impiies that p
is even and that (cf. (2.1)) e, = 0, = p/2. In other words, necessary conditions

that the interpolation problem (1.5) be regular in this case when IV is odd are
that

pis even, and e, = 0, = p/2. (2.9)

Conversely, in the case when N is odd, a lengthy proof, using determi-
nantal tools, shows that (2.9) implies that A(e;) # 0 for all j = 0,1,---,2r,
which, from (2.8), is necessary and sufficient for regularity.

The proof when N is even is similar but more involved, as it requires, from
(1.4'), the additional determination of e =0 ore=1. W
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