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A NOTE ON THE CONTOUR INTEGRAL REPRESENTATION
OF THE REMAINDER TERM FOR A GAUSS-CHEBYSHEV
QUADRATURE RULE*

WALTER GAUTSCHIT, E. TYCHOPOULOS:, AND R. S. VARGAS

Abstract. It is shown that the kernel K, (z), n(even) =2, in the contour integral representation of the

remainder term of the n-point Gauss formula for the Chebyshev weight function of the second kind, as z

varies on the ellipse €, ={z:z=pe+p le ™ 0=9=2n), p>1, assumes its largest modulus on the
Y o P g

imaginary axis if p=p,.,, where p,,, is the root of a certain algebraic equation. If 1<p<p,,,, the
maximum is attained near the imaginary axis within an angular distance less than #/(2n+2). The bounds
{p,+1} decrease monotonically to 1.

Key words. Gauss-Chebyshev quadrature, remainder term for analytic functions, kernel of contour
integral representation
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1. We are dealing here with the remainder term R, (f) of the Gaussian quadrature
rule for the Chebyshev weight function of the second kind,

n

(1.1 J fO =) de="§ AVf(r)+ R, (f),

v=1

where 7" =cos (vrr/(n+1)), A" =msin® (vr/(n+1))/(n+1), v=1,2,---,n We
assume that f is analytic inside of, and continuous on, an ellipse

(1.2) & ={ziz=5(u+u N u=pe”,0=9=2x7}
o

with foci at z = +1 and with the sum of the semi-axes equal to p, p > 1. The remainder
R, (f) of (1.1) has the form (cf. [1])

(13) Rn(f)=2%i j Ko (2)f(2) dz,
so that ‘
(&
(13) RIS max |72 max [K, (2,

where I(€,) denotes the length of %,. Since f(z) and &, are assumed known, the first
two terms on the right side of (1.3') can be calculated, and our interest then is in
determining where on &, the kernel K, (z) assumes its maximum modulus. In view of
K, (Z)=K,(z) and K, (—Z) = —K,(z), the modulus of K, is symmetric with respect to
both coordinate axes:

(1.4) K (D) =K.(2)], K, (=2)]=|K, ()|

Thus, consideration may be restricted to the first quarter of &,, i.e., to the interval
0=9=x/21in (1.2).
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It is known that, when n is odd, the maximum of |K,(z)| on €, is attained on
the imaginary axis [1, Thm. 5.2]. It is remarked in [1] that when # is even, the maximum
.. .1is attained slightly off the imaginary axis.” The purpose of this note is to amplify

 this statement and make it more precise. Defining

(1.5) a=a(p)=3p'+p7), j=1,2,3,---, p>1,

we will prove, in fact, the following theorem.
THeEOREM 1. For each positive integer n with n =2, let p, > 1 be the unique root of

(1.6) g%»% (p=>1).

Then, if n=2 is even, we have

2

(17) max K, (=K, (3o 00)| iz
ie., the maximum of |K,(z)| on €,, when p Z p,.,, is attained on the imaginary axis.
If 1<p<p,.,, then the maximum in (1.7) is attained at some z=z%=
Wpe +p e ™) e &, with (n/(n+1)m/2< 9" <x/2.

In Table 1 we display p, for n=2(1)40 to 10 decimal places. Since p " V<
a,(p)/a,(p)<2p/p"=2p"""" for p>1, putting p = p, we obtain from (1.6) that

(18) nl/(n41)<p"<<2n)1/(n~1)-

This shows, in particular, that p, - 1 as n — 0. The next theorem establishes monotonic-
ity of the p, and sharpens the bounds in (1.8).
THeEOREM 2. The roots p, > 1 of (1.6) satisfy

(1.9) On > Pprr Jorall nz=2.

Moreover, if A,==(2n)"", and if w,, n =2, is the unique positive root (by Descartes’
rule of signs) of

(1.10) M, (p)=0, M, (u)=pu""—n(u>+1),
then
(1.11) A <pp<p, foralln=2.

It is easily seen that the bounds in (1.11) are sharper than those in (1.8), except
when n =2, in which case the lower bounds are both equal to 2.

TABLE 1
The roots p,,> 1 of (1.6).

n IR n o n o, n 2
11 1.3290434092 21 1.1956793660 31 1.1427199553
2 2.2966302629 12 1.3068931058 22 1.1884619640 32 1.1390810161
3 1.9318516526 13 1.2878200461 23 1.1818092074 33 1.1356405646
4 1.7390838834 14 1.2712053026 24 11756552136 34 1.1323822718
5 1.6180339887 15 1.2565878778 25 1.1699441267 35 1.1292915806
6 1.5341771340 16 1.2436169389 26 1.1646282627 36 1.1263554696
7 1.4722691130 17 1.2320204906 27 1.1596666536 37 1.1235622539
8 1.4244774799 18 1.2215842188 28 1.1550238943 38 1.1209014162
9 1.3863414780 19 1.2121368378 29 1.1506692205 39 1.1183634632
10 1.3551231521 20 1.2035397132 30 1.1465757653 40 1.1159398028
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The proofs of Theorems 1 and 2 will be given in §§ 3 and 4, respectively. Section
2 contains some auxiliary results.

2.
LeEmMA 1. For each positive integer n, set

sin o
sin((1-o)w/(n+1))’

(2.1) o, (o) = 0=0=1,
where ¢,(1):=1im,, ¢,(0). Then ¢,(o) increases monotonically from ¢,(0)=0 to
©,(1)=n+1 as o varies from zero to 1.

Proof. Since sin o =sin [(1— o) 7], we can write ¢,(0) as

_sin [(n+1)u] where (1 *0’)77::

rl(r .
¢nl) sin u n+1

2

so that 0= u = #/(n+1). Furthermore,

M: U,(x) (cos u=:x),
sin u
where U, (x) is the Chebyshev polynomial (of the second kind) of degree n. It is well
known that U,(x) is increasing from U,(cos (7/(n+1)))=0 to U,(1)=n-+1 as x
increases from cos (7/(n+1)) to 1 (hence o increases from zero to 1), from which
the assertions of Lemma 1 follow. a
LemmaA 2. Let ¢, be as in Lemma 1, and set

1 —
(2.2) Y, (o) =cos omr+(n+1)p,(o) cos (“_"_%77), 0=o=1.
n
Then ¢, (o) increases monotonically from ,(0)=1 to ¢, (1)=(n+1)°—1 as o varies
from zero to 1.
Proof. The limit values follow directly from the limit values of ¢, in Lemma 1.
Differentiating (2.2), we get

01-77> +(n+1)eL(o) cos (ﬁ- 77)

. (1=
Yo (o)=—msinom+me, (o) sm( n
n

. . 1-0o
=—gsinor+wsinor+(n+1)p, (o) cos( +17T)
n

=(n+1)e,(o) cos (% 77),

which is positive by Lemma 1. 0

3.
Proof of Theorem 1. From [1, eq. (5.9)] we have

. a(p)—cos 29
(m 'p" K, (2))* = : )
(31) a2n+2(P)_COS 2(1’1"‘1)"3

z=3pe”+p e Ve é,.
By (1.4), it suffices to consider 0= & = /2. Denote

a,—cos 29
Qypi»—c0s 2(n+1)9’

(3.2) ), (0)=
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where a,, a,,., are as defined in (1.5). By symmetry,

(3.3) K;<o>-K;<l’) =0,
2
Let
n ao
3.4 I, = -,
(3.4) " n+12

Since cos 29 = cos 249, for 0=9=17,, we have
a,—cos 29,
(3.5) K (9) S (9,), 0= 9 =9,

(ynip—1

where the equality on the right follows from cos2(n-+1)9, =cos nm =1, since n is
even. Differentiating (3.2) gives

(3.6) [aguer—cos2(n+1)0]x, (3 +x,(F) - 2(n+1)sin2(n+1)3 =2 sin 29,
from which it follows that (a,,.,—1)k,(3,) =2 sin 249,, hence
(3.7) kL (9,)>0.

Letting maxo=y=/2 K, (9) = x,(9%), we conclude from (3.5) and (3.7) that

(3.8) 9, < ﬁ*ég.
Differentiating (3.6) once more, and then setting & = 77/2, gives
1 aT a,+1 a, ]2
3.9 Attt D"t = =(n+1)Y ————1=|(n+1 -1,
(3.9) 4( 2nia T 1)K <2> (n+1) PR [( )a”+l

since a,+1=2a?, ay,.»+1=2a>,,. From the definition of p, (cf. (1.6)) and from the
fact that a,(p)/a,.(p) for p>1 decreases monotonically, we get from (3.9) that

e
(3.10) ku(m/2)Z20 it p=pu.

If1<p<p,,ie., kn(w/2)>0, it is clear from the second relation in (3.3) that
F* < /2 in (3.8), proving the second statement of the theorem.
If p=p,.1,ie., kn(7/2)=0, we now show that

(3.11) KL (9)>0 for15‘n<z9<g CEr)

We introduce the variable o by

n+o
12 Y= - 0<o<l.
(3.12) i1 2 o<1

Using (n+o)/(n+1)=1—-(1—0)/(n+1), we can rewrite (3.6) in the form

(@42 —cos om]’
2sin (1—o)w/(n+1))

(313) K/n(ﬂ):a2n+2“(n’4"1)0290,1(0')*(!/,,(0'),

with ¢,(o) and (o) as defined in Lemmas 1 and 2, respectively. By the assumption
p = p,+1, which implies a,., = (n+1)a,, hence

Uopin=2a’ —122(n+1YVai—-1=(n+1Y(a,+1)-1,
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and using Lemmas 1 and 2, we find that the right-hand side of (3.13) is larger than or
equal to

(n+1)*(a,+1)~1—(n+1)ayp,(0) =, (o)
>(n+D)XHa,+1)—1—(n+1)%a,—[(n+1)*—1]=0, 0<o<l1.
Therefore, k,()>0 for &, < 3§ < w/2, showing that %= #/2 in (3.8). N

4. We precede the proof of Theorem 2 with the following lemma.
LemMMa 3. With A, and p,, as defined in Theorem 2, there holds

(4.1) Ap > sy forallnz=2.

Proof. Since M,(w), n=2, in (1.10) has a unique positive zero u,, and since
M, (+00) = +00, it is evident that M, ,,(u)>0 implies u > u,,. It suffices, therefore,
to show that

(4.2) M, (A,)>0 fornz=2.

This is clearly true when n =2, since A, =2 and M,(A,)=1. We may thus assume that
nz3.

We have
M, (A) =A% A=+ DA+ 1) =A% 2n—(n+ DA+ 1) ==(n+1)+(n—=1)A7.
When we write A, = e", I, =n"" log 2n, there follows
M, (M) ==(n+1D)+(n-1) e’ =—(n+1)+(n—D[1+2],+ e —(1+21,)]
=2[-1+(n—-DL]+(n-D[e*~1+21)].

Here, the expression in the last bracket is clearly positive, and an elementary calculation
shows that —1+(n—1)l,==1+(1—-n""Ylog2n>0if n=3. a

Proof of Theorem 2. To establish (1.9), it suffices to prove the inequalities (1.11),
since combining them with the inequality in Lemma 3 immediately gives p,> A, >
M1 Ppvy forall n=2.

Now (1.6) is equivalent to

(4.3) L,(p)=p"=np" ' —np " '+1=0.
Clearly, L, (by Descartes’ rule of signs) has at most two positive zeros. Since L, (0) =1,
L.(1)=2-2n<0, and L, (+00)=+00, there are exactly two positive zeros, one in (0, 1)
and the other in (1, ). (Because p and p ' occur symmetrically in (1.6), one zero is
the reciprocal of the other.) The larger of the two, as in Theorem 1, is denoted by p,.
We have
Ln(,D) — pZn + p2n—‘2 . pzn—»Z . npn—»l(pZ_i_ 1) + 1
=p*" (Pt 1) =p" P —np" N (pPH 1) 1,
so that the equation in (4.3), after division by p" '(p”+1), can be written in the form
n—1
p 1
- + =n.
p’+1 p" (pPH1)

(4.4) p"!

Since L,(p,)=0, dropping the third term on the left of (4.4), we arrive at
n-1 -

pr =L o pt o n(pi+1)<0.
pntl
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In terms of the function M, in (1.10), this says M, ( p,) <0, and hence implies p, < u,,
the right inequality in (1.11).
To prove the left inequality of (1.11), we will show that

(4.5) L,(A,)<0 forall nz=2.
We now express L,(p) from (4.3) as

1
Ln(p):pz"—2np"+l+2np"-—np"<p+—>
P

1
=p"(p"—2n)+1+np" I:2—<p+;>].

Since A, =(2n)"" =e", I, =n""log2n, this gives
L.(A,)=1+4n*(1—cosh l,) =1-2n"12—4n*[cosh I, —1—303].

The expression in brackets, when expanded in Taylor’s series, involves only positive
terms and hence is positive, while 1—2n°l3=1-2(log2n)><0 for all n=2. This
establishes (4.5) and completes the proof of Theorem 2. 0
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