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1. Introduction

n

With s.(z) := > 27/j! (n = 1,2,---) denoting the familiar partial sums of the
1=0

exponential function e*, we continue our investigation here on the location of the zeros
of the normalized partial sums, s,(nz), which are known to lie (cf. Anderson, Saff, and
Varga [1]) for every n > 1 in the open unit disk A := {z € C : |z| < 1}. For notation,
let the Szegd curve, D, be defined by

(1.1) Do :={2€C:|ze*|=1and |z| < 1}.

It is known that D, is a simple closed curve in the closed unit disk A, and that D is
star-shaped with respect to the origin, z = 0.

If {zkn}i=, denotes the zeros of s,(nz) (for n = 1,2,---), then it was shown by
Szego (7] in 1924 that each accumulation point of all these zeros, {zin}io] 1=y, must lie
on D, and, conversely, that each point of D, is an accumulation point of the zeros
{2k} ST n=1- Subsequently, it was shown by Buckholtz [2] that the zeros {zxn}l7 .o
all lie outside the simple closed curve D,.

As for a measure of the rate at which the zeros, {z;,.}7.,, tend to D, we use the
quantity
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(1.2) dist [{zen}iz1i Deo] += max (dist [2k,n; Deo)),
and a result of Buckholtz [2] gives that

2e 5.43656---
. dist iy Dol € — = =1,2,---
(1 3) 1S [{Z‘m }k__l ] = \/;2- \/’ﬁ (n )

It was later shown in Carpenter, Varga, and Waldvogel [3] that the result of (1.3) is best
possible, as a function of n, since

(1.4) Jim {/n - dist [{zkn}721; Doo]} > 0.63665--- > 0.

It was also shown in (3] that there is substantially faster convergence of the subset of
the zeros {zxn}7-;, to the Szegd curve D, which stay uniformly away from the point
z = 1. More precisely, for the open disk Cs about the point z = 1, defined by

(1.5) Cs:={z€C:|z-1]<6§} (0<6<1),

it was shown in (3] that, for any fixed § with 0 < § < 1,

1
(19) it ({21l \Ci D] =0 (2] (1 o0)
n .
and, the result of (1.6) is also best possible, as a function of n, since (cf. [3, eq. (2.27)])
. n : n
(1.7) nlfgo{logn - dist [{zka}7-,\Cs; Doo]} > 0.10890--- > 0,

for any fixed § with 0 < § < 1.
In (3], an arc, D,, was defined for each n = 1,2,--- by

1—
D, = {z € C:|ze! %" = 1,v/21n : , |2/ £1, and
(1.8) —2
|arg z| > cos™! (n )} ,
n
where from Stirling’s formula,
n! 1 1 139
19)  m=— n - |
L9 e e am S  Ton T 3em “Bisim T BT

This arc was introduced to provide a much closer approximation to the zeros {zkn 2oy

of sn(nz), than does the Szegd curve. With the notation of (1.5), it was shown in (3]
that, for any fixed § with 0 < § <1,

(1.10) dist [{zkn}i2,\Cs; Da] = O (;1—) (n = oo),

2

and moreover that (1.10) is best possible, as a function of n, since (cf. [3, eq. (3.18)])

(1.11) Lim {n* - dist [{zk,n}521\Cs; Da]} > 0.13326--- > 0,
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for any fixed § with 0 <6 < 1.

It turns out (cf. [3, Prop. 3]) that, for each positive integer n, the arc D,, is star-
shaped with respect to the origin, z = 0, i.e., for each real number 6 in [, +7] with
18] > cos”l(%), there is a unique positive number r = r,(6) such that z = re® lies on
the arc D, of (1.8). Let D, be the closed star-shaped (with respect to z = 0) set defined
from the arc D,, i.e.,

1—=2

z

D, = {z € C:lzel~?|" < rn\/27rn| l,lzl <1, and

(1.12)
ar chos'lr—L—:——z— , (n=1,2,---).
§ n

Recently, R. Barnard and K. Pierce asked if the zeros, {2k .}?_;, of s,(nz) all lie out-
side D,, for every n > 1. (This would be the natural analogue of the result of Buckholtz
[2] which established that all the zeros {zj o };=7 ., lie outside of Dq,.) This is not at all
obvious from the graphs of [3], since it appeared that the zeros {2x16}}8, and {zx 27}37,
of s16(162z) and s27(27z) were, to plotting accuracy, respectively on the curves Dy and
D27.

It turns out that the zeros, {2z .}7_, of sn(nz) do not all lie outside D, for every
n > 1. This follows from our first result below (to be established in §2).

Proposition 1 If {z,}}_, denotes the zeros of s,(nz) with increasing arguments,
Le.,
(1.13) O<argzin Sargzy, < - <argzn,, < 2,

then (cf. (1.12)) 21, Is an element of D, for all positive n sufficiently large.

As a consequence of Proposition 1, there is a least positive integer, ng, such that (cf.

(1.12))
(1.14) {zkn}iz1 () Dn # 0 for all positive integers n > ny,

i.e., at least one zero of s,(nz) lies in D, for every n > ng. By direct calculation of the
zeros of s,(nz), it appears that

(115) Ng = 96,
and also that
(1’16) {zk'ﬂ}zzlﬂpﬂ = 0 (n = 1,2,"',”0).

The size of ng = 96 is somewhat surprising. Because ng is so large, it was necessary
to calculate the zeros of s,(nz) with great precision, and for this, Richard Brent’s MP
package was used with 120 significant digits.

As a consequence of Proposition 1, it is natural to ask if there is a simple modification,
say D,, of the definition of the closed set D, of (1.12) which would have all the zeros

{2kn )i, outside D, for allm > 1. To give an affirmative answer to this question, we
define, for each n = 1,2, -, the arc

, 2] <1, and

|arg z| > cos™! (n —2>},
n

. 1-—
D, = {z € C:|ze! " = 1,270 ‘_&
Z

(1.17)
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Figure 1. D,; Figure 2. D,,

and its associated closed star-shaped (with respect to z = 0) set

, |21 <1, and

|arg z| > cos™! (n — 2)} .
n

Unfortunately, this modification does not preserve the accuracy of (1.10). Our ma:

result (which will be sketched in §2) is

. 1-R
D, = {z € C:|ze!~?" < 1,V21n — e
z

(1.18)

Theorem 2 With the definition of the set D, of (1.18), then
(1.19) {zen i1 VDa =0 (n=1,2,--),
and, with the definition of (1.5),

. - 1
(1.20) dist [{zxn}221\Cs;Dn] = O (;) (n — 00),

for any fixed § with 0 < § < 1.

We remark that the bound of (1.20) is best possible, as a function of n. We incluc
here Figures 1 and 2 which respectively display the arcs D,; and Dy, along with tt
zeros, {2k 27}, of $27(27z). These zeros are denoted by x’s on Figures 1 and 2. Figur«
3 and 4 similarly display the arcs D4g and D, along with the zeros {zx 49 }12 , of 549(492

2. Proof of Proposition 1

It is easy to verify (by differentiation) that

(21) e ‘Sn(z “‘1—_/ Cn —CdC ZEC, T'LIO,].,"‘),
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and replacing ¢ and z, respectively, by n¢ and nz in(2.1) results in

nn+1

(2.2) e Msp(nz)=1- /OZC"e'"(dC.

n!

With the definition of 7, of (1.9), the above equation becomes

(23)  esu(nz)=1- %/@z(ce‘*)"dc (z€C, n=01,-).

Now, in {3, eq. (2.14)], it is shown that

z(ze!7#)"

Tn\/Q_Tr?l_(]. - z) {1 - (n+ 1)?1 — z)? +0 (%)}’

uniformly on any compact subset 2 of A\{1}. On fixing {2, then for any zero, zj ., of
sn(nz) in §2, we evidently have from (2.4) that

(2.4) e Msp(nz)=1—

Zkn(Zk pel )" 1 ( 1 )
2.5 m 2k, 1- o(=\)=1,
(2:5) TaV2mn(1l — 2k 0) { (n+1)(1—=zxn)? + n?
so that | ( . ‘

Zkn{ 2k ne _z“'")n 1 ( 1 >
2.6 1-— O|— =1.
(26) TaV/27n - I1—2k,n|{ (n+1)(1 = zx,0)? O\ }

It is now clear that the arc D, of (1.8), is just the approximation of (2.6), with a
continuous variable z, when the quantity in braces in (2.6) is replaced by unity, i.e.,

Je{zel )|

(2.7) Ml2) = - VTt

It is further evident from (1.12) that

(2.8) a zero 2z, of s,(nz) lies in D, iff A\, (2x,) < 1.
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We now examine the particular zero z; , of s,(nz) which has smallest argument
(1.13)). As discussed in [3, eq. (2.3)], we can write

(2.9) Z1n =14 \/g(tl +0(1)) (n— o0),

where t; is the zero of erfc(w) := 72-;/ e~ dt in the upper half-plane (ie, Im¢t >

which is closest to the origin, w = 0, and it is known numerically (cf. Fettis, Caslin, :
Cramer [4]) that

(2.10) t; = —1.354810--- +i1.991467 - - - .
On evaluating An(21,) from (2.7), (2.9), and (2.10), it can be verified that

(2.11) lim An(21,) = 0.985964 - - < 1.

Thus, with (2.8), z1,, is contained in D, for all positive n sufficiently large, wk
establishes Proposition 1.

We remark that it is because the constant, 0.985964 - - -, of (2.11) is so close to un

that it is difficult to see, graphically, that there are zeros of s,(nz) which lie interio:
D,, for all n sufficiently large.

3. Proof of Theorem 2

We consider the integral (cf. (2.3))

(31) In(Z) = / (Cel—()ndc (Z € Ca n= 07 17 T ')3
0

and, with 2 = re, we choose the line segment ¢ = pe(0 < p < r) for the patt

integration in (3.1). Then,

(3.2) ()] < [ (pe ==Y dp = T, (r;6).
0
For 8 = 47 /2, we see that J,(r; £7/2) can be expressed as

, 7.(rel—r cosﬂ)n T(T‘Cl—r cose)n
3.3 Ju(r; £7/2) = .
(3.30) (ridm/2) n+1 < n(1 —rcos )

When cos § < 0, Ju(r; 8) can be expressed as

1 r|cos §lel+ricos 6] U(U)
n ;0 = __“”“/ n-l_ A = 1+u .
Ja(r;6) [cos 6171 Jo v 1+u(v)dv (v :=ue't")

Because u/(1 + u) is strictly increasing, it can be verified that

r(rel—-r cos@)n

(3322) Jn(T; 6) < m

(0 <r <1, and cosé < 0).
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But this same derivation also shows that the above holds for all 0 < r < 1 and cos8 > 0.
Thus, with (3.2) and (3.3), we have

EIE2l

(3.4) |In(z)] < m

0<zl <1, n=1,2,--4),

and from (2.3), we further have that

vn =1—-e"s,(nz
(3.5) 1) =1 A(n).

Thus, if {zxn}}=; denotes the set of zeros of s,(nz), then f%;fn(zk,n) = 1, which

implies from (3.4) that
1=zp n|n
(36) |zk,nilzk,ne I > 1

ToV21n(l — Re 24,) ‘

From (1.18), this means that all zeros {z;,}}_, of s.(nz) lie outside the set D,, for all
n > 1, which is the desired result of (1.19) of Theorem 2.

The remainder of Theorem 2, to establish (1.20), now similarly follows, as in the
proof given in [3, Theorem 4], by expressing a zero, zj ., of s.(nz), as 3 + 6, where 2
is a suitable boundary point of D,, and where § is assumed small. This argument also
shows that the result of (1.20) is best possible. m
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