Computational Methods and Function Theory
Proceedings, Valparaiso 1989
St. Ruscheweyh, E.B. Saff, L. C. Salinas, R.S. Varga (eds.)
Lecture Notes in Mathematics 1435, pp. 201-207
© Springer Berlin Heidelberg 1990

Asymptotics for the Zeros of the Partial Sums of e^z. II

R.S. Varga*

Institute for Computational Mathematics Kent State University, Kent, OH 44242, USA

and

A.J. Carpenter

Department of Mathematical Sciences Butler University, Indianapolis, IN 46208, USA

1. Introduction

With $s_n(z) := \sum_{j=0}^n z^j/j!$ $(n=1,2,\cdots)$ denoting the familiar partial sums of the exponential function e^z , we continue our investigation here on the location of the zeros of the normalized partial sums, $s_n(nz)$, which are known to lie (cf. Anderson, Saff, and Varga [1]) for every n>1 in the open unit disk $\Delta:=\{z\in\mathbb{C}:|z|<1\}$. For notation, let the Szegö curve, D_{∞} , be defined by

(1.1)
$$D_{\infty} := \{ z \in \mathbb{C} : |ze^{1-z}| = 1 \text{ and } |z| \le 1 \}.$$

It is known that D_{∞} is a simple closed curve in the closed unit disk $\bar{\Delta}$, and that D_{∞} is star-shaped with respect to the origin, z=0.

If $\{z_{k,n}\}_{k=1}^n$ denotes the zeros of $s_n(nz)$ (for $n=1,2,\cdots$), then it was shown by Szegö [7] in 1924 that each accumulation point of all these zeros, $\{z_{k,n}\}_{k=1,n=1}^{n,\infty}$, must lie on D_{∞} , and, conversely, that each point of D_{∞} is an accumulation point of the zeros $\{z_{k,n}\}_{k=1,n=1}^{n,\infty}$. Subsequently, it was shown by Buckholtz [2] that the zeros $\{z_{k,n}\}_{k=1,n=1}^{n,\infty}$ all lie outside the simple closed curve D_{∞} .

As for a measure of the rate at which the zeros, $\{z_{k,n}\}_{k=1}^n$, tend to D_{∞} , we use the quantity

^{*}Research supported by the National Science Foundation

			eP
			,
	2		

(1.2)
$$\operatorname{dist} \left[\{ z_{k,n} \}_{k=1}^n ; D_{\infty} \right] := \max_{1 \le k \le n} (\operatorname{dist} \left[z_{k,n} ; D_{\infty} \right]),$$

and a result of Buckholtz [2] gives that

(1.3)
$$\operatorname{dist} \left[\{ z_{k,n} \}_{k=1}^n ; D_{\infty} \right] \le \frac{2e}{\sqrt{n}} = \frac{5.43656 \cdots}{\sqrt{n}} \quad (n = 1, 2, \cdots)$$

It was later shown in Carpenter, Varga, and Waldvogel [3] that the result of (1.3) is best possible, as a function of n, since

(1.4)
$$\lim_{n \to \infty} \{ \sqrt{n} \cdot \text{dist } [\{z_{k,n}\}_{k=1}^n; D_{\infty}] \} \ge 0.63665 \dots > 0.$$

It was also shown in [3] that there is substantially faster convergence of the subset of the zeros $\{z_{k,n}\}_{k=1}^n$, to the Szegö curve D_{∞} , which stay uniformly away from the point z=1. More precisely, for the open disk C_{δ} about the point z=1, defined by

(1.5)
$$C_{\delta} := \{ z \in \mathbb{C} : |z - 1| < \delta \} \quad (0 < \delta \le 1),$$

it was shown in [3] that, for any fixed δ with $0 < \delta \le 1$,

(1.6)
$$\operatorname{dist}\left[\left\{z_{k,n}\right\}_{k=1}^{n}\backslash C_{\delta}; D_{\infty}\right] = O\left(\frac{\log n}{n}\right) \qquad (n\to\infty),$$

and, the result of (1.6) is also best possible, as a function of n, since (cf. [3, eq. (2.27)])

(1.7)
$$\lim_{n \to \infty} \left\{ \frac{n}{\log n} \cdot \operatorname{dist} \left[\{ z_{k,n} \}_{k=1}^n \backslash C_{\delta}; D_{\infty} \right] \right\} \ge 0.10890 \dots > 0,$$

for any fixed δ with $0 < \delta \le 1$.

In [3], an arc, D_n , was defined for each $n = 1, 2, \cdots$ by

(1.8)
$$D_n := \left\{ z \in \mathbb{C} : |ze^{1-z}|^n = \tau_n \sqrt{2\pi n} \left| \frac{1-z}{z} \right|, \quad |z| \le 1, \text{ and } |z| \ge \cos^{-1} \left(\frac{n-2}{n} \right) \right\},$$

where from Stirling's formula,

(1.9)
$$\tau_n := \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} \approx 1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} + \cdots, \text{ as } n \to \infty.$$

This arc was introduced to provide a much closer approximation to the zeros $\{z_{k,n}\}_{k=1}^n$ of $s_n(nz)$, than does the Szegö curve. With the notation of (1.5), it was shown in [3] that, for any fixed δ with $0 < \delta \le 1$,

(1.10)
$$\operatorname{dist}\left[\left\{z_{k,n}\right\}_{k=1}^{n}\backslash C_{\delta};D_{n}\right]=O\left(\frac{1}{n^{2}}\right) \qquad (n\to\infty),$$

and moreover that (1.10) is best possible, as a function of n, since (cf. [3, eq. (3.18)])

(1.11)
$$\lim_{n \to \infty} \{ n^2 \cdot \operatorname{dist} \left[\{ z_{k,n} \}_{k=1}^n \backslash C_{\delta}; D_n \right] \} \ge 0.13326 \dots > 0,$$

		÷
		•

for any fixed δ with $0 < \delta \le 1$.

It turns out (cf. [3, Prop. 3]) that, for each positive integer n, the arc D_n is star-shaped with respect to the origin, z = 0, i.e., for each real number θ in $[-\pi, +\pi]$ with $|\theta| \geq \cos^{-1}(\frac{n-2}{n})$, there is a unique positive number $r = r_n(\theta)$ such that $z = re^{i\theta}$ lies on the arc D_n of (1.8). Let \mathcal{D}_n be the closed star-shaped (with respect to z = 0) set defined from the arc D_n , i.e.,

$$\mathcal{D}_{n} := \left\{ z \in \mathbb{C} : |ze^{1-z}|^{n} \le \tau_{n} \sqrt{2\pi n} \left| \frac{1-z}{z} \right|, |z| \le 1, \text{ and} \right.$$

$$\left. |\arg z| \ge \cos^{-1}(\frac{n-2}{n}) \right\}, \quad (n = 1, 2, \cdots).$$

Recently, R. Barnard and K. Pierce asked if the zeros, $\{z_{k,n}\}_{k=1}^n$, of $s_n(nz)$ all lie outside \mathcal{D}_n for every $n \geq 1$. (This would be the natural analogue of the result of Buckholtz [2] which established that all the zeros $\{z_{k,n}\}_{k=1,n=1}^{n,\infty}$ lie outside of D_{∞} .) This is not at all obvious from the graphs of [3], since it appeared that the zeros $\{z_{k,16}\}_{k=1}^{16}$ and $\{z_{k,27}\}_{k=1}^{27}$ of $s_{16}(16z)$ and $s_{27}(27z)$ were, to plotting accuracy, respectively on the curves D_{16} and D_{27} .

It turns out that the zeros, $\{z_{k,n}\}_{k=1}^n$ of $s_n(nz)$ do not all lie outside \mathcal{D}_n for every $n \geq 1$. This follows from our first result below (to be established in §2).

Proposition 1 If $\{z_{k,n}\}_{k=1}^n$ denotes the zeros of $s_n(nz)$ with increasing arguments, i.e.,

$$(1.13) 0 < \arg z_{1,n} \le \arg z_{2,n} \le \cdots \le \arg z_{n,n} < 2\pi,$$

then (cf. (1.12)) $z_{1,n}$ is an element of \mathcal{D}_n for all positive n sufficiently large.

As a consequence of Proposition 1, there is a least positive integer, n_0 , such that (cf. (1.12))

(1.14)
$$\{z_{k,n}\}_{k=1}^n \bigcap \mathcal{D}_n \neq \emptyset \text{ for all positive integers } n > n_0,$$

i.e., at least one zero of $s_n(nz)$ lies in \mathcal{D}_n for every $n > n_0$. By direct calculation of the zeros of $s_n(nz)$, it appears that

$$(1.15) n_0 = 96,$$

and also that

$$\{z_{k,n}\}_{k=1}^{n} \cap \mathcal{D}_{n} = \emptyset \quad (n = 1, 2, \dots, n_{0}).$$

The size of $n_0 = 96$ is somewhat surprising. Because n_0 is so large, it was necessary to calculate the zeros of $s_n(nz)$ with great precision, and for this, Richard Brent's MP package was used with 120 significant digits.

As a consequence of Proposition 1, it is natural to ask if there is a simple modification, say $\hat{\mathcal{D}}_n$, of the definition of the closed set \mathcal{D}_n of (1.12) which would have all the zeros $\{z_{k,n}\}_{k=1}^n$ outside $\hat{\mathcal{D}}_n$ for all $n \geq 1$. To give an affirmative answer to this question, we define, for each $n = 1, 2, \cdots$, the arc

$$(1.17) \hat{D}_n := \left\{ z \in \mathbb{C} : |ze^{1-z}|^n = \tau_n \sqrt{2\pi n} \left| \frac{1 - Re \ z}{z} \right|, \ |z| \le 1, \text{ and} \right. \\ \left. |\arg z| \ge \cos^{-1} \left(\frac{n-2}{n} \right) \right\},$$

			è

and its associated closed star-shaped (with respect to z = 0) set

$$\hat{\mathcal{D}}_n := \left\{ z \in \mathbb{C} : |ze^{1-z}|^n \le \tau_n \sqrt{2\pi n} \left| \frac{1 - Re \ z}{z} \right|, \quad |z| \le 1, \text{ and} \right.$$

$$\left. |\arg z| \ge \cos^{-1} \left(\frac{n-2}{n} \right) \right\}.$$

Unfortunately, this modification does not preserve the accuracy of (1.10). Our marresult (which will be sketched in §2) is

Theorem 2 With the definition of the set $\hat{\mathcal{D}}_n$ of (1.18), then

$$\{z_{k,n}\}_{k=1}^n \cap \hat{\mathcal{D}}_n = \emptyset \qquad (n = 1, 2, \cdots),$$

and, with the definition of (1.5),

(1.20)
$$\operatorname{dist}\left[\left\{z_{k,n}\right\}_{k=1}^{n}\backslash C_{\delta};\hat{\mathcal{D}}_{n}\right]=O\left(\frac{1}{n}\right) \qquad (n\to\infty),$$

for any fixed δ with $0 < \delta \le 1$.

We remark that the bound of (1.20) is best possible, as a function of n. We include here Figures 1 and 2 which respectively display the arcs D_{27} and \hat{D}_{27} , along with the zeros, $\{z_{k,27}\}_{k=1}^{27}$, of $s_{27}(27z)$. These zeros are denoted by \times 's on Figures 1 and 2. Figure 3 and 4 similarly display the arcs D_{49} and \hat{D}_{49} , along with the zeros $\{z_{k,49}\}_{k=1}^{49}$ of $s_{49}(49z)$

2. Proof of Proposition 1

It is easy to verify (by differentiation) that

(2.1)
$$e^{-z} s_n(z) = 1 - \frac{1}{n!} \int_0^z \zeta^n e^{-\zeta} d\zeta \qquad (z \in \mathbb{C}, \ n = 0, 1, \cdots),$$

			4

and replacing ζ and z, respectively, by $n\zeta$ and nz in (2.1) results in

(2.2)
$$e^{-nz}s_n(nz) = 1 - \frac{n^{n+1}}{n!} \int_0^z \zeta^n e^{-n\zeta} d\zeta.$$

With the definition of τ_n of (1.9), the above equation becomes

(2.3)
$$e^{-nz} s_n(nz) = 1 - \frac{\sqrt{n}}{\tau_n \sqrt{2\pi}} \int_0^z (\zeta e^{1-\zeta})^n d\zeta \qquad (z \in \mathbb{C}, \ n = 0, 1, \cdots).$$

Now, in [3, eq. (2.14)], it is shown that

(2.4)
$$e^{-nz} s_n(nz) = 1 - \frac{z(ze^{1-z})^n}{\tau_n \sqrt{2\pi n}(1-z)} \left\{ 1 - \frac{1}{(n+1)(1-z)^2} + O\left(\frac{1}{n^2}\right) \right\},$$

uniformly on any compact subset Ω of $\bar{\Delta}\setminus\{1\}$. On fixing Ω , then for any zero, $z_{k,n}$, of $s_n(nz)$ in Ω , we evidently have from (2.4) that

(2.5)
$$\frac{z_{k,n}(z_{k,n}e^{1-z_{k,n}})^n}{\tau_n\sqrt{2\pi n}(1-z_{k,n})} \left\{ 1 - \frac{1}{(n+1)(1-z_{k,n})^2} + O\left(\frac{1}{n^2}\right) \right\} = 1,$$

so that

$$(2.6) \qquad \frac{|z_{k,n}(z_{k,n}e^{1-z_{k,n}})^n|}{\tau_n\sqrt{2\pi n}\cdot|1-z_{k,n}|}\left\{\left|1-\frac{1}{(n+1)(1-z_{k,n})^2}+O\left(\frac{1}{n^2}\right)\right|\right\}=1.$$

It is now clear that the arc D_n of (1.8), is just the approximation of (2.6), with a continuous variable z, when the quantity in braces in (2.6) is replaced by unity, i.e.,

(2.7)
$$\lambda_n(z) := \frac{|z(ze^{1-z})^n|}{\tau_n \sqrt{2\pi n}|1-z|}.$$

It is further evident from (1.12) that

(2.8) a zero
$$z_{k,n}$$
 of $s_n(nz)$ lies in \mathcal{D}_n iff $\lambda_n(z_{k,n}) \leq 1$.

			6

We now examine the particular zero $z_{1,n}$ of $s_n(nz)$ which has smallest argument (1.13)). As discussed in [3, eq. (2.3)], we can write

(2.9)
$$z_{1,n} = 1 + \sqrt{\frac{2}{n}}(t_1 + o(1)) \qquad (n \to \infty),$$

where t_1 is the zero of $\operatorname{erfc}(w) := \frac{2}{\sqrt{\pi}} \int_w^\infty e^{-t^2} dt$ in the upper half-plane (i.e., Im $t_1 > 0$) which is closest to the origin, w = 0, and it is known numerically (cf. Fettis, Caslin, and Cramer [4]) that

$$(2.10) t_1 = -1.354810 \cdots + i1.991467 \cdots.$$

On evaluating $\lambda_n(z_{1,n})$ from (2.7), (2.9), and (2.10), it can be verified that

(2.11)
$$\lim_{n \to \infty} \lambda_n(z_{1,n}) = 0.985964 \dots < 1.$$

Thus, with (2.8), $z_{1,n}$ is contained in \mathcal{D}_n for all positive n sufficiently large, whe establishes Proposition 1.

We remark that it is because the constant, $0.985964 \cdots$, of (2.11) is so close to un that it is *difficult* to see, graphically, that there are zeros of $s_n(nz)$ which lie interior \mathcal{D}_n , for all n sufficiently large.

3. Proof of Theorem 2

We consider the integral (cf. (2.3))

(3.1)
$$I_n(z) := \int_0^z (\zeta e^{1-\zeta})^n d\zeta \qquad (z \in \mathbb{C}, \ n = 0, 1, \cdots),$$

and, with $z = re^{i\theta}$, we choose the line segment $\zeta = \rho e^{i\theta} (0 \le \rho \le r)$ for the path integration in (3.1). Then,

$$|I_n(z)| \le \int_0^r (\rho e^{1-\rho\cos\theta})^n d\rho =: J_n(r;\theta).$$

For $\theta = \pm \pi/2$, we see that $J_n(r; \pm \pi/2)$ can be expressed as

(3.3*i*)
$$J_n(r; \pm \pi/2) = \frac{r(re^{1-r\cos\theta})^n}{n+1} < \frac{r(re^{1-r\cos\theta})^n}{n(1-r\cos\theta)}.$$

When $\cos \theta < 0, J_n(r; \theta)$ can be expressed as

$$J_n(r;\theta) = \frac{1}{|\cos\theta|^{n+1}} \int_0^{r|\cos\theta|e^{1+r|\cos\theta|}} v^{n-1} \frac{u(v)}{1+u(v)} dv \qquad (v := ue^{1+u}).$$

Because u/(1+u) is strictly increasing, it can be verified that

$$(3.3ii) J_n(r;\theta) < \frac{r(re^{1-r\cos\theta})^n}{n(1-r\cos\theta)} (0 < r < 1, \text{ and } \cos\theta < 0).$$

But this same derivation also shows that the above holds for all 0 < r < 1 and $\cos \theta > 0$. Thus, with (3.2) and (3.3), we have

(3.4)
$$|I_n(z)| < \frac{|z||ze^{1-z}|^n}{n(1-\operatorname{Re} z)} (0 < |z| < 1, \ n = 1, 2, \cdots),$$

and from (2.3), we further have that

(3.5)
$$\frac{\sqrt{n}}{\tau_n \sqrt{2\pi}} I_n(z) = 1 - e^{-nz} s_n(nz).$$

Thus, if $\{z_{k,n}\}_{k=1}^n$ denotes the set of zeros of $s_n(nz)$, then $\frac{\sqrt{n}}{\tau_n\sqrt{2\pi}}I_n(z_{k,n})=1$, which implies from (3.4) that

(3.6)
$$\frac{|z_{k,n}||z_{k,n}e^{1-z_{k,n}}|^n}{\tau_n\sqrt{2\pi n}(1-\operatorname{Re}z_{k,n})} > 1.$$

From (1.18), this means that all zeros $\{z_{k,n}\}_{k=1}^n$ of $s_n(nz)$ lie outside the set $\hat{\mathcal{D}}_n$, for all $n \geq 1$, which is the desired result of (1.19) of Theorem 2.

The remainder of Theorem 2, to establish (1.20), now similarly follows, as in the proof given in [3, Theorem 4], by expressing a zero, $z_{k,n}$, of $s_n(nz)$, as $\hat{z} + \delta$, where \hat{z} is a suitable boundary point of $\hat{\mathcal{D}}_n$, and where δ is assumed small. This argument also shows that the result of (1.20) is best possible.

References

- [1] N. Anderson, E.B. Saff, and R.S. Varga, On the Eneström-Kakeya Theorem and its sharpness, Linear Algebra Appl. 28 (1979), 5-16.
- [2] J.D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73, Part II (1966), 121-123.
- [3] A.J. Carpenter, R.S. Varga, and J. Waldvogel, Asymptotics for the zeros of the partial sums of e^z . I., Rocky Mount. J. of Math. (to appear).
- [4] H.E. Fettis, J.C. Caslin, and K.R. Cramer, Complex zeros of the error function and of the complementary error function, Math. Comp. 27 (1973), 401-404.
- [5] E.B. Saff and R.S. Varga, On the zeros and poles of Padé approximants to e^z , Numer. Math. 25 (1975), 1-14.
- [6] E.B. Saff and R.S. Varga, Zero-free parabolic regions for sequences of polynomials, SIAM J. Math. Anal. 7 (1976), 344-357.
- [7] G. Szegö, Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924), 50-64.

Received: February 28, 1990

		* ***