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Chebyshev semi-iterative methods,
successive overrelaxation iterative methods,
and second order Richardson iterative methods
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By
GENE H. GOLUB and RICHARD S. VARGA

§ 4. Cyclic Matrices: The Cyclic Chebyshev Semi-Iterative Method
We now suppose that the N x N matrix B is cyclic, and in the form of (1.4).
As we have already pointed out, the matrix 53 in this form satisflics YouNG's
property A, and is consistently ordered. Because B is real and symmetric,
YOouNG's theory [26] can be applied to the solution of the matrix equation of
(1.2). With B in the form (1.4), we partition the vectors ¥ and g of (1.2) in a
manner compatible with the partitioning in (1.4), and (1.2) is cquivalent to

.
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(4.1) (‘) ( " )(,‘3) 4»(‘1‘).
Xy o) \x gy

Without using vectors with twice as many components, as was the case in §2,
1

the successive overrelaxation iterative method can be rigorously applied directly

to (4.1), giving

{ A g (F 3 g, — Ty g

B ey (TR g0

(4.2)

where 2%, %" are arbitrary guesses. The best choice of o is given by

(4.3) :
. my == ez
YUy a g V1 (19157
We can also apply to (4.1) the Chebyshev semi-iterative method of (2.9),
which gives, by vector components,

:\.’l(m (R ™, i 1 3 m) | {\, " (m l)} | -\?(;l: .,l)’
(4.4) lm 1) = () m 1)1 Wlme-1) .
Ay FE Ay 111‘ ~\f gy |- vy , m 1,
where XY 78 | g and wf) AR g, and these equations determine the

veetor quu(ncvh (X '")}Z‘,’ o un(l { p )}‘,}’ o. Lt is interesting to observe that the

proper subsequences {£F" T and (XPEMES G can be iteratively determined
from

(1.5)
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where again ¥V =FZ". 7. Thus, this iterative method requires no add
vector storage over the successive overrelaxation iterative method *, and rc
but the single vector guess X0,

We shall call this iterative method, obtained by selecting appropriat
sequences of Chebyshey semi-iterative method, the eyclic -Chebyshen
tterative method for the matrix equation (4.1),

In the primitive case of §3, we considered the (primitive) successive
relaxation iterative method, or equivalently the second order Richardson i
a=w and f= —1, with the starting procedures

(4.6) RO BRO g
and

AW s RO
(4.6) &

WO o R - g‘.

Here again, it is only necessary in the cyclic case to compute the proper

2@m (s ; ‘
sequences {F("+% and {xmne o and the starting procedures (4.0
(4.6) become in this case

(4.7) X = FaLINE &
and

(4.7")

(g
R BT g,

If w,=w then we see that (4.5) reduces to (4.2). Thus, for the
Chebyshev  semi-iterative method, a sequence ol parameters m,,
whereas for the successive overrelaxation mot hod, only one parameter is neces
The variant of the successive overrelaxation method with (he starting proc
(4.7') has been studied by Snrropon [15] and the corresponding matvis opd
for e iterative is denoted by 2N The relationship between the
Chebyshev semi-iterative method and the successive overrelaxation me
is quite close, Indeed, as given by (2.18), ’Iin(}ummv wyy, and itis i fact sl

e

{5 nece

in [7], under simple assumptions, that the cyclic Chebyshev semi-iter
method must degenerate momerically into the successive overrelaxation iter
method.

As in §3, we will compare the successive overrelaxation iterative me
of (4.2) for the starting procedures of (1.7) and (4.7') with the cyclic Cheby
semi-iterative method of (4.5), and as we shall sce, using spectral norns
basis for comparison, the cyclic Chebyshey semi-iterative method is Superi
to the successive overrelaxation iterative method,

* This ddea has already been used by Riniy [13] to make (he second
Richardson iterative method conpetitive in stormge with the sucecssive overrelix
iterative method,

M relationship to [18], Theorem 4 of (18] shows with specteal wadil s n
for comparison, that the iterative methodl of (d2) with o oy, i oal Teast wi
fast as the iterative method of (1.4), Using (he eyelie Chebyshey aemi-iter
method of (4.5) climinate this factor of 2 since, from (1.5), ench complete iter
of (4.5) increases the iteration indices of the veetors ¥y and Xy by o,
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§ 5. Cyclic matrices. Comparison of methods
The results in this section depend strongly upon the methods and results
of §%, as well as the reeent works of Siinpon [15]. For the Chebyshev
serni-iterative method, the successive overrelaxation iterative method, and. the
second order Richardson iterative method of §2, we partition the error vector

£ in a manner compatible with the form of the matrix B in (4.1), and we
define

.,&. / ;f’f»( "y
(5.1) e Dol om0,
fom

. .
K)oy« g My - P

where =80 and &0 - EY are the vector components of the initial error

veetor, For these methods, we have that

(5.2) B p (B)EO, o,

where the matrix operator p, (5) corvesponds respect ively to the matrix operators
PulB), 7, (1), 6,(B) and su(3) of §3. For the cyelic Chebyshev semi-
itevative method, and the (cyclic) successive overrelaxation iterative method
with the starting procedures of (.7) and (4.7, the corresponding crror veelor
for the m-th complete iteration of these micthods is defined by

"‘fi'(en» 1)
. .
(5.3) oo . om0,

o
()
“y

From (2.87), (3.21), and (3.2%), it follows that the polynomials p,, (x) of odd
degree contain only odd powers of x, while (he polynomials of even degree contuin

only even powers of a. Thus, we define polynomials U, and V), through
(5.4) { Doy (¥) - x U, (x4, w0,
/"12 " (\> =8 " (v""a) ) w0,

Since the matrix has the form (4.1), then
. i/ ],‘ ],“l‘ L 3 ) N ;‘ P AVE A
(t;g) ]i\il L ( ) “,(' - and Jytmd L ‘{) - ! (/l ) ’,/ ,
. 0 (1, 1,>' ' (], 7 ‘/,)m I,l | 0

and the definitions of (5.4) and the properties of the powers of the matrix B

N
allow us to express 8™ in the simple form

. R N Sty L
(Fi,h) P (\(m) N ()g’ Um l(/ [ )l ) ',,C(in' w0,
op ety

Defining the matrix above as 22, (1), this becones

(5.0'). O DR, e,
' ok
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We analogously define the 2 % 2 matrix Q. (10) as

0
0

lj;n- -1 (/”’2) ,”’
Vi (11®)

whose spectral norm is casily scen to be

(5.7) Qum:<

~>, m>1,

(5.8) T[On (] = {2 U2 () 1 VRGN, ey,
From (5.4), this becomes
(58’) T[Qin (/‘H = {/’31;7 —1 (/’) -} /’gm (/’>}&’ mez

We now employ what is essentially a converse of Theorem 2 of the rec
of SHELDON [15]*. Denoting the cigenvalues of the matrix 3 by s;, 1
then

(5.9) TLOBY] = max (P () PR (el w1,

Let us now denote the matrix <.>p<‘r:11‘m' ol (5.0") associated with the poly
Pu(B), 7, (B), 1,(B), and Su(B) of §3 as B(B), R, (1), 1,(1), and
respectively. Then it follows immediately from the results of §4 that

o~

T!]’"(H)] o {Ta(];um -1 (I)l)) I T* (‘/‘;::m(/;))}ﬁ
Tlnl\)m(l;)} {.,72 (i’g nel (H)> ; 7 ("u m(”))}é
5.10 _
( ) Tl,’l;n (”)I =t [:!m ( f)) | 7? ([L' m(“))}'5
T[Su(B)] = {r? D) T (s ()0

{2y, (1
7 {T" (_‘.‘Mv (B
(1))

Since t(f;,,,(li)), r(r,,,(l;’)), (4, (1) and r(.\'m(ls’)) decrease monotonical

m, so do -r[?’ (BY], «[R, (1], [ 1, (B)|**, and T[S, (D). Furtherm
1

m

Theorem 1, for m>1 and .- P,

(S‘1 I) T (7’m (l’y)) =T (”m (”)) T (hu(“)) T ('v;;v (H)):
so that »
Lemma 2. For all m>1 and 0-"p-1,

T D (B)] | R, (B)] <« [5(B)] =< o[ S, (B)].
The spectral norm of the snccessive overrelaxation iterative method |

for the case when w is fixed equal (o ay, has been recently ealeulated by Si

* Speeifically, in tho notation of S non [15] e rennlt we e using |
in the following

Theorem. 10 A is a non-zero cigenvalue of 2, then A ds also an cigenvalue ¢
T(i) where g ds an cigenvalue of the matris /3.

This resalt iy tneitly assumed dn [£14), and wa are indebted to D St
supplying us with o proal ol this result,

*RThe quantity w7, ()] o (5.10) s algebraically cquivident (o (he ex;
for w[QL1Q 1 in [14], Thus, the monotonicity noted nbove strengthens Sip
Theorem 4 in [15],



Chebyshev semi-i terative methods. 11 161

{15], and if Q) represents the corresponding matrix operator for m iterations,
then *

(5.12) T[] =L (o, — )", mz

where 4, is the larger root of

6.13) " _MIs,},ﬁ,‘},wi,,,,,z (, I- }‘L) - 200 1==0,
and rrszmy -1, so that

) 7 1 N m .,
(5.12") T[em] ( , [/ 'l,: - 1)'((,;,, = )" om0,

We observe that in obt aining the spectral norms for the four iter: ative methods
just ('()nsl(h'lul, no asstmption has been made about o special form of the initial
error €O, and thus {he !mn iterative methods can be dircetly compared.
Then we have
Theorem 2. In the cyclic case for all m=-1{ and 0<p<1, with no special
assumption on the form of the initial error veetor 2 @

(L; 1 ') T l lm ] FI]\,,‘ ] TI‘/", T[ ‘)“/ , and
8 [ D,(B)] = w[o].

Thus, the spectral norm of the matrix operator for the cyclic Chebyshey
semi-iterative method is less than (he spectral norm of the matrix operators [or
the successive overrelaxation iterative method and its modific (mon by SueLpox,

Proof. I'rom Lemma 2 2,1t suffices to show that 7{1’ ’z[ﬁj}f,, for all
nedand 0<gt 1 By using the ex spressions of (3.8), (;.1())’ and (5.12%), this
inequality reduces to

e g 2 Vo C I A B Y7 N e i
(5.15) {" (Hr“” ) | (,mw""),! Y | o* 1

which is easily shown to be {rue for all w1, and oo et In faet, the proof
of the above nn‘qlmlllv shows that theratio ¢ RUSAYES {/,,, /l)] s strictly increas ,m;/

fumetion of w1, for all o Seen . We mtun sthen the inequalitios of (5.14)
by including

Theorem 3. In the cyelic cuse with Ot and o specinl assumptions
o the form of the initinl crror veelor o, tlwn the ratios

i i

5.10)
( 7’”»;( )] 71/m(l’);

/IUI
are strictly incrensing for -, and

(5.17) oy O (), o O0m), MmN,

Y heorem 3 of [13] containg minor misprints, which we are now correcting,
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Proof. Tt is an easy computation to show that r[IN’m (B)]< 2" (14772, an
that 272" (1 +7-%) is smaller than cither 7[R, (B)] or 7[&,]. The statements
(5.16) and (5.17) then follow immediately *,

~ §6. Applications
A great many physical and engincering problems lead to the numerical solutio
of matrix equations of the form
6.1) A% =%,

where 4 is an NxN real symmetric and positive definite matrix which car
after a suitable permutation of indices, be partitioned so that

[~ A4;,,0 ... 0 Ay i Ay )
0 Ay, O
: 2
.
: o
62 A= OO dee een A
Afpi oo Appir| Apyrpir O .. 0
0 Ay pra O
| AT, e AL o 0 o Ay

where the diagonal blocks A; ; are a;X#; matrices, n;=1 for 1<js, an

$

Yng==N. ArMs, GATES, and Zonpek [1] extended the original analysis
=
Youna [26] and FranxeL [6] to what is called the successive block overrelaxalic

iterative method, and it can be verified that the assumptions on the matrix
above are sufficient for the application of their theory. Let the vectors ¥ and
of (6.1) be partitioned in a manner compatible with (6.2). Then, we can wri
(6.1) as '
A S»-:‘l) - » R

Ai,i‘\”i“&A)ZJlAi,l’Ik’\/’ih”‘l\;‘r 1575 P,
(6.3) ‘

14
- 4T R 7
Af’ i, b /\IJ I ”"}*;\r_,LAk’/, I ‘\k =2 ]\/, |40

The square submatrices A;;, 1<<j<s, are evidently non-singular, so that
the block diagonal matrix C is defined by

A0 0

' , . O Agyg oo 0,
(6.4) C . i .

o 0 oA

"k Mr. Davin Frincorn ol Hlectricité de drance (Paris) s recently pros
(private communication) that the ratio {115155:,,\/T[‘h’,,,(/i)yl} s strictly increasing
m >4, 0<e<1, which strengthens ‘Theorems 2 and 3.
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then € is also non-singular. Now, €4 has unit diagonal entries, and we define
the matrix B as

(6.5) Crd =1 - B,

so that the matrix B has zero diagonal entries. More precisely, B has the {form
[0 v 0 By pir oo By

| 0 o 0 Byoyiy o By,

(6.6) B 52| i LA

{ 1},,_).3'[ e lﬁl),|..]'p 0 e O
LBy o By 10 e 00

With the definition of the matrix B in (6.5), (6.1) becomes
(6.7) Kem BEA- CV e,

The successive block overrclaxation iterative method applied to (6.7) is
defined by

\(m k1) . ll)' 3 ],, Pk e \g‘l)h o ‘1’ 17 A §m I A+ .X}’"), 159 b,

©.8) 1, . .
xpyn ;-;:t,,]u By XPH0 o A7 K Aﬁ,j,] +Xg,

,?-F 7 - f’ y
where the X sy, are given veetor components of the given initial vector
guess KO, ‘lhe optzimum value of o is computed from (4.3), where the N xN
matrix /s defined in (6.5). Equivalently, the iterations of (0.8) can be defined
also from

0}

69) Xpr0 e [0 X P
where
4 ey N VK, 1=
(6.0 A S i i =1Ep
! A \:‘ (m 1)»_T o \f," 4 r '\:(m 1) W <
prh b B LA LEAAREE P

quation (6.9) shows that, in order to carry out the successive block over-
relixation iterative method, we have assumed that matrix equations of the form

(6.10) Ay, Ny Gy, Ty S

can be solved divectly for X, given ¢,

The matrix € defined in (0.4) is synnnetric and positive definite, so Hmf
the matrices CHand ¢4 ace uniquely defined, Forming the product Cb4 ¢~
we sea That this product mateix also has unit dingon: ul entries, and in nn.l!u;fy

with (0.8), we define the mntrix 74 by

e F

(11 CHAC T



1064 Gene H. Gorus and RicHarp S, VARGA

The matrix 53 has the same cyclic form as does B of (6.7), and since ¢4 4 C—}

is a definite and symimetric matrix, it follows from (6.11) that B is symrnetric
and convergent. Defining

(6.12) Ci¥ =3, (-

and using (6.11), (6.1) reduces to

(6.13) Ve BY .

The matrix 7 is similar to 12, with

(6.14) Becipc

Summarizing, we have reduced our original problem (6.1) by means of a change

of variables to the form (6.13), where B is symmetric, cyclic, and convergent.

We now apply the cyclic Chebyshev semi-iterative method to the numerical
solution of (6.13). If the vector components YO, 1572 p, are given, then

2m1 2 ‘, . ~
yp{vkﬂi}}‘ - w&mll‘l bﬁl] ' 3 ) “‘ [‘[N - m 1) } ’{17 l’
(6.13) o
y( B Wy 2{ 2 })I peik }fgl A 71 L - Y @ } + )77(2,’t);
k=
15759, mz=0,

defines the cyclic Chebyshev semi-iterative method. The o's are calculated
from (2.10), where ¢(B) ::-:Q(ﬁ), since B is similar to B, To show now the
relationship of this method to the successive block overrelaxation iterative methocl
of (6.9)—(6.9"), we write (6.15) equivalently as

YD = oy (VD - YRR LV, g s p, m o,
(6.16)

Yf(“m F2) Wy pyis /};(2"; 2y yj(?.m)) 4 Y]_(‘.ﬁm), 1< ]‘ }? /) , s >0,

il

where
el e 2
72m4-1) __ <o V(2m) g
Y ‘“]Z} Bpyjn ¥i™ -+ L
(6.16") "

* S=p
y(umw ~
)

N 1) {2+ +’ L],

i

- .c_,; Bbtk p -k
By using the dohnitiom of (6.11) and (6.12), it follows that (6.15) is equivalent
to (6.9)—(6.9"), provided the proper w's are used in each step. In essence then,
we' can indirecily carry out the modified Chebyshev semi-iterative method
of (6.15) by performing the iterations

(6.97) J X g”[ ’}' S Wy (\5,”1 ’/! - ,\'fj.,"ﬂ)}) | ,\’5,”0,, Ty sis—p, m>0,
0.9 . .
Xz('m M = g ('\//(m B XY X, t2 = p, o0,
*
where X", 1275, is defined in (6.97).



Chebyshev semi-iterative methods. II 1065

>(2m)

N 2
In terms of spectral norms, let ¢ = (_,1(27“ +1>) denote the error vector for
£
2

the m-th complete iterate of (6.15), relative to the matrix B. Trom §5, we can
" state that b
(6.17) |6 < 7 [Bu(B)] - [6@],  m=o0.
BV 1L . . L
If g0 = <_}{2 )8 the error for the m-th complete iteration of (6.9”), relative
, aem

'to the matrix B, then from C!¥ =7, we have

(6.18) |cigm|< v [B,(B)]-|Cta®], m=o.

Since both C! and C-* are symmetric and positive definite, their spectral radii
coincide with their spectral norms, so that

(6.19) |Ctz]| < o (CY | 2],
and
(649) | O T

where equality is possible in both (6.19) and (6.19'). Combining these inequalities,
we have*

(6.20) 3™ <2 [B,(B)][e(CY -0 (CH]

60|,  m=o.

From the results of §5, of the iterative methods studied, the cyclic Cheby-
shev semi-iterative method of (6.16)—(6.16") gives the smallest spectral norm
relative to the matrix equation of (6.13). Since actually iterating by means
of (6.9")—(6.9") is equivalent to iterating by means of (6.16)—(6.10"), we arrive
at the conclusion that the iterations of (6.9")—(6.9"") are quite efficient.

We now list some well known problems which numerically give rise to matrix
equations of the form (6.1), where the matrix 4 can be written as in (6.2).
Clearly, such a list would include all problems which have been previously
rigorously attacked by the successive overrelaxation iterative method, and its
extensions.

A. Dirichlet problem in a plane bounded region, using a five point approxi-
mation to LAPLACE’s equation. Here, one can use successive point overrelaxation
[6, 19, 26], successive line relaxation [/, 3, 8], or successive two line overrelaxation
[12, 21], all these methods corresponding to different partitionings of the matrix 4.

. B. Dirichlet problem in a plane bounded region, using a ninepoint approxi-
mation to LAPLACE’S equation. Here, one can use successive line overrelaxation
[1, 21], or successive two line overrelaxation [§&, 12, 21].

C. Biharmonic problem in a plane bounded region, using a thirteen point
approximation to the biharmonic equation. Here, one can use successive two
line overrelaxation [8, 12, 21].

* The quantity (p (M) - o (M) is also called the P-condition number [17] for a
non-singular matrix M, and is denoted by P(M).
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In all these problems, the cyclic Chebyshev semi-iterative method can
be used, and from the results of §5, this iterative method gives the smaller
spectral norm than the successive overrelaxation iterative methods.

Finally, matrix equations (6.1) do arise in which the matrix A cannot, after
a permutation of indices, be put into the form of (6.2), even with proper parti-
tioning. For example, in [2/], a class of iterative methods called prinvitive
iterative methods are studied, and for this class the results of § 2-—3 are pertinent.
It should also be said that even though the matrix 4 of (6.1) can be partitioned
so that (6.2) holds, it can very well be the case that the diagonal blocks Aiis
which must be directly inverted, as in (6.10), in order to apply the cyclic theory,
are either too large in size or too complicated to permit such direct inversion.
Thus, in solving the Dirichlet problem in a plane bounded region, if one chooses
to use a nine point approximation to Laprack’s equation, but is unwilling to
directly invert more than one equation in one unknown, a primitive iterative
method results. Here too the results of § 2 3 are pertinent, '

§ 7. Numerical Results
We will now give results from both algebraic and numerical investigations,
comparing the Chebyshev semi-iterative method with variants of the suc-
cessive overrelaxation iterative method in the cyclic case. First, if ¥ is the
vector error of our initial estimate ¥, of the unique solution of 4% =%, and 80m
is the error vector for the m-th complete iteration, then from (5.6),

(7.1) ~”>S(m')“ B, (B)] m >0
' ety = o -

Thus, if 7 (8) is the least positive integer for which

(7.2) _ [P (B)] <4, 0=l d= 1,

then m (0) is an wpper bound for the number of iterations necessary to reduce
the Euclidean length of the initial error by the factor 6. Let my (), m, (), my (),

and m, (8) denote m(8) when P, (B) is taken to be respectively P, (B), R, (D),
T, (B) and . The tables 14 give m, (6) for various values of ¢ and o (B).
Table 1. w,=1.8195; p==0.99507 Table 2. wy==1.93410; 0=:0.999421

6201 | §=20.05 | 422001 |6=0,005 §-=0.001 ] 5:=0.1 | 820,05 E 8=-0.01 | §220.005] 8 =-0.001
| | | i
] | ] | i
i ‘ b
my(6) | 18 21 29 33 1 49 w1y () i 50 j 60 | 84 l o4 | 117
my(d) | 22 | 27 | 36 | 40 | 40 my(0) | 64 | 77 | 104 , 116 ! 142
my(®) | 23 | 27 | 37 | a1 | 5o g (0) f 65 | 77 | 105 | 116 | 143
m(®) | 37 | 41 | 50 | 54 | 63 m(8) | 126 | 137 | 163 | 174 | 200
Table 3. w,==1.95218; ¢(B)==0.9997 Table 4. wy=1.07211; p (/) =0,0000

7 7 ; i
{ G=04 | d==0.08 ! d=0.01 8 = 0.005] 60,004 & =01 ’6 Q05 1S =0,01 [ h=0.0050 6 0,001
S | | !

{
|
|
| |
|
!
|

| | |
my (6) 69 93 | 116 | 130 ;[ 163 my (&) | 119 ) 143 | 200 f 225 282
g () 89 1 106 | 144 | 160 197 my(0) | 154 % 183 J 244 ' :)_77 341
my(8) | 89 | 107 | 145 | 161 | 108 wy(0) | 154 | 184 [ 250 1278 | 341
mg(d) | 182 | 198 | 234 | 250 | 285 my (8) | 337 f 364 | 426 | 453 | 514
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It is interesting to point out that the following

. m(,;’”

(7:3) Jim =1
can be proved* for all 4,7. Thus, the cyclic Chebyshev semi-iterative method
cannot require, for very small 6> 0, percentagewise substantially different
numbers of iterations than those required by the successive overrelaxation
method. However, for slowly convergent problems, p(B) close to unity, there
is a considerable advantage in using the cyclic Chebyshev in practical problems
where ¢ is approximately 1072

The above, while constituting an algebraic study of the various methods,
does not give a complete picture of the comparison between these methods,
because of the inequalities in (7.1) and (7.2). Although equality is attainable
in (7.4) and (7.2), so that the numbers of iterations in Tables 1--4 are also
attainable, we include results of numerical experiments in the cyclic case. In
. an effort to make the numerical experiments as up-to-date and practical as
“possible, we have compared the successive two line over-relaxation iterative
method [8, 12, 211 with the cyclic Chebyshev semi-iterative method for the
same partitioning of the matrix 4 of (6.2), in the numerical solution of
self-adjoint partial differential equation

(7.4) i div{D (¥, y) grad u (x, )} + o (v, y) u (2, y) = S(,9),

in a plane bounded region 2, where D and ¢ are positive in £2, with boundary
conditions
dux, )

Ce ()
an :

(7.5)
on the boundary 1" of £2. These numerical problems involved non-constant
mesh spacings. In part 1 of cach problem, S (x, ¥) =20, so that the unique solution
of the matrix problem of (6.1) is the null vector. With all the components of
the initial vector ¥(® taken as 108, the iterations were continied until the maximum
component of ™ was less than or equal to 8. In part 2 of each problem, S (x, v)==1
and with the same initial vector % as in part 1, the iterations were continued until

(70) Af(m-(wl) - 2: ix](_m +1) xj(m)l .

satisfied RO < § RO,

Becanse the norms of both parts of the experiment are convenient in com-
putation, but not the spectral norms of the comparison, the following comparisons
are of interest in connection with the relationships exhibited in §6. The suc-
cessive overrelaxation method is applicd to two different orderings of the matrix
A the fivst, the oy ordering, is the ordering of (6.2); the sccond is the “normal”
ordering in which the double lines of mesh points ave swept serially through
the mesh,

* Beo [7) for details,
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Table 5. Problem A 121 intevior mesh points, wy==1.8195

Part 1
Method E =04 | 6=001 | §=20.008 | ¢=0.001
Cyclic ()i“u byshev . . .. ! 17 28 31 39
SHELDON'S \Todmul Cs()R 21 35 39 48
SOR with w,, ¢, Ordering 20 34 37 46
SOR with w,, Normal Ordering .| 17 30 34 43
Part 2
Method | ocon | g0t | b0
|
Cyclic Chebyshev . . . } 30 41 ’ 44
SurLbon’s Modified ‘,()R 39 52 55
SOR with wy,, o, Ordering . 33 46 50
SOR with w,, Normal Ordering . 32 45 | 49

Table 6. Problem BB 667 interior mesh points, @y ==1.93419
Part 1

Method f RESAN §:=0,01 ‘ &=.0,005 | §:=0,001

|
|
71 106 | 110 133

Cyclic C hoby‘ahvv

|
R
|
SHELDON'S Modified SO!\ C ‘! 88 123 134 157
SOR with w,, g, Ordering 93 127 137 160
SOR with w,, Normal Ordering .| 81 121 133 155
Part 2
Method ‘ PR [ & 0,01 j 820,005
| \’ i
Cyclic Chebyshev . . ’ 83 i 113 ' 119
SHELPON's Modificd SOR | 113 | 147 [ 1457
SOR with wy, op Ordering l 07 ' 133 [ 143
SOR with w,, Normal Orde lml, N a1 ! 127 L3y
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