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1. INTRODUCTION

The purpose of this paper is (1) to investigate several necessary and
sufficient conditions for a real entire function to have only real zeros
and to apply these conditions to the Riemann ¢-function (cf. Section 2),
and (2) to prove results concerning the distribution of zeros of entire
functions related to the Riemann ¢-function (cf. Section 3).

The interest in this area of research stems, in part, from the well-known
fact (cf. P6lya [21] or Henrici [12, p. 305]) that the Riemann hypothesis is
equivalent to the statement that all the zeros of the Riemann £-function

g(;) - 8}:@(1)005()0,‘) it (1.1)
are real, where
(1) - é“"(’) (12)

and where

a,(t) = wn?(2mwn’e* — 3)exp(5t — wne*)

(teRyn=1,23,..). (1.3)
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Since £(x/2) is a real entire function (cf. Pélya [21] or Titchmarsh [28D),
the Riemann hypothesis is valid if and only if the function £(x) belongs
to the Laguerre-Pdlya class (written ¢ € .2~ &). This class is defined as
the collection of all real entire functions f(x) of the form

f(x) = Ce™ax"+Bxyn ﬁ (1 —x/x;)e*/ (0 < ), (1.4)
i=1

where a > 0, 8 and C are real numbers, n is a nonnegative integer, and
the x’s are real and nonzero with £¢_, 1/x} < o,

In order to outline here the background and motivation of the present
work, we first note that the Taylor series of 1£(x/2) about the origin can

be written in the form

1 = (-1)"b,
8( ) T (1.5)
where
=f0°°t2mc1>(z)dt (m=0,1,2,...). (1.6)

On setting z == —x? in (1.5), the function ¢£,(z), defined by

m

()= L v (17)
m=0 ’

where

m!

Yo = Wz’m (m=0,1,2,...), (1.8)

is a real entire function of order i, and the Riemann hypothesis is

equivalent to the statement that &, € ./ — . Now, it is known (cf. Boas
[1, p. 24] or Pdlya-Schur [23]) that a necessary condition that &,(z) have
only real zeros is that the Turdn inequalities hold,

A 2 2m—1 N A
b - = 1.9
(6 = (g b >0 (n =123, (9)
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or, equivalently in terms of the v,’s (defined by (1.8)), that

YE = Y 1Yms1 > 0 (m=1,2,3,...). (1.10)
In [6] (see also [8, 9] for related results), we established (1.9), and in this
paper we use (1.9) to establish analogous results (cf. Theorem 2.7) for the
Jensen polynomials (defined in Section 2) associated with F.(x) = 2&(x),
where F.(x) has the integral representation (cf. [9])

F(x) = [ cosh(sx)®(s) dr. (1.11)

We begin Section 2 with a review of the properties of Jensen and Appell
polynomials associated with real entire functions (Proposition 2.1). These
polynomials are then used to characterize functions in the Laguerre—Polya
class (Theorem 2.4). In addition to these real-variable results, we establish
some refinements of known complex-variable characterizations of func-
tions in the Laguerre-Pélya class (cf. Theorems 2.9, 2.10, and 2.12), and
we then apply these theorems (cf. Corollaries 2.11 and 2.13) to the
function

F(x)=2" —;—g(%) - fwweix’CI)(z) dr. (1.12)

In Section 3, we examine the distribution of zeros of real entire
functions related to F(x) (cf. (1.12)). In particular, we prove certain
convexity results (cf. Theorem 3.4) when the kernel ®(7) in (1.12) is
replaced by

o0

()= Y aft) (i=123,...), (1.13)

n=j+1

where a,(t) (n = 1,2,3,....) is defined by (1.3). These results enable us to
give a simple, new geometric interpretation of the question of when F(x)
has only real zeros. We also show that the Fourier cosine integral of ®(¢)
on the interval [0, 0.11] has only real zeros (cf. Theorem 3.6). Finally, in
Section 3 we state three open problems concerning the distribution of the
zeros of the Fourier cosine transforms of a,(¢) and of ®(¢).

In the subsequent sections, we repeatedly make use of several known
properties of the kernel ®(¢), defined by (1.2). For the reader’s conve-
nience, we state the following theorem which summarizes some of the
known properties of ®(¢) (cf. Theorem A in [6, 8]).
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THEOREM A. The functions ®(¢) and a,(t) (n = 1,2,3,...), defined by
(1.2) and (1.3), respectively, satisfy the following properties:

(1) for each n > 1, a,(¢) > 0 for all t > 0, so that ®(¢) > 0 for all
t >0

(i) D(z) is analytic in the strip —w/8 <Imz < 7w /8;
(iii) ®(t) is an even function, so that ®C"*0) =0 (m = 0,1,2,...);
Giv) forany € > 0,lim,_, ®"(t)expl(m — e)e* ] =0(n = 0,1,2,...);
W) ®'(¢t) <0 forallt>0;
vi) a)(t) <O forallt = 0, for each n = 2,3,4,...;
(Vi) the function log (V1) is strictly concave for 0 < t < oo

2. JenseN PoLyNOMIALS: NECESSARY AND SUFFICIENT CONDITIONS

There are basically two types of characterizations of functions in the
Laguerre—Poélya class: real-variable and complex-variable characteriza-
tions. The real-variable characterizations usually depend on the behavior,
on the real axis, of real polynomials (such as the Jensen polynomials
of (2.2) below), which are used to approximate the functions in the
Laguerre—Pdlya class. Since some of the necessary and sufficient condi-
tions for F(x), defined by (1.12), to belong to the Laguerre—Pdlya class,
will be expressed in terms of Jensen polynomials, we will first state and
establish in this section several properties of these polynomials. In con-
trast, we will see in the sequel that the complex-variable characterizations
of functions f(x) in the Laguerre—Pdlya class require information con-
cerning the behavior of f(x) in the entire complex plane.

If

o

Yk
f(x) = T st (2.1)
k=0 %"
is a real entire function, so that y, € Rfor k = 0,1,2,..., then we define

the nth Jensen polynomial associated with f(x) by

o) =80 = X (Fht (n=012.). (2)

k=0

The nth Jensen polynomial associated with the derivative f(x) for
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p=0,1,2,..., wil be denoted by

n

n
8n o (D) =80, (1) = X (f Jrest®  (mp=0,1,2,..0),
k=0

8 o(t) = g,(1). (2.3)

The nth Appell polynomial associated with f(x), if y, # 0, is defined by
1,
P(t) = P,(t;f) = o h> (k)ykt”‘k (n=0,1,2,...). (2.4)
C k=0

In particular, if y, # 0, and if
gx(t) =1"g,(t7Y)  (t#0;n=1,2,3,...), (2.5)
then P(1) = (1/nD)g>(1).
Some of the properties of these polynomials are summarized in the
following proposition. (The reader will observe that the properties listed in

Proposition 2.1 do not depend on f(z) having only real coefficients y, in

2.1,
ProrosiTion 2.1.  With (2.1)—(2.5), the following properties hold:

@D ifyg+=0,P()=P,_()(teRn=12...)
(ii) the sequence {g,(¢)Y:_, is generated by e*f(xt), i.e.,

0 xn
ef(xt) = ¥ g ()= (xteR), (2.:6)
a0 n!
while, if v, # 0, the sequence {n\P ()):_, is generated by e*'f(x), i.e.,

ef(x) = Y P(1)x" ig,j“(z)% (x,t€R); (2.7
n=0 n=0 '

(iii) the polynomials {g,(0)):_, satisfy
ng,(t) =ng, (1) +1g;(t) (t€Rn=123,..); (28)
(iv) the polynomials {g, ()} (n,p =0,1,2,...) satisfy

g,,H’P(t) =g, (1) + tgn’pﬂ(t) (teR;n,p=0,1,2,...); (2.9)
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™ if
An,p(t) = An,p(t;f) = gr%,p(t) - gnvl,p(t)gn-}-l,p(t)
(n=1,2,3,...;p=0,1,2,...), (2.10)
then

A, (1) = 12[83—1,p+1(f) - gn—l,p(t)gn—l,p+2(t)] . (2.11)

Proof. Direct verification yields (1)~(iv) (for (i) and (iii) see, for exam-
ple, Rainville [25, p. 133] and Rota [26]). To prove (v), we use (2.9) in the
form

gn,p(t) =gn—1,p(t) + tgn—l,p+1(t)' (2.12)
Substituting (2.9) and (2.12) into (2.10) and then using (2.9) in the form
8, () = 8n—1, () + 18,1 . (1), yields
A, (1) = tzgr%fl,p—%l(t) + 18,1 ()81, pai(t) — 18,1 (1) & psa(1)
=1%g7_ (1) + tgnfl,p(t)[gnﬁl,p%»l(t) _gn,p+1(t)]'

Since by (2.9), g, ,+ () — &, ,+1() = —tg,_; ,.,(t), we obtain

An,p(t) = tZ[gr%—-l,p-kl(t) - gn—l,p(t)gn—l,p+2(t)] H
the desired result of (2.11). O

The following two known propositions provide a characterization of the
functions in the Laguerre—Pdlya class in terms of the Turdn differences
A, (1), defined by (2.10). For simplicity, in the sequel we will adopt also
the following notation:

A (1) = A, (1) =4, o(t; )
=g2(t) — g, (g (1)  (n=1,2,3,...). (2.13)

Prorosition 2.2 [4, 10, 23].  Suppose that the real entire function f(x),
defined by (2.1) with v, # 0, is in the Laguerre-Pdlya class. Let g,(1), P(t),
and A, (t) denote the associated Jensen polynomials, Appell polynomials, and
Turdn differences (cf. (2.2), (2.4), (2.10), and (2.13)). Then

g(t),P(t)eL—% (n=0,1,2,...), (2.14)
and for each real t, either

A()>0(n=1,2,3,...) or A(t)=0(n=12,3,..).
(2.15)
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Prorosition 2.3 [5, 10, 21, Let f(x) be a real entire function defined by
(2.1) with yy # 0. If

Vi 1Yes1 <0 whenever v, = 0 (k = 1,2,3,...), (2.16)

and if (2.15) holds, then f(x) € £ — P. Moreover, if f(x) has infinitely
many zeros, then a necessary and sufficient condition for f(x) to be in the
Laguerre~Polya class is that

At) =g2(t) —g,_(1)g,,(t) >0 (teR—-{0};n=1,2,3,...).
(2.17)

Remarks. Consider first the particular even polynomial f(x) =1 —
10x? + x5, A straightforward (but lengthy) calculation shows that, for all
n=123...,

A(t;f)>0(rerR—{0}) and A (0;f) =0,

so that (2.15) is valid for f(x). However, because f(x) has two nonreal
zeros, then f(x) & £~ &, and, from the first part of PrOpOSlthH 2.3, it is
evident that (2.16) must fail. Indeed, (2.16) fails for f(x), since y, = 0 and
Yi—1Yes1 = 0 for k=3, 4, and 5. This shows that the first part of
Proposition 2.3 is false if condition (2.16) is omitted. Continuing, in terms
of the polynomials g*(¢) and P(t) (cf. (2.4) and (2.5)), inequality (2.17)
becomes

A%(1) =124, Y) = (g5(1))" = g (1) g (1) (2.18)
= (n+1)!n~1)! ———sz P, (P, ()] >0
(teR;n=1,2,3,...). (2.19)

Pélya’s result [21, p. 24] asserts, in particular, that if the real entire
function f(x) is not of the form e?*Q(x), where B € R and O(x) is a real
polynomial, then f(x) € “— & if and only if (2.19) holds.

Preliminaries aside, we now proceed to relate the foregoing results to
the entire functions

F(x) = [ (1) dr (2.20)

and

F(x) = [ cosh(1/x)®(2) dr, (2.21)
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where ®(t) is defined by (1.2). (For results pertaining to the Taylor
coefficients of these real entire functions, see [6, 8, 9].)

THEOREM 2.4. Consider the real entire function F(x) defined by (2.20),
where the kernel ®(t) is given by (1.2). Set

enn(@) = [ (i)"(a+i)"0(t)dt (@ Bim,n=01,2...).
(222)

Then, F(x) € ./~ & if and only if the moments c,, ,(a) in (2.22) satisfy the
Turdn inequalities

L(a) = Clz,n~1(0‘) —Copila@)ey ,,1(a) >0
(e €Rin=1,2,3,...). (2.23)

Proof.  Since, by Theorem A, ®(¢) is an even function, an easy verifica-
tion shows that c,, ,(«) is real for all « € R and for all m,n = 0,1,2,....
Now by (2.7) of Proposition 2.1, the sequence {g*(a)};_, is generated by
Z gi(a)

e*F(x) = ,Eo Y (a €R)

fw e TIDXD(t) dr.

Consequently, from this last integral we infer that g*(a) has the represen-
tation

gi(@) = [ (a+i)o(r) dr, (2.24)

so that from (2.22),
gF(a) =cy (a) (aeR;n=0,1,2,...). (2.25)

Next, with (2.22) we can directly represent I (a) of (2.23) as the double
integral

I(a) = ]jwfjwfb(s)q)(t)(a i) e + i) e — st] deds.

As interchanging the roles of s and ¢ in the above integral clearly leaves
I(a) unchanged, then

I(a) = fj:fj:@(t)(l)(s)(a i) N+ )" s = o) ds,
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and averaging the above two expressions yields

I(a) = %fj:fj:@(ﬂ@(t)(a +is)" Na +it)" (s — 1) deds
(aeR;n=1,2,3,...). (2.26)

In a completely similar fashion, it is easily seen from (2.25) and (2.22) that
((gx(a))? — g* (a)g*, (@) has the same integral representation as I (a)
in (2.26), whence

In(a) = (gr;k(a))z _gn*fl(a)gr;ﬁl(a) (0{ € R; n= 1’2>37“')~
(2.27)

Since it is known (cf. Hardy [11] or Pélya [19]) that F(x) has an infinite
number of real zeros, it follows from (2.17) of Proposition 2.3, (2.18), and
(2.27) that I (a) > 0(a € Ry n = 1,2,3,...)ifand only if F(x) € £~ 2.

O

Remarks. The significance of Theorem 2.4 is further underscored when
it is expressed in terms of Pdlya’s universal factors (cf. [20 or 22]). We
recall that an entire function f(it) is a wuniversal factor if the entire
function

fmweiz’f(it)go(t) dt

has only real zeros, whenever the zeros of the Fourier transform

[ e™o(t) dt
are all real, where ¢(?): g% — R is integrable over R, o(¢) = o(—1) for all
t € Rand ¢(t) = O(e™ ™) for some & > 0, as ¢ — =+ . Now, Pélya [20]
has shown that f(ir) is a universal factor if and only if f(z) € /— Z.
Therefore, since

h(x) =h(x;a)=(x+a)" (a€R;n=0,1,2,...), (2.28)

isin £~ &, then h,(it) = h,(it; a) is a universal factor for each a« € R
and each n = 0,1,2,... . Moreover, if we apply the differential operator
h,(D) = (D + a)", D ==d/dx, to F(x) defined by (2.20), then

H,(x) = H,(x;@) = h(D)F(x) = [ e (a+it)"®(r) dr, (2:29)

—



NECESSARY AND SUFFICIENT CONDITIONS 337

where the differentiation under the integral sign can be readily justified by
virtue of the properties of ®(¢) (cf. Theorem A). But then H (0) = g,j‘(a)
(cf. (2.24)) and, consequently, Theorem 2.4 states that the moments in
(2.22), corresponding to the universal factors h,(it; ) (n =0,1,2,...),
satisfy the Turan inequalities (2.23).

The interest in the applications of universal factors stems, in part, from
the fact that it is known (cf. Brul]n [3] or Newman [16]) that if we apply the
universal factors f,(it) == e (A >0) and h Wit) = cosh(ut) (p € R) to
F(x) of (2.20), then the functions

F(x) ==f XAy di (A= 1) (2.30)

and -
Hy(x) = [ e cosh(u)®(r)dt  (u21) (2.31)

— 0

belong to the Laguerre—Poélya class for the indicated values of A and u. In
the case when A is negative, it was proved in [7] that F,(x) has nonreal
zeros for A < —50, so that F(x) & ./ — & for A < —50.

Now, the above remarks, together with (2.14) of Proposition 2.2, imply
that the Jensen polynomials associated with F,(x), for A > 3, and with
H#(x), for u > 1, all have only real zeros. Therefore, using the properties
of ®(¢), the generating relation (2.6), and the fact that Re(1 + ixt)" =
(1 + x%t»)"? cos(n tan~'(xt)) (n = 0,1,2,...), we directly obtain the fol-
lowing proposition.

ProposITION 2.5.  The Jensen polynomials g,(x; F,) and g,(x; H,), asso-
ciated with F\(x) (cf. (2.30)) and H,(x) (cf. (2.31)), respectively, have the
following representations:

g,(x; F) = 2fw(1 +xztz)n/ze“@(t)cos(ntan’l(xt)) dt
0
(AeRn=0,1,2,...), (232)
and
g.(x; H,) = wa(l - xztz)"/zcosh(,ut)CD(t)cos(n tan~'(xt)) dt
0
(peRn=01,2,...). (233)

Moreover, g.x; F\) and g (x; H,) (n = 0,1,2,...) have only real zeros for
A > 3 and u = 1, respectively.
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Since, for fixed real numbers A and u, the entire functions F,(x) and
H,(x) are even entire functions of order one, it follows from the Hadamard
factorlzatlon theorem that F(x) and H,(x) each have infinitely many
zeros. Therefore, since g,(x; F,) of (2.32) is even in x, then by Proposition
2.3, for each fixed A, F(x) € j — & if and only if the Jensen polynomi-
als, g,(x; F,) (cf. (2.32)), associated with F)(x), satisfy the Turan inequality
(2.17) for all x>0 and all n=1,2,3,.... Similarly, for each fixed
w, H(x) € /= & if and only if the Jensen polynomials g,(x; H,) (cf.
. 33)) associated with H (x), satisfy the Turdn inequality (2.17) for all
x>0andalln =1,2,3,.

We next consider the function F.(x) (cf. (2.21)) and observe, in contrast
with the previous paragraph, that its associated Jenmsen polynomials
g(x; F), are not even polynomials. However, we will prove that the
polynomials g,(x; F.) satisfy the Turdn inequality (2.17) for all x > 0 and
all n =1,2,3,... . To this end, we consider

Fi(x) =2 i e at, (2.34)

where
k!

P N * 2k _
v, = (zk)!bk and b, [0: d(t)dr  (k=0,1,2,...),

(2.35)

and we first establish a relationship between the Turdn differences

T, = Vi~ Yo Yiar (k=1,2,3,...) (2.36)
and : |
A, (1) =82 () =gy 1 (1) 8niy (1) (teR;yn=1,2,3,...),
(2.37)
where

n

g, () = % (Z)'yk+ptk (teRin=0,1,2,...). (2.38)
k=0

The fact that T, > 0 (k = 1,2,3,...) is a necessary condition for A (1) =
A, o(t) >0, for all t € R —{0} and n =1,2,3,... to hold, is a conse-
quence of the following direct calculations: If

2n
A(t) = Y d(m)tk  (teRn=1,2.3,...),
=72 .
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then
don(n) = ¥ = Vuo1¥nr1s
dap—1(n) = (1 = D) (Yp1¥n = Yn-2Yns1)>
dy(n) =i = yova- (2.39)
In addition, if T, > 0 (k = 1,2,3,...), then, since (cf. (2.39) and (2.36))
2n—1
A1)y =Tu*+ Y, di(n)th+ T " (n=2,3,4,...),
k=3

it is evident that, for each n > 1, there are positive constants M, =
M(n,vg, ¥1s -5 v, and w,, = uwln, yg, vy, ..., 7,) with 0 < p,, < M, such
that

Aty >0 foralltes,, (2.40)
where
Sn :=(_““n70) U(O,,LLn) U(——oo,——Mn) U(Mn,oo), (241)

Lemma 2.6, Let f(x) == L5_(y,/kDx* denote a real entire function
and let g, () (n,p =0,1,2,...) denote the Jensen polynomials associated
with fP(x) (p = 0,1,2,...). If

T =% = Yeevee > 0 (k=1,2,3,...) and if
ve>0(k=0,1,2,...), (242)
then the Turan differences, evaluated at t = 1, satisfy
An,p(l) = gr%,p(l) - gn—l,p(l)gn+1,p(1) >0
(n=1,2,3,...;p=0,1,2,...). (243)

Proof. We will prove (2.43) by induction on n. For n =1 and p =
0,1,2,..., we have from (2.38) that

Al,p(l) =g12,p(1) - gU,p(l)gz,p(l) = 7p2+1 ~ Yo Yp+2 = Tp+1 > 0.
(2.44)

Forn=2and p=0,1,2,...,

AZ,p(l) = gzz,p(l) - gl,p(l)g3,p(1)
= ];)+1 + Tp+2 + (')’p+17p+2 - 7p')'p+3) >07 (2‘45)
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where the hypotheses of (2.42) imply that 7, ., > 0 and 7,,, > 0, as well
as

Y,
Yp+1 > ’YP+2 S p+3’ (2.46)

’Yp yp+1 yp+2

whence, on cross-multiplying, v, 1¥,+2 — ¥,%,+3 > 0. Next, we assume
that

Ay ,(1)>0  fork=1,2,...,nand p=0,1,2,.... (2.47)
Then by (2.11) of Proposition 2.1 and the induction assumption (2.47),

An,p(]‘) zgsfl,p'kl(l) _gn—l,p(l)gn_lJp+2(1) >0
(p=0,1,2,...), (2.48)

and, since (from (2.38)) the positivity of the y,’s implies g, ,(1) > 0 for all
p=0,1,2,..., then (2.48) yields

gn—l,p+1(1) gn~1,p+2(1) gn—l,p+3(1)
gn—l,p(l) gn—l,p+1(l) gn~1,p+2(1)

(p=0,1,2...).

(2.49)

Using the induction assumption (2.47), we will show that
Apir,(D>0  (p=0,1,2,...). (2.50)
Let p be a fixed, but arbitrary, nonnegative integer. Then by (2.11),

An+1,p(1) = gr%,p-&—l(l) - gn,p(l)gn,p+2(1)’ (251)
and by (2.9),
gn,p(l) =gn—1,p(1) +gn71,p+l(1)‘ (252)

Thus, if we apply (2.52) to each of the three terms on the right of (2.51),
then after some simplifications, (2.51) becomes

A‘n+1,p(1) = An,p(l) + An,p+1(l) +gn-—1,p+1(1)gn—l,p+2(1)
- gn—l,p(l)gn—l,p+3(]')‘ (2.53)

Therefore it follows from (2.47) and (2.49) that A, | p(l) > 0 for any
=0,1,2,..., which completes the induction. O
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We remark that if t, >0, if ¢, >0 (k=0,1,2,...), and if af —
o, 0y, > 0(k=1,2,3,...), then with y, = tfa,, it follows that

YE = Vi 1Visr = 105(f — gy 1) > 0 (k=1,2,3,...). (2.54)
Therefore, using Lemma 2.6 and (2.54), we obtain the following theorem.

TueoreM 2.7. Let f(x) = T5_(y,./kDx* denote a real entire function
and let g, (1) (n,p =0,1,2,...) denote the Jensen polynomials associated
with fP(x) (p =0,1,2,...). If (2.42) holds, then the Turdn differences
satisfy

An,p(t) = gr%,p(t) - gn—l,p(t)gn+1,p(t) >0
(t>0;,n=1,2,3,...;p=0,1,2,...). (2.55)

As an application of Theorem 2.7 and Theorem A, we have

THeorEM 2.8. Set

Y
F.x) =23 “Exk, (2.56)
k-0 k!
where
ko 7 © 2k
o mbk and b, :=/0t o(t)dt  (k=0,1,2,...).
(2.57)
Then,
An,p(t) = An,p(t;Fc) =g3,p(t) _gnfl,p(t)gn%»l,p(t) >0
(t>0;n=1,2,3,...;p=0,1,2,...), (2.58)
where

" n
gn,p(t) = gn,p(t;Fc) = 2 E (k)7k+ptk
k=0
(n=0,1,2,...;p=0,1,2,...). (2.59)

Proof. By Theorem A, log(®(y?)) is strictly concave for 0 < ¢ < o.
Hence, it follows from a known result (cf. [8]) that

o [(2k—1Y\,
(be)” — (2k+1)bk_lbk+l>0 (k=1,2,3,...).
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But from (2.57), the above inequalities are equivalent to yZ — y,_ ¥5s1 >
0 (k=1,2,3,...). In addition, since ®(¢) > 0 for all € R, then y, > 0
(k=10,1,2,...), and so (2.42) holds. Therefore, (2.58) is an immediate
consequence of Theorem 2.7. O

Remarks. Since F(x) is an entire function of order 1 (cf. Section 1), it
follows that F,(x) is of order 4+ and thus has an infinite number of zeros.
Hence by Proposition 2.3, a necessary and sufficient condition for F.(x) to
be in the Laguerre-Pdlya class is that the Turdn inequalities hold:

2
(gn,p(t;Fc)) _gn——l,p(t;Fc)ng—l,p(t;Fc) >0
(teR-{0};n=1,2,3,...;p=0,1,2,...),  (2.60)

where g, (t; F,) is defined by (2.59). In light of this, the importance of
Theorem 2.8 stems from the fact that it establishes that the Turin
inequalities of (2.60) hold for the Jensen polynomials associated with
F.(x), for all t > 0. (We note that if (2.60) holds for all real ¢t # 0, then by
Proposition 2.3, F.(x) € .#— & and, as noted in Section 1, this is equiva-
lent to the truth of the Riemann hypothesis!)

We also remark that by (2.57) we have the following integral representa-
tion for the Jensen polynomials g,(¢; F.):

gt F) = 2[ G()@(s)ds  (r€Rsn=0,1,2,...), (261)
4}
where

oy k!
G = —* Rin=0,1,2,...). (2.62
()= L) gt ek ). (262)

Moreover, the polynomials G,(s) of (2.62) are the Jensen polynomials
associated with the particular Mittag—Leffler function E,(x), defined by

oo k

Ey(x) = kgo (2k)! "

Since it is known that E,(x) is in — & and that E,(x) has infinitely
many zeros (cf. Pélya [18]), G,(s) has only real (negative) zeros (cf.
Proposition 2.2), and by Proposition 2.3, the Turan inequalities, namely

(2.63)

GiHs) —G,_(s)G, . (s) >0 (seR-{0};n=1,2,3,...),
(2.64)
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are satisfied. Combining the foregoing results, we have by Proposition 2.3,
(2.61), and Theorem 2.8, that F.(x) € #— & if and only if
[ [ o()0(0)[G(x)G,(x5?) = G, (x7)G,, (x57)] deds > 0
070

(x<0;n=1,2,3,...). (2.65)

(For related results, see also [9].)

We next turn to the extensions and applications of some known results
pertaining to the complex-variable characterizations of functions in the
Laguerre—Pdlya class.

Tueorem 2.9 [14, 15, 21].  Let

f(z) =e *f(z)  (a=0,f(z) #0), (2.66)

where f|(z) is a real entire function of genus 0 or 1. Set

- (=D 12, Kk 20—k
Lf0) = B =i (F oo

(xeR;n=0,1,2,...). (2.67)
Then, f(2) € £ — & if and only if
L(f(x))>0 (xeRin=012,.) (268

Proof. Since f(z) is a real entire function, the Taylor series expansion
of |f(2)]? (z :==x + iy; x,y € R), with respect to y, about the origin, has
the form

F(DP =flx+ ) f(x —iy) = 1 4,(x)y*  (x,yER), (2.69)
n=4{
where, by direct verification, A4,(x) = L,(f(x)) of (2.67) for all x € R and
n=20,1,2,.... In [15], Patrick proved that if f(z) € ./~ %, then (2.68)
holds.
Conversely, assume that (2.68) holds, i.e., A,(x) = 0 for all x € R and

n=20,1,2,... . Suppose that z, = x, + iy, is a nonreal zero of f(z), so
that by (2.69),

0= 1f(z)P = T Ay(xg)y3". (2.70)
n=0

As y, # 0 and as A4,(xy) > 0, it follows from (2.70) that A4,(x,) = 0 for
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all n =0,1,2,..., and thus, for anyy € R,
0=[f(xg+)>= 2 A,(x0)y*". (2.71)
n=0

But, as f(z) is a real entire function, (2.71) implies that f(z) = 0, which
contradicts (2.66). Thus if (2.68) holds, then all zeros of f(z) are real, and
hence, f(z) € £— Z. O

Remarks. Since £— & is closed under differentiation (cf. Obreschkoff
[17]), then as a consequence of Theorem 2.9, the function f(z) defined by
(2.66) is in #— & if and only if (cf. (2.67))

L(f®"(x))=0 (x€R;n=0,1,2,...;p=0,1,2,...). (2.72)

In particular, if we apply the result (2.72) to the function F(x) of (2.20),
we obtain, after some calculations, that F(x) € '~ & if and only if

-1 14 - -
((Zn))! I ROKIOLE)

~cos(x(t + s))(s — t)*" dtds = 0
(xeR;n,p=0,1,2,...). (2.73)

L,(FP(x)) =

An elegant characterization of functions in the Laguerre-Pdlya class is
contained in the following theorem essentially due to Jensen [14].

Tueorem 2.10 [14].  Let f(z) be the real entire function defined by (2.66).
Then, f(z) € £ — P if and only if

If(2)]> = Re{f(2)(2)}  forallz €C. (2.74)

Proof. Suppose f(z) € £— . Then as in the proof of Theorem 2.8
(cf. (2.69)) with A (x) = L,(f(x)), we have

)= L L)y (nyeR). (275
n=>0

Moreover, from Theorem 2.9, L, (f(x)) >0 for all x€ R and n =
0,1,2,.... Hence,

2

a o]
Wlf(x +iy)] = 2}0(2’1 +2)(2n + DL, ((f(x))y* =0

(r,y€R). (276)
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But a computation shows that

62

a—yzlf(x +)|? =21 (2)]” — 2Re{ f(2)f"(2)}. (2.77)

Thus, (2.76) and (2.77) establish (2.74).
Conversely, suppose (2.74) holds. Let z, = x, + iy, be a zero of f(2),
so that f(x, + iyy) = 0. Let

M(y;x,) =|f(xo + ) (v €R). (2.78)

Clearly, M(y; x,) > 0 for all y € R, and M(y; x,) is an even function of
y. Furthermore, by (2.74) and (2.77), (6% /dy*>)M(y; x,) = 0 for all y € R,
so that M(y; x,) is a convex even function of y. Consequently, since
f(z) # 0 from (2.66), then M(y; x,) has a unique minimum, which must
occur for y = 0. Since f(x, + iy,) = 0, we conclude that y, = 0. There-
fore, we have proved that any zero of f(z) of the form (2.66) must be real,
and hence, f(z) e /- #. O

If we apply condition (2.74) of Theorem 2.10 to the function F(z) of
(2.20), then using the double integral method of the proof of Theorem 2.4
gives a double integral condition (2.79') which is an even as a function of x
and even as a function of y (where z = x + iy). Thus, for this application
of Theorem 2.10, it suffices to restrict z = x + iy to the first quadrant, and
we have the following corollary (cf. Pélya [21]).

CoroLLARY 2.11. The function F(x) defined by (220) is in the
Laguerre—Pélya class if and only if

I(x,y;®) >0  forallx,y > 0, (2.79)
where

kel

I(x,v;@) = [ f:@(s)@(t){(s +1)2 cos(x(s — #))cosh(y(s + 1))

+(s —t)* cos(x(s + £))cosh( y(s — t))}deds.  (2.79)

Remark. Note that if we replace ®(¢) by ¥(¢) :== ®(¢)cosh ¢, then as in
the discussion of (2.31),

I{x,y;¥) =0 for all x,y > 0. (2.80)

The next theorem provides a new and particularly SImple charactenza—
tion of the functions in the Laguerre—Pdlya class.
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TueOREM 2.12.  Let f(z) be an entire function of the form
f(z2) = Ce e Pz [T (1 — z/z)e”/* (0 <), (2.81)
k=1

where a > 0,C and B are real numbers, n is a nonnegative integer, and the
z,’s are nonzero with Y¢_, |z,|7% < o, and the zeros {z;};_, of f(z) are
counted according to multiplicity and are arranged so that 0 <|z;| <
|zl <+ . Then, f(z) € £ — & if and only if

%Im{ —f(2)f(2)} =20  forallz==x+iyC,y #0. (2.82)

- Proof. Setting z, =x, + iy, (k=1,2,3,...) and z =x + iy, then for
y # 0 and z # z,, a straightforward calculation yields that
f(2) } ) 1
f(2) yIf(2)1?
- L =ye/y Yi/y
= + 2 2 2 T 3 2
x? +y i\ (x=x )"+ (y —y)” Xt Xk

1
R(z) = ;Im{— m{ —f()F (@)

n

}, (2.83)

where, in case w = oo, the uniform and absolute convergence of the series,
on compact subsets S of C with 0 & S and z, &€ S (k = 1,2,3,...), follows
from (2.81). Now, if f(z) € /— Z, then y, =0 (k=1,2,3,...) and
(2.82) then holds.

Conversely, suppose that (2.82) holds. We will show that the assumption
that Im z, =y, # 0 for some (positive integer) &, leads to a contradiction.
Without loss of generality, we may assume that y; # 0 and that the zero
z, = x, + iy, is simple, since the argument in the case when the multiplic-
ity of z, is greater than one is, mutatis mutandis, the same as the following
argument. Indeed, with y, #+ 0, set z(e) =x, + iy (1 — &), where 0 <e¢
< 1 and ¢ is sufficiently small. Then, by (2.83), we have

n 1

R(z(e)) = Y ry(-ey oii-9
T + 5,(2(¢)), (2.84)
where
S,(z(¢)) = Z 1 —y/[v(1 = ¢)] . o/ [vi(1 = )]

k=2 (x1“xk) +[Y1(1‘5)‘")’k] x,%+y,§
(2.85)
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Thus, for ¢ > 0 sufficiently small, the sum in (2.84) will be negative, which
contradicts (2.82). Hence, Im z, = y, = 0, and therefore, f(z) € £ — Z.
O

Remark. 1t is also possible to give a geometric interpretation of condi-

tion (2.82). To see this, we first note that (2.82) can be written as
L L )P = S~ () 2 0
— —\f(2)|"= —Im{—f'(2)f(2)} =
2y dy y

(z=x+iyeC;y+0). (2.86)

m(y;x) =

Thus, we see that for each fixed x € R, |f(x + iy)|?, as a function of y, is
nondecreasing for y > 0 and is nonincreasing for y < 0, and so |f(x + iy)|?
attains its minimum only for y = 0, unless f(z) = C in (2.81).

Applying condition (2.82) of Theorem 2.12 to the function F(z) of (2.20)
similarly yields the following corollary (by means of the double integral
method previously employed).

CoroLLarRY 2.13. The function F(x) defined by (2.20) is in the
Laguerre—Pélya class if and only if
[ [ o(s)®(0){(1 = s)cos(x(r + 5))sinh( y(r — 5))
0“0
+(t + s)cos(x(z — s))sinh(y(z + 5))} dtds = 0
(2.87)

forally > 0 and x > 0.

Remark. Since the Jacobian of the transformation (¢, s) — (u,v) de-
fined by 2u ==t + s and 2v =t — s, is nonzero, inequality (2.87) can be
cast in the following equivalent form:

Q(u+0v)P(u —v)
<lv|<u

{v cos(2xu)sinh(2yv) + u cos(2xv)sinh(2yu)} dudv > 0 (2.88)

for all y > 0 and x > 0.

3. NEw PROPERTIES OF (IDj(t): ScuHOoLIA AND OPEN PROBLEMS

The purpose of this section is twofold. First, we establish some results
concerning the distribution of zeros of functions related to the real entire
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function
F(x;®) = [ ®(1)cos(t) dt. (3.1)
0

We prove results when the transform (3.1) is replaced by the Fourier sine
transform of @®(¢z) and when the kernel ®(¢) is replaced by t®(t) (cf.
Proposition 3.1) or by the related function ®,(¢), where ®,(¢) is defined by
(3.11). In particular, we prove, for all posmve mtegers 7 that the Fourier
cosine transform of ®,(¢) is positive on the real axis (cf. Theorem 2.4) and
that ®,(¢) is convex for all ¢ > 0 (cf. (3.24)). These considerations lead us
to some interesting geometric interpretations concerning the zeros of
F(x;®). In addition, by altering the interval of integration, we prove that
the Fourier cosine integral of ®(s) on [0,0.11] is a function in the
Laguerre-Polya class.

Second, we state in this section three open problems which are of
independent interest and which may shed light on the nature of the
distribution of zeros of F(x;®) in (3.1). In particular, Open Problem 3
appears to be tractable in light of the author’s recent investigations
(cf. [8, 9D.

ProrosiTion 3.1.  Set

fi(x) = /()wCD(t)sin(xt) dt  (xeR), (3.2)

where

B(1) = ¥ a(1)

n=1

and
a,(t) = mn*(2wn’e* — 3)exp(5t — wn’e™)
(teR;n=1,23,...). (3.3)
Then, the following assertions hold:

(@) Forx, € R, f((x,) = 0 if and only if x, = 0.
(b) The function

Fi(x) = /Oootcb(t)cos(xt) dr (3.4)

cannot have an infinite number of zeros in any horizontal strip of the form

S(r)y ={z=x+iyeC: |y <7} (r>0). (3.5)
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In particular, f{(x) has an infinite number of nonreal zeros and at most a
finite number of real zeros.

Proof. (a) By virtue of the properties of ®(¢) (cf. Theorem A), we find
from (3.2), using integration by parts, that for x # 0,

xfi(x) = D(0) + [ P'(t)cos(xt) dt. (3.6)
0
Since ®'(¢) < 0 for r > 0 (cf. Theorem A), it follows that, for x # 0,
3fi(x) > ©(0) + [ () di = B(0) — B(0) = 0.
0

Thus, f,(x) # 0if x # 0. Also, as it is clear from (3.2) that f,(0) = 0, then
(a) is established.

(b) Fix 7 > 0 and suppose that f/(x) has an infinite number of zeros,
say {z, )%, in S(7), with lim, _, , z, = o. Then, three integrations by parts
applied to the integral for f{(z) in (3.4) yield

22 f/(z) = —®(0) + ;]j[%;(ﬂb(t))}sin(zt) dt (z+0). (3.7

Since [sin(z2)| < e™ for all z € S(7) and all ¢ > 0, it follows from Theorem
A that the integral on the right-hand side of (3.7) tends to zero as z tends
to infinity in the strip S(7). But f/(z,) = 0 (k = 1,2,3,...) and so

klim zZif{(z,) = 0= —®(0). (3.8)

But as ®(0) > 0.466 696. .. (cf. [6, Lemma 3.6)), this contradiction to (3.8)
shows that f{(x) cannot have an infinite number of zeros in S(7).

Finally, it is evident from (3.4) that f{(z) is an even entire function, and
it is not difficult to prove that f{(z) is an entire function of order 1.
(Minor modifications of the proof in Appendix A of [7] will justify this
assertion.) Hence, it follows from the Hadamard factorization theorem
that f{(z) has an infinite number of zeros. Since f{(z) can have at most a
finite number of zeros in §(7), for any = > 0, we conclude that f/(z) must
have an infinite number of nonreal zeros. O

A result which is more general than the first assertion of Proposition
3.1(b) is given by the following theorem, due to Pélya [21].

TreoreM 3.2 [21]. Let K: R, — R, be a C” function such that
lims log|K™W(t)|= -  (n=0,1,2,...). (3.9)
t— :
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If the entire function
f(z:K) = [ K(r)cos(z) di (3.10)
0
has an infinite number of zeros in the strip S(t) (cf. 3.5)), then K(t) is an

even function.

In the sequel, we will also require the notation

=]

@)= Y alt) (i=123..), (3.11)

n=j+1

where a,(¢) is given by (3.3). (Our notations here are consistent with the
notations used in [6, 8.) Now, it is easy to see that the functions a,(t)
(n=1,23,...)and () (j = 1,2,3,. ..) are not even functions. Conse-
quently, by the foregoing results, each of the entire functions

F(xa,) = [ a 0cos(x)dr  (n=123,...) (3.12)
0
and
F(x; @)= [ ®(0cos(x) de (j=1,23,...)  (3.13)
0

is an even entire function (of order 1) with an infinite number of nonreal
zeros, and each has at most a finite number of real zeros. But as we shall
see below, more precise information can be obtained by a careful analysis
of the functions a,(t) and ®;(¢). In fact, in light of the results in Section 2,
one is interested in conditions which ensure that the more general func-
tions, of the form

H, (x) = fo @,(r)cosh(ut)cos(xt) dt  (x,u ER;j= 1,2,3,...),
(3.14)
are nonnegative. Our analysis will use the following technical lemma.
Lemma 3.3, Set
p(y) =32y° — (16p + 224)y? + (2u® + 60u + 330)y
(G2 +30u +75)  (wyER). (3.15)
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If
o = 26.45709. .. (3.16)

is the smallest real zero of
(87 — 3)u? — (25672 — 2407 + 30)
+(2,04873 — 3,58472 + 1,320m — 75), (3.17)
then ‘
p(y) >0  forally > 4w andall 0 < p <y (3.18)
Proof.  From (3.15), it can be verified that

puls +4m) = cs(w)s” + ep(w)s? + ey(w)s +colm),  (3.19)
where
c3(p) =32,
cy(n) = (3847 — 224) — 164,
ey(p) = 2u% — (1287 — 60)u + (1,536m2 — 1,7927 + 330),
co(p) = (87 — 3)u? — (25672 — 2407 — 30)u
+(2,0487% — 3,58472 + 1,320 — 75). (3.20)

Because these coefficients ¢ (u) are at most quadratic polynomials in u,
then an elementary calculation shows that

cy(p) >0  forall0 < p < oo,

c(p) >0 forall0 < u < 61.93222...,

c(pn) >0 forall0 <pu <36.68880...,

co(p) >0  forall0<p <2645709... = py,.  (3.21)

Since the interval above associated with c,(u) is contained in all of the
other intervals of (3.21), it follows that p, (s + 47) > 0 forall 0 < pu < p,
and all s > 0, i.e.,

p(y) >0 forall y > 4 and all0 < o < g, (3.22)

the desired result of (3.18). O
Tueorem 3.4. With H, (x) defined by (3.14),
H, (x)>0 forallx e R, j=1,2,3,..., and p € [0, ny), (3.23)

where . is given by (3.16).
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Proof. We first claim that it suffices to prove that the function
®;(t)cosh(ut) (n € [0, ng); j = 1,2,3,...) is strictly convex for ¢ > 0; that
is,

d?
Ez—[cbj(t)cosh(p,t)] >0 (t=20pe[0,uy);i=1,2,3,...).
(3.24)

Indeed, if (3.24) holds, then integrating by parts twice in (3.14) yields, for
x # 0,

2

w| d
—®/(0) —j(; [F(fbj(t)cosh(ut))

cos{ xt) dt

2H“’j()c)

dt

\%

w| d?
—®/(0) _/0 [W(Qj(t)cosh(pt))

—®/(0) + D/(0) =0, (3.25)

where we have used the elementary fact (from (iv) of Theorem A) that
lim, ., ®/(t)=0 (j=1,2,3,...). Thus, (325) shows that for x # 0,
H, (x) > 0. Since ®,(¢) > 0 for all > 0 (just use the definition (3.11)
and the fact that each a,(¢) > 0 for all ¢ > 0 from (i) of Theorem A), it

follows that H, (0) > 0. Therefore, it remains to prove the convexity

condition (3.24).
First, from (iv) of Theorem A and (3.11), we note that ®/(¢) < 0 for all
t>0and j=1,2,3,... . Thus, for w > 0 and ¢ > 0, we have

2
Zﬁ[CI)f cosh(yt)] = ®/(t)cosh(ut)
+ 2p®/(t)sinh(ut) + p*®; cosh(put)
> cosh(ut) [ @7 (1) +2u®/(t) + > ®;], (3.26)

where we have used the fact that sinh(ut) < cosh(ut) for pu > 0 and
t > 0. By (3.11) and (3.26), we see that it suffices to prove that

E(t;p) = a;(t) + 2pa(1) + pla,(t) >0
(t=20;ue[0,u);n=2). (3.27)

Using the definition of a,(¢) (cf. (3.3)), we find that, with y := n%e®,

E(t;m) = (mn®) "y p(y) (n=23,...),
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where p,(y) is defined by (3.15). For n > 2, wn’e* > 4z for all ¢ > 0,
and hence it follows from Lemma 3.3 that pﬁ(wnze‘“) > (0 for all t =0,
n > 2,and u € [0, ). Hence we have the desired result that E, (¢;u) > 0
(t=20,uel0u;,n=2.0

Remarks. If u =0, then H, (x) (cf. (3.23) and (3.13)) reduces to
F(x; ®,) and Theorem 3.4 states, in particular, that

F(x;®,) = f:@l(t)cos(xt) >0 (xeR).  (3.28)

Since F(x) == F(x; ®) = F(x; a,) + F(x; ®,), the question whether or not
F(x) has only real zeros depends on the nature of the intersections of the
curves y = F(x;a,) and y = —F(x; ®,). These two curves have an infinite
number of points of intersections, since we know that F(x) has an infinite
number of real zeros (cf. Hardy [11] or Pélya [19]). Now, a numerical
computation shows that F(x; a,) has at least one real zero, since

F(28;a,) - F(29;a,) <O0. (3.29)

(Indeed, F(28;a,) = 8.887419... X 107° and F(29;a,) = —6.683033
... X 107°) The foregoing results and numerical experimentations lead
us to conjecture that the function F(x; a,) has precisely one positive (real)
zero. It is particularly interesting to apply the above analysis to the
function (cf. (2.31))

%Hu(x) = fwcb(t)cosh(ut)cos(xt) dt (xeR)
- fmal(t)cosh(/,ct)cos(xt) dt + H, (x),  (330)

since for u > 1, the function Hu(x) has only real zeros (cf. the discussion
following (2.31)). Moreover, by Theorem 3.4, H, (x) > 0 for all x € R
and all u € [0, uyl, where p, is given by (3.16).

Open Problem 3.1. Let{z,),_,, z, = x, + iy,, denote the sequence of
nonreal zeros of F(x;a;) (cf. (3.12)). For each 7 > 0, determine the
number of nonreal zeros of F(x;a,) in the strip S(7), defined by (3.5).

We next turn to the problem of the distribution of the zeros of the real
entire function

F(x;R) = [“®(r)cos(x)dt (0<R<w). (331
0 .
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Again, an analysis of the behavior of ®(¢) will show (cf. Theorem 3.6) that
F(x; R) has only real zeros if 0 < R < 0.11. In order to establish this, we
first prove a lemma which extends our previous work (cf. [8, Lemmas 3.1
and 3.2]).

Lemma 3.5. With (3.3), we have
(1) <0  forallt 1:=1[0,0.11]. (3.32)
Proof. By a known result (cf. [8, Lemma 3.1]),
|7(1)] < (1.031) - 28 - 74 - exp(17t — dme®) (£ = 0), (3.33)
and (cf. [8, Eq. (3.24)),
|D7(£)] < 2.869,080... (> 0). (3.34)

Also since aj(¢) is strictly increasing for 0 < ¢ < 0.203249 ... (cf. [8, Eq.
(3.26)]), it follows that for all ¢ € 1,

®'(1) < ay(t) + |Dy(1)] < ay(0.11) + 2.869080. ..
< —3.359151... +2.869080. ..
< —0.490071..., (3.25)

which establishes (3.32). O

THEOREM 3.6.  For each R in I, := (0,0.11), the real entire function
R
F(x;R) = [ ®(1t)cos(xt) dt, (3.36)
0

where ®(t) is defined by (3.3), has only real zeros.

Proof. 1t is clear that F(x; R) has only real zeros if and only if the
function

F(x;R) = folqaR(t)cos(xt) dt  (R>0), (3.37)

where @g(¢) = ®(Rt) (t € R), has only real zeros. But it is known (cf.
Polya—Szego [24, Chap. V, Problem 173]) that F(x; R) has only real zeros
if @g(¢)is a C? function with gg(1) > 0, (1) < 0, (1) <0for0 <¢ < 1.
By Theorem A (cf. Section 1), @g(t) > 0 and ¢x(¢) < 0 for all + > 0 and
for all R > 0. By Lemma 3.5, ¢4(t) <0 for 0 <t <1 and Re€I, =
(0,0.11]. O

We conclude this paper with two additional open problems.
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Open Problem 2. 1f f(x) is a function in the Laguerre—Pélya class, let
{h, () _, be the sequence of polynomials generated by

e f(xt) = Y hn(t)z—'. (3.38)
n=0 :

Characterize the distribution of zeros of the polynomials #,(¢) (n =
0,1,2,...).

Comments. In the theory of special functions, the polynomials £ (t) =
h,(t; e , f(x)) are called the Brenke polynomials associated with e =" and
f(x) (cf. Boas and Buck [2, p. 51]) and, in general, these polynomials are
defined as follows: Let A(x) and B(x) be two holomorphic functions
defined in a neighborhood of the origin. Then the polynomials #4,(¢) =
h,(t; A, B), generated by

© xn
A(x) - B(xt) = L hy(t 4, B) —, (3.39)
n=0 n

are the Brenke polynomials associated with the functions A(x) and B(x).
In the special case when both A(x) and B(x) are real entire functions in
the Laguerre—Polya class, and whence the product A(x)B(x) is also in
this class, the polynomials 4,(t; A, B) have been investigated in a series of
papers by Iliev and several European and Russian mathematicians. (Since
most of these papers are not available in English, we refer the reader to
Iliev’s recent book [13] and the references contained therein.) If A(x) = e*
and if B(x) is an arbitrary real entire function, then the associated Brenke
polynomials 4,(t; A, B) = g,(¢) are precisely the Jensen polynomials dis-
cussed in Section 2.

Open Problem 3. It is known from Skovgaard [27] that a necessary
condition for a real entire function f(x) to belong to the Laguerre—Pdlya
class is that f(x) satisfy the Laguerre inequalities; that is,

Ly(fP(x)) = (FP(x)) = f2D(2)f#D(x) 2 0
(xeR;p=1,23,..). (3.40)
Prove that L,(F(x)) > 0 and L(F"(x) = 0(p =1,2,3,...; x € R),
where
F(x) = [@(t)cos(xt) i and  E(x) = [ ®(t)cosh(svx) ds
0 0
(3.41)
and where ®(¢) is defined by (3.3).
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Comments. The Laguerre inequalities are closely related to the results
proved in Section 2 (cf. Theorems 2.9 and 2.10). In fact, by (2.71) we see
that (3.40) is a special case of a collection of necessary and sufficient
conditions for a function to belong to the Laguerre—Pdlya class. Similarly,
inequality (2.73) reduces to (3.40) (with p = 1), when z :==x + iy is re-
stricted to the real axis. We also remark that for x = 0, the Laguerre
inequalities

L,(FP(0)) >0 (p=1,2,3,...) (3.42)

are known to be valid (cf. [6, 8]), since the inequalities (3.42) are equiva-
lent to the Turdn inequalities v, — y,_1y,,; > 0 (p = 1,2,3,...), where
the vy,’s are defined by (2.56) and (2.57). (For related results, see also
(2.60).)
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