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In this paper, generalizations of some known results for Jensen polynomials, pertaining to
(i) convexity, (ii) the Turdn inequalities, and (iii) the Laguerre inequalities, are established.
These results are then applied in general to real entire functions, which are representable by
Fourier transforms, and in particular to the Riemann ¢é-function.  © 1990 Academic Press, Inc.

1. INTRODUCTION

A brief outline of this paper is as follows. In Section 2 we generalize
several of those results in [CC; CV3; V1; V2] which pertain to (i) con-
vexity, (ii)the Turan inequalities for Jensen polynomials, and (iii) the
Laguerre inequalities. In Section 3 these results are first applied to real
entire functions which are representable by Fourier transforms, and then
specifically to the Riemann ¢-function.

In Section 2 we consider real entire functions of the form

o xk
flx) =3 ng (v,>0;k=0,1,2,..), (1.1)
k=0 '

where it is assumed that the y,’s satisfy the Turdn inequalities:

Y= Vk-1Ve+1 20 (k=1,2,3,.) 0 (12)
12 ’
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Under these (weak) hypotheses, we show in Theorem 2.5 not only that the
Laguerre inequalities,

Lp(x) i=Ly(x; f) = (S V(%)) = fP(x) f2FD(x) 2 0
(x>0; p=0,1,2,..), (13)

are valid, but also that

LOX)=0  (x20;v, p=0,1,2, ). (1.4)

The Jensen polynomials g,(t) := g,(¢; f), associated with f(x) of (1.1), are
defined by

n

g(t) =Y (Z) pet (1=0,1,2,..). (1.5)

k=0

Proposition 2.6 provides a representation for the Turdn differences of these
Jensen polynomials:

A4,0) = gu(t) =g, () guia(t)  (n=1,2,3,..). (1.6)

The main result, Theorem 2.7, of Section 2 is that if (1.2) holds (with
v, >0), then

A90)20  (v=0,1,2,..;n=1,2,3,..). (1.7)

These results are then related to functions in the Laguerre-Polya class,
which is defined as follows.

Dermnimion 1.1, A real entire function f(x) is said to be in the
Laguerre-Polya class, written f(x)e & — 2, if f(x) can be expressed in the
form

F(x) = Ce=+bryn H (1—x/x) e  (w< o), (1.8)

J=1

where « >0, §§, and C are real numbers, n is a nonnegative integer and the

x/'s are real and nonzero with 37, x; > < co.

In Section 3, we first state in Proposition 3.1 some basic results concern-
ing the Fourier transforms of admissible kernels (cf. Definition 3.1). Our
main result, Theorem 3.3, establishes a Laguerre inequality for the Fourier
transforms of a large class of admissible kernels. The paper concludes with
an application of the foregoing results to the Riemann ¢-function.
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2. MAIN RESULTS
We begin with the following variation of a known result of Vincze [V1].
Lemma 2.1, For positive integers n and M with 0 <M <n, let {A,}7_,

and { B, }1_, be two sets of real numbers which satisfy

(i) Xi_o4x=0,
(i) A, <0 (k=0,1,.., M),
A=0 (k=M+1,M+2,..,n), and
(iii) O0<By<B;<.---<B,. _ (2.1)

Then,

I M=

AxB,>0. (2.2)

k=0

Moreover, if A4,>0, then equality holds in (2.2) if and only if
By=B,=.--=B,.

Proof. From (2.1),

n M n
Y AgBi= ) ABi+ )Y AuB;
P

k=0 =0 k=M+1

M n
=By ) Ap+ By Y Ax

k=0 k=M+1

n M
=(BM+1_BM+BM) Z A+ By, z Ay

k=M+1 k=0
=(Buysi—By) Y A+ By Y A (2.3)
k=M+1 k=0
=(By1—By) Z A, 20, (2.3)
k=M+1

which gives the desired result of (2.2). Next, if 4,>0, then equality can
hold in (2.3) only if By=B,=--- =By and if By,, , =By ,,= =B,
Then, since > 7_, ., Ax > 0, equality can hold in (2.3") only if
B,,= B, ., which gives the final result of Lemma 2.1. §

To highlight the dependence on n of the numbers {4,}7_, and
{By}% _o, we remark that Lemma 2.1 is employed in Lemma 2.2 and 2.4 in
the form

Ay = Ai(n) and B, :=B,(n) (k=0,1, .., n). (24)

Continuing, we need
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LemMmaA 2.2. (a) If

2(n) = —1 +éo (Z)[M} (n=0,1,2,..), (2.5

n+1l—k
then
z(n)=0 (n=0,1,2,..). (2.6)
(b) If m is a nonnegative integer, and if
Ao(2m) = —1,
Apo (2m) = (227)[(2;1121_—4:;1;+ki2)] (k=0,1, .. m—1),
P | o
then
me 1
> A, (2m)=0. (2.8)
k=0
(¢} If m is a positive integer, and if
A2m—1):= —1,
A m—1) = (2mk‘ 1)[6’”( m— ;)‘:ﬁ:_ ‘1;‘)2]
(k=0,1,...,m—1), (29)
then
i A (2m—1)=0, (2.10)
k=0

Proof. (a) For each fixed, but arbitrary, nonnegative integer n, we

have
AN P

42— ¥ (k:)

k=1

—142"—(2"=1) =0,

z(n)

the desired result of (2.6).
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(b) Since (2.8) is immediate if m =0, consider any positive integer m.
Then,

m+1

L Adam)= 1+ T dpi2m)
k=0 P
2m 1
=_1+<m>[m+1:]
m—1 /5 2m+2_4(m_k)2
+1§o<k >[(2m+1—k)(k+1)} (2.11)

Now, a change of indices (j:=2m — k) shows that

m 2m>|:2m+1—2k] m= 1 <2m>[2m—2j—1:|
e el [ O — . 211
k_§+1<k 2m+1—k ,-;o J Jj+1 ( )
Hence, using (2.11) and (2.11"), a calculation yields

m+1 —
Y A(2m)= —1+(2m>[ ! ]+ Z Ay 1(2m)

ko +1

(ol s (7)

2m+1—-2k 2m—2k—1
2m+1—k k+1

_1+<2m>[ 1 ]+mil<2m> 2m+1—2k]
m/)m+1] Zo\k/L2m+1-k

N 22’:” 2m\[2m+1 -2k
k 2m+1—-k

k=m+1

=z(2m),

where z(n) is defined by (2.5). Since z(2m)=0 from part (a), the desired
result of (2.8) follows.

(c) In order to prove (2.10), fix an arbitrary positive integer m, and

consider
bl m— N[ 2m =2k
2m—1)= —1 —_— . .
z(2m + Z ( )[Zm—k] (2.12)

Using the change of indices (k :=2m — 1 — j), we have

PG E= B e R
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and, consequently, with (2.9) and (2.12"), (2.12) can be expressed as

- b (2m—1I\[bm — 4k — 4(m— k)’
z(2m—1)——1+2< k )[ (2m—k)(k+1) }

k=0

m—1 m
= 14 Y A, 2m—1)=Y 4, (2m—-1).
k=0

k=0 =
Therefore, the desired result of (2.10) follows from part (a). §

The next lemma provides a simple, but useful, characterization of non-
negative sequences that satisfy the Turan inequalities. As usual, [[x]]
denotes the greatest integer less than or equal to the real number x
(cf. (2.16) and Remark 1).

LemMma 2.3, Let {yi}r_o» N=2, be a sequence of nonnegative real
numbers and let u be a nonnegative integer with 0 < u<N—1 such that

7>0  (k=0,1,.,4) and 7,=0 (j=p+1,u+2, ., N). (213)
Then, the extended Turdan inequalities hold, i.e.,
VeVj—1— Tk—17,20 (I1<k<j<N), (2.14)
if and only if the Turdn inequalities hold, i.e.,
Y= Ve 1Ves1 =0 (k=1,2,.,N—1). (2.15)
In particular, if (2.14) holds, then
ViVu-ks2S<VksVu—ksr (k=01 [[(u+1)21]). (2.16)

Proof. Since the proof of Lemma 3.2 is easily verified when u=0 or
u=1, we may assume that u>2. Then, assume that (2.14) holds, which
clearly implies the weaker statement

VeV = Te-17,20  (I<k<j<p) (2.14')
Then, letting j=k+ 1 in (2.14") gives
V=i 17ks 120 (I<k<u—1). (2.15")
But, because y,=0 for u+1<j< N from (2.13), we further have
2=tk =0 (u<k<N—1), (215")

Combining (2.15") and (2.15"} then gives (2.15). Conversely, assume that
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(2.15) holds. It is clear that (2.15") follows from (2.15). But (2.15’) implies
that

ylAfl}A))MfZ; 2:):1_>Zg>0 (216!)
yM ’y,ufl V2 71

Consequently, the above inequalities give
Biay Temt (1<k<j<p),
Vi Vi

which in turn gives (2.14"). Again, since y;= 0 for u+ 1< < N from (2.13),
then the inequalities (2.14) follow from (2.14'). Finally, since (2.16) is a
special case of (2.14), the proof is complete. J§

The proof of the next lemma is patterned after the work of Vincze [V1].

LemMma 24. Let {y.}7_,, be a sequence of positive real numbers which
satisfy the Turdn inequalities

Vi Vk—17k+120 (k=1,2,3,..) (2.17)
If
* /n
Gn‘p = Z k (,})p+k+1yp+n-k+1_])p+k+2/))p+n—k)
k=0
(n, p=0,1,2,..), (2.18)
then

6,20  (mp=0,12 ). (2.19)

Moreover equality holds in (2.19) for some nonnegative integers n and p if
and only if all summands in (2.18) vanish, i.e.,

PoVpsn+2=Tp+1Vpant1™ " = Vpst1+rm211p+n+1—[0(2]17" (219’)
Proof.  We first prove (2.19) when p=0. On setting
G,:=0,,, (2.20)

we can also express o, from (2.18) as

- = +i(n n+1-2k 291
n Vo)’n+2 P k n+1—k yk+1yn7k+1' ( . )
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As in [V], we consider two cases; namely, when 7 is even and when # is
odd.

Case 1. Suppose n :=2m, where m is a fixed nonnegative integer. From

(2.21)
o . 22’:" 2m> 2m+1~2k:[
2m= "VoVom+2 & k m+1—k Ye+1V2m—k+1

B +§: 2m 2m+1—2kjl
YoVom+2 A\ k ———2m+1-—k Ye+1Vom—k+1

" Z k m Ye+1Vom—k+1-

k=m+1

Now, applying a change of indices to the last sum above (cf. (2.11')), a
straightforward calculation yields

2m 1 )
Oom™= —YoVam+2+ T Vm

m/j|m+1

+”’Z‘:’ <2m)[2m+2—4(m—k)2}
o k (2m+1"‘k)(k+1) yk+13’2m7k+1,
which we can write as
m+1
Oom = Z A (2m) B (2m), (2.22)
k=0
where A4,(2m) is defined by (2.7) and where we set
B.(2m) =9 Vom_rsn (m=0,1,2,.;k=0,1,..,m+ 1) (223)
Thus, by Lemma 2.3 (cf. (2.16) with u :=2m), we have
0<By(2m)<B,2m)< --- <B,,, ,(2m). (2.24)

Next, by (2.8) of Lemma 2.2,

m+1
Yy A2m)=0 (m=0,1,2,..). (2.25)
k=0

Now, from (2.7), 44(2m)= —1 for any nonnegative integer m, and for a

positive integer m, set

T
Mi=m— % (2.26)
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so that M <m—1. Then, it is easily seen from (2.7) that 4, ,(2m)<0
for all nonnegative integers k with k<M, while A,.,(2m)=0 for
M <k<m—1. Thus, the hypotheses of Lemma 2.1 are satisfied. Therefore,
by (2.2) of Lemma 2.1, it follows from (2.22) that

m+1
Tom= Y A 2m)B,2m)>0  (m=0,1,2,..), (2.27)

k=0
the desired result of (2.19) in the case when p=0 and n=2m.

Case 2. Suppose n:=2m— 1, where m is a fixed positive integer. Then
a calculation, which is mutatis mutandis the same as that of Case 1, shows
that

Mol dm—IN[2m—2k 2m—2—2k
Com—1= —YoVome1+ 2, X m—k k+l Vet 1Vam—k
k=0

Z «(2m—1) B,(2m — 1),

where 4,(2m—1) is defined in (2.9) and where we set
B.C2m—1) =y, Y11 4 (k=0,1, .., m). (2.28)
Once again, by Lemmas 2.1-2.3, we deduce that
Gom_ 120 (m=1,2,3,..). (2.29)
Combining (2.27) and (2.29) then gives
6,=0,,20 (n=0,1,2,..), (2.30)

the special case p=0 of the desired result (2.19).

Next, to complete the proof of (2.19), we observe that if the sequence
{vi}i_o satisfies (2.17), then so does the shifted sequence {y,. .} ,
(p=0,1,2,..). Consequently, if we apply the foregoing argument to the
sequence {7, 1o (»=0,1,2,..), we obtain the general result of (2.19).
Finally, using the sharpened form of (2.2) of Lemma 2.1, it can be shown
that equality holds in (2.19) of Lemma 2.4 if and only if all summands in
(2.18) vanish, ie., (2.19') is valid. §

Remark 1. As in the final sharpening of (2.19') of Lemma 2.4 (derived
from the sharpened form of (2.2) of Lemma 2.1), similar sharpenings of
subsequent results are also possible. These, however, are left to the reader.

In order to motivate our next result, we remark that the assumption,
that the sequence {y,}¢_, (with y,>0) satisfies the Turdn inequalities
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(2.17), is equivalent to the assertion that this sequence is logarithmically
concave. More precisely, let G(x) be a C™ function defined on R such that

GW:R—(0,00) (k=0,1,2,.),

(2.31)
GH0):=y, (k=0,1,2,..).
Then,
d2
—log G¥)(x) <0 (k=0,1,2,.) (2.32)
dx x=0
if and only if the Turan inequalities hold:
'V]zc_Yk_l'))k+1>0 (k=1, 2: 37 )' (2'33)
Next, it easily follows from (2.33) and (2.16') that
71\
O<y,< y_ Yo »=0,12,..), (2.34)
0
which implies (by the Cauchy-Hadamard formula) that
Jolx) =3 yex* (2.35)
k=0
has a radius of convergence R with 0 < R < o, and that
© .X?k
fx) =) vt (2.36)
PP 4

represents a (real) entire function. But then, the results of Vincze [V1; V2]
(cf. [CC]) show that (2.33) implies that the function f(x) of (2.35) is such
that 1//{7(x) is convex for all 0S x<R and p=0, 1,2, .., ie.,

21 _ASEIEE =0 fE D)
dx? (fé”’(x)) - [f(x) T -

(0O<x<R;p=0,1,2,..). (2.37)

Since the y,’s are positive in (2.35), then f§(x) >0 on [0, R) and (2.37)
imply
AL P =) T P(x) =0 (O<x<R;p=0,1,2,..).
(2.37)
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For the related function f(x) of (2.36), the special case v =0 of (2.39) below
gives

A7 )P —fPx) fP ()20 (x20;p=0,1,2,..), (237"

and, as fP(x)>0 on [0, +00), we see from (2.37") that f*)(x) also
satisfies the weaker inequalities of (2.37"). For more precise relationships
between the Turan inequalities (2.33) and those of (2.37), see [CVi].

THEOREM 2.5. Let {y.} 7., be a sequence of positive real numbers which
satisfy the Turdn inequalities (2.33). If

Lp(x) = Lp(X;f) = [f(P+1)(x)]2_f(P)(x)f(P+2)(x) (XE Ra p= 09 la 29 "')7
(2.38)

where f(x) is defined in (2.36), then
LY(x)=0 (x=0;v, p=0,1,2,..). (2.39)

Proof. 1In order to prove (2.39), it suffices to show that, for each fixed
nonnegative integer p, the Maclaurin series coefficients of L, (x) of (2.38)
are nonnegative. Since f(x) of (2.36) is an entire function, the following
calculation is readily justified:

Lp('x) = Z Z (Z) Yo+k+1Vprn—k+1 %
n=0 k=0 *

o0 n n

n X
- Z Z (k>’yp+k+2'yp+n——ka

n=0 k=0

where o, , is defined in (2.18). Therefore, by (2.19) of Lemma 2.4,
0,,20  (n,p=0,1,2,.),

which implies (2.39). §
Remark 2. The inequalities

L(x)>0 (xeRip=0,1,2,.) (2.40)

are called the Laguerre inequalities. 1t is well known (cf. [Pa] or [S]) that
if f(x) is a function in the Laguerre—Pdlya class (cf. Definition 1.1), then the
Laguerre inequalities (2.40) hold for all real x. In particular, if f(x)=
> o 7e(xF/k!) is in ¥ — 2, then the special case x =0 of (2.40) gives, from
(2.38), the Turan inequalities,

Vo1 ZUplpea (P=0,1,2,0). o (240)
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Consequently, if f(x)=X7_,y.(x*/k!) has y,>0 (k=0,1,2,..), then
Theorem 2.5 shows, under the weaker assumption (2.40'), that the Laguerre
inequalities hold for all x >0 and also, that all the derivatives of L,(x) are
nonnegative for x>0. Thus, Theorem 2.5 provides a new collection of
necessary conditions for a real entire function f(x) (cf. (2.36)), with positive
Maclaurin coefficients, to belong to the Laguerre—Polya class.

We next turn to the main result of this section. To this end, we first
establish a representation theorem for the Turan differences of the Jensen
polynomials (cf. (2.41) and (2.42)) associated with a sequence of positive
real numbers.

PROPOSITION 2.6. Let {y,} ., be a sequence of positive real numbers
which satisfy the Turdn inequalities (2.33). If

An.p(t) = gip(t)_ gnfl,p(t) gn+1,p(t);

(241)
4,(t) =4, (1) (teR;n=1,2,3,..; p=0,1,2,..),
where
v (7 k
gn,p(t)': Z k Vk-%—pt ’
k=0 (2.42)
g.(t) =gu0(t) (n=0,1,2,.),
then
et in—1\ & /k L
A1) =5 ( ) ( ) (= () Lk
’ 2 kgo k jgo J ,-;o l ‘p( J p)
(n=1,2,3,.;p=0,1,2,..), (243)
where

‘P(i’ Js k; p) = 2'})p+k~j+i+1yp+k~i+1
_7P+kAi+2yp+kfj+i_yp+k—iyp+k_j+i+2- (2.44)

Proof. We have already observed (cf. (2.36)) that since (2.33) holds, the
function

‘ s} " xk =] Xk
flx)y:= 3 f 0) 7= > i
k=0 k=0 :
is an entire function. Therefore, by Cauchy’s integral formula, we have
L flw)
yk=f‘k)(0)=2—m,fc wkHdw (k=0,1,2,..), (2.45)
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where C is a positively oriented circle, centered at the origin. Hence, using
(2.45), we obtain from (2.42) that

en0= 3 (1)5m] 2 an,

o 2mi

which can be expressed as
e =g [ (1+5) 00T (=012 (2460

Thus, a calculation shows from (2.46) and (2.41) that

f(W) f(z)
A, (1) = (27”) fj 0T erdwdz, (247)

t n—1 n—1
b(w, z, 1) :=(1+—> (1+£) [_2___13__15}
w zZ wz w zZ

(Izl, [w] > 0), (2.48)

and where the interchanging of the order of integration is readily justified.
Now, if we expand b,(w, z, t) in powers of ¢, 1/z, and 1/w, we find that

2 1 172 /m—1 1 1 t*
b = = — _ — oz v k
n(w’ = t) I:WZ W2 Z2:| k§0< k )[<W+Z> +WZ:| ~

which can also be expressed as

b,l(w,z,t)=[é_““_] ( k >
Xj;o( )(wz)k] : ( ><> - Y

Hence, using (2.49), 4, ,(t) can be expressed as (cf. (2.47)),

Awm=§ii;(”?),i< )50
p+k—j+i+l pHk—i+1
(2m)2 { < ) @
(:

where

( )p+k J+i )p+k——i+2

_<1>p+k JHi+ C)Hk I}Mf—(;—)d .

w
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On applying the formula of (2.45) to the above expression, the desired
result of (2.43) is then obtained. §

We next combine the foregoing results to prove the following theorem

THEOREM 2.7. Let {y,}{, be a sequence of positive real numbers which
satisfy the Turdn inequalities (2.33). Then,

40(0)=0 (n=1,2,3,.;v,p=0,1,2,..), (2.50)
where 4, ,(t) is defined by (2.41). Moreover,
A;f)p(t)zo (t=20;n=1,2,3,..5v,p=0,1,2,..). (2.51)

Proof. In order to prove (2.50), we use formula (2.43) of Proposi-
tion 2.6 for the representation of 4, (1), and note that it suffices to show
that

i (f) Y(i, j, ks p) 20. (2.52)

i=0

With m := p+ k— j, we find from (2.44) that
(J)wtaicki

J .
J
= Z <l) {[ym+i+1’))m+j7i+1—_ym+j7i+2’Vm+i:|
i=0

I .
[Nashy

1

+[7m+i+17’m+j—i+l_ym+j—iVm+z‘+2]}
L]
=2 Z (l) [ym+i+1ym+j7i+1_yn1+j~iym+i+2]:20j,m>
i=0

where ¢;, is defined in (2.18). But then by Lemma 2.4,
G20 (j,m=0,1,2,..),

Jm =

and, a fortiori, inequalities (2.50) and (2.51) hold. f

COROLLARY 2.8. Let {y,}7.o be a sequence of positive real numbers
which satisfy the Turdn inequalities (2.33). With the notation of (2.41) and
(2.42), set

g¥(t):=1"g, (%) and  AX() =174, <%> n=1,2,3,..)
(2.53)
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Then, the following inequalities hold:

o (S0P = g gL (020 (120a=123,.); (254)
n+1
o G &N i) 8020 (120n=123,); (255)
and
0P~ 81,0 £, (020 (120m=1,23,.). (256)

Proof. It can be verified from the definitions of (2.42) and (2.53) that
gr'(t)=ngf (1) (teR;n=1,2,3,..).

Consequently, a short calculation shows that inequality (2.54) is an
immediate consequence of the special case v=p=0 of (2.51) of
Theorem 2.7. In order to prove (2.55), we recall the known fact (cf. [CV3,
Proposition 2.1(iii)] or [R, p.133]) that the Jensen polynomials

{gn(t)},ofzo SatiSfy
ng(t)=ng, (1)+1g,(t) (teR;n=1,23,..). (2.57)

Using (2.57), we find that

1 1
4,0 =1] 3 £ 0= 7 £ 00|
(teR;mn=1,2,3,..), (2.58)

where 4,(¢) is defined by (2.41). Now by (2.51) of Theorem 2.7, 4,(¢)>0
(t=0; n=1,2,3,..), and we thus conclude that (2.55) holds. Finally, in
order to prove (2.56), we use the following known results [CV3, Proposi-
tion 2.1(iv) and (v)] that the polynomials, g, ,(¢) (n, p=0, 1, 2, ...) satisfy

gn+1,p(t)= gngp(t)—*— Zgn,p+ I(Z) (ZER, R, p:09 13 29 '")9

and thus
An,p(t):“ tz[gZ—l,p+1(l)- gn—l,p(t) gn—l,p+2(z)]

(2.59)
(teR;n=1,2,3,..;,p=0,1,2,..),

where 4, ,(¢) is defined by (2.41). Once again by Theorem 2.7, 4, ,(1)=0
(120, n=1,2,3,..; p=0,1,2,..), and a calculation, using (2.59) and
the formula g, (1)=ng, 1 ,..(1) (n=1,2,3,.;p=0,1,2,..), yields the
desired inequality (2.56). §
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Remark 3. The foregoing results have applications in the theory of
special functions. While Theorem 2.7 was proved under weak assumptions,
we can nonetheless deduce from Theorem 2.7 several known inequalities
(cf. [S]) concerning classical polynomials and functions. For example, set

n n (——[)k
(1) = : 2.60
" k§0<k> K (&60)

so that Z,(t) is the nth classical Laguerre polynomial (cf. [R, p.213]). On
defining {7, := 1/k!}2_,, weseethat (7,)* — Fx_1Fe 1 = [(K)*(k+1)]7' >0
for all k=1,2,.., so that Turan inequalities (2.33) are satisfied for
{$:17_,- Thus, from the definition in (2.60), it follows from (2.51) of
Theorem 2.7 not only that

At L) =(L(-0))V =% _ (1) L, 1(—1)=0
(t20;n=1,2,..), (2.61)

but also that the Maclaurin coefficients of 4,(1, %,) are (cf (2.50)) all
nonnegative. More precisely, if 4(t, %) :=>7",«;(n)t/, then with the
sharpened form of Lemma 2.4, it follows, for any » > 1, that

ay(n)>0 (j=2,3,..,2n).

As an application of the foregoing results to transcendental (ie.,
nonpolynomial) entire functions, consider the particular Mittag—Leffler
function

n

- x . n!
Eq(x) = Z yn(q) ﬁ> with 'Yn(q) =
n=0 N

r( J;qn)
n=0,1,..), (2.62)

where ¢ > 1 is a positive integer. It is known (cf. [ESY, p.3]) that £ (x)
is an entire function of order 1/g. (Since ¢ > 1, then the order of E (x) is
positive and less than unity, so that E,(x) has infinitely many zeros.) From
the definition in (2.62), it easily follows that the coefficients {y,{q)} 2.,
satis{ly the strict Turdn inequalities,

o@D =@ Vai(@) >0 (n=1,2,3,..), (2.63)

for any positive integer ¢ > 1. Thus, if g,(; q) =27 _ (3) v«(q) t* denotes
the Jensen polynomials associated with E (x), and if (cf. 2.41) with p=0)
2n
A,(59) = gXt:0) — & 1(6:9) 8 i@ =1 ) ;(niq) V!
j=2

(n=1,2,3,..),
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then the sharpened form of Lemma 2.4 coupled with (2.63) gives
o;(n;q)>0 (j=2,3,.,2n,g>1). (2.64)

Remark 4. We claim that Corollary 2.8 is also of theoretical interest,
since it provides necessary conditions for a real entire function to belong to
the Laguerre-Polya class. Indeed, it is known (cf. [CV3, Proposition 2.3]
or [P1]) that if

k

f= 3 nk (er0)

is a real entire function with infinitely many zeros, then a necessary and
sufficient condition for f(x) to be in the Laguerre-Polya class is that

4,(1) = ga(t) = gu1(1) 8,11()>0  (teR—{0};n=1,2,3,..),
(2.65)

where

13

g ()= (Z) wet* (n=0,1,2,.) (2.66)

k=0

is the nth Jensen polynomial associated with f(x).

3. APPLICATIONS

In this section, in conjunction with the authors’ earlier work (cf. [CNV;
CV1-CV4]), we provide two applications of the results of Section 2. The
first application involves a general class of entire functions whose members
can be represented by Fourier transform, while the second application
pertains to properties of the Riemann ¢-function.

To facilitate the description of a general class of entire functions which
we shall consider in the sequel, it is convenient to use the following
definition (cf. [CV4]).

DeriNiTION 3.1, A function K: R — R is called an admissible kernel if it
satisfies the following properties:
(i) K is integrable over R,
(i) K(¢t)>0 (teR),
(iil) K(t)=K(—1) (e R),
(iv) K(t)=O(exp(—|t]>*%)),  forsomee>0, as— 0.
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It is known [P2] that the Fourier transform

F(x) := F(x; K) :=j K(1) ™ di (3.2)
of an admissible kernel, K(r), is a real entire function of finite order
p = p(F(x; K)), where p satisfies

e+2

<—
P e+1

<2, for some ¢&:=¢(K)>0. (3.3)

Remark 5. Since an admissible kernel is an even function, it follows
that the Maclaurin series expansion of F(x) (cf. (3.2)) is of the form

0 (_x2)k
F(x)= by , 34
=2, G4
where (cf. (3.1ii))
by = b(F) =2 fo PR di>0  (k=0,1,2, ). (3.5)
0
On setting z= —x? in (3.4), we obtain the function
© © Zk
F.(z):=F(—x%):= fﬁw K(1) cosh(t\/g) dt = kgo Vi (3.6)
where
k!
Ve = yk(Fc) :mbk(}?) (k = 09 1’ 2a ‘) (37)

To bring into sharper focus the results proved below, we state the next
proposition a property of functions in the Laguerre-Polya class, ¥ — 2
(cf. Definition 1.1).

ProrosiTION 3.1. (a) If f(x)e ¥ — 2, then f(x) satisfies the Laguerre
inequalities, i.e.,

Ly(x):=Ly(x; f) = (fPTD(x))* = fPUx) fP+2(x) =0
(xeR; p=0,1,2,.). (3.8)
(b} If K(¢) is an admissible kernel, then

F(x)=F(x;K)e ¥ -2 if and only if F.x):=F.(x;K)e ¥ — 2.
(3.9)
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(c) If K(t) is an admissible kernel, then

Lo(x; F)=0 for all xeR
if and only if Ly(x; F,) 20 for all x<0. (3.10)

Proof. The proof of (3.8) is well known (cf. [S]). Next, to establish
(3.9), assume that F(x) is in % — 2. Then, F(x) is even, its order is less
than 2, and F(0)=b,>0 which follow from (3.4), (3.3), and (3.5), respec-
tively. Thus, from (1.8) of Definition 1.1,

[ 2 w
F(x)=b, [] <1—%>, where x;>0 and Z x, ?=:p<om.

j=1 J j=1

With z= —x?, then, by definition (cf. (3.6)),
Fz)=bo [] (1 +—‘}>=b0eﬁz Tl (1 +i2>ez/xf, (3.9
=1 X j=1 Xj

which, by Definition 1.1, is an element of ¥ — 2. The converse (i.c., that
F.(x)in & —2 implies F(x) is in & — ) is similar. Finally, to establish
(3.10), note that F(x) is an even function of x from (3.4), which implies
that Ly(x; F) is an even function of x. Thus,

Ly(x; F)=0 for all xeR
if and only if Ly(—x? F)=0 for all x<0. (3.9”)

Since from (3.6) F.(z)= F(x), where z= —x?, a short calculation shows
that

Lo(=x?; F)=L(z; F,),
and the desired result (3.10) then follows from (3.9”). §

Remark 6. The equivalence in (3.10) is best possible in the sense that
there are polynomials p.(x) and p(x) := p.(—x?) such that

Ly(x; p)=0 forall xeR, (3.11)
Ly(x; p.) =0 forall x<0, (3.12)

but
Lo(xq; p.)<0 for some x,>0. (3.13)

As a concrete example, consider the polynomial p.(x):=x(x?—1)
[(x—1/2)>+0.2] and set p(x) := p.(—x?). Then, a calculation shows that
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(3.11) and (3.12) are valid, and (3.13) holds with x, :=0.5. In this case, the
polynomial Ly(x; p) :=(p'(x))*— p(x) p"(x) is given explicitly by

Lo(x; p) =10x" 4 14x'° + 8x14 + 3 x12 4 B3 10
+ 15x% + 8x0 + x4 + 2L,
which clearly satisfies (3.11).

The proof of our main result (cf. Theorem 3.3 below) of this section
hinges on the following known result.
Treorem 3.2 [CV1, Theorem 2.47. Suppose that
K(t) is an admissible kernel, (3.14)
and that
log(K(\ﬂ)) is strictly concave for 0 <t < 0. (3.15)

Let f(z) be an even entire function in the Laguerre-Polya class, normalized
by f(0):=1, and set

b, i=b, (K, f):=2 jom 2rf) K de (m=0,1,2,..).  (3.16)

Then,

2m—1
b%#bm_lbmﬂ (m=1,2,3,..). (3.17)

m

Preliminaries aside, we next prove

THEOREM 3.3. Set

F.z):=F.(z K, f) :=f° f(it) K(1) cosh(t./z) dt, (3.18)

where the kernel K(t) satisfies (3.14)—(3.15), and assume that f(z)e & — P,
with f(z) even and with f(0):=1. If

L(x;F.):=(F?*"(x)) = FP(x) F"*?(x) (p=0,1,2,..), (3.19)
then

LY(x; F )20  (x=0;v, p=0,1,2,..). (3.20)
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Proof.  Set

F(x) = F(x, K, f) := f e (it) K(1) dt. (3.21)
Since, by hypothesis, f is an element of ¥ — 2 and f'is even, then fis an
entire function whose order is less than or equal to 2, and it is easy to
verify that f(ir) K(t) is also an admissible kernel (cf. (3.1)). Therefore, F(x)
is a real entire function and hence so is F.(z) (cf. (3.18)). Now, a calcula-
tion shows that the Maclaurin series expansion of F.(z) is given by

el k

z
Fz)= Y negs (3.22)
k=0 °
where
. Kby _

and where b, is defined in (3.16). But then, it follows from (3.17) of
Theorem 3.2 that all the Turan inequalities

V/2e>yk~1)’k+1 (k=1,2,3,..) (3.24)

hold. In addition, since f(ir) K() is an admissible kernel, (3.5) and (3.23)
give that y, >0 (k=0, 1, 2, ...) and therefore, by Theorem 2.5, the Laguerre
inequalities (3.20) are all valid for x>0. §

Remark 7 and an Open Problem. By Proposition 3.1, we know that
F(x;K)e £ —2 if and only if F(x;K)e ¥ —2 and hence (cf. (3.8)), in
this case

LO(x; F)=0  forall xeR (v, p=0,1,2,..). (3.25)

However, if we do not assume that F(x; K) belongs to the Laguerre-Polya
class, then it is an open problem to characterize those admissible kernels,
K(1), for which the Laguerre inequalities L,(x; F) >0 (xeR; p=0, 1,2, ..)
are valid. The significance of a solution of this problem is that it could lead
to the characterization of admissible kernels whose Fourier transforms
belong to the Laguerre~Pélya class.

We conclude this proper with a specific application to the Riemann
&-function, ¢(x), which can be expressed (cf. [P1]) as

5(%) —3 Jow ®(1) cos(xt) d, (3.26)
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and where the kernel &(t) is the Jacobi theta function
&(t) ;= i (2n*n?e® — 3n’ne’") exp( —n’ne*). (3.27)
ne 1
With the notations of (3.2) and (3.6), we thus set
Flx; &) :=f B(1) e™ di, (3.28)

and
F.(z®):= j (1) cosh(ty/z) dt. (3.29)

Now, it is well known (see, for example, [CNV, Theorem A7) that &(¢)
satisfies the properties (3.1), so that &(¢) is an admissible kernel. In
addition, the authors (cf. [CV1]) have recently proved that log(di(\/t— N
is strictly concave for O0<t<co. Therefore, as a direct application of
Theorem 3.3 we obtain (with f(¢) =1) the following corollary.

COROLLARY 3.4. The function F.x; @) and all its derivatives satisfy the
Laguerre inequalities for all nonnegative values of x, i.e.,

LY(x; F)=0 (x=0;v,p=0,1,2,..). (3.30)

Remarks 8. (1) As an immediate consequence of Theorem 3.3, we
also obtain the following result (cf. (3.32)) which is more general than
Corollary 3.4. Indeed, set

F(z):=F(z;®,f):= Joo Sf(it) @(r) cosh(t \/E) dr, (3.31)
where f(t)e ¥ — 2, with f(¢) even and f(0) :=1. Then

LY(x; F))=0 (x=0;p=0,1,2, ..). (3.32)

(2) In light of the authors’ earlier work, we next point out a rela-
tionship between the Laguerre inequalities and the Riemann Hypothesis.
For this relationship, set f,(¢) := cosh(ur), 4,(¢) :=sinh(uz) (ue R), and set

P (x) =2 jw (1) @(1) cos(xt) dr

and

0,(x) =2 j:o ho(r) D(1) sin(xt) db.
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Then, (cf. [CV4, Lemma 3.3 and Corollary 3.5]), the Riemann Hypothesis
is true if and only if

Lo(x; P)+ Lo(x; Q)20  (x20,0<u<1), (3.33)

where Lo(x; f) := (f'(x))* — f(x) f"(x). We also note that, in the proof of
(3.33), use was made of the known fact (cf. [CNV, Theorem A]) that all
the zeros of F(x; @) (cf. (3.2)) lie in the strip S(1) := {zeC : |Im z| < 1}. 1§

CoOROLLARY 3.5. With (3.29), set

" /n
AT (P (334)
k=0
where
klb, o
= = d(t) dt k=0,1,2,..). 335
Teim G @ b= e dr L (339)
If
An,p(t; Fc):=(gn,p(t;Fc))2——gnfl,p(t;Fc) gn+1,p(l;Fc)
(n=1,2,3,.,p=0,1,2,..), (3.36)
then

. t=0;v, p=0,1,2, ..,
Afu)p(t; F)=0 < )

n=1273, ... (3.37)

Proof. Since it is known (cf. [CNV] or [CV1]) that the y,’s, defined
by (3.35), satisfy the Turan inequalities y; —7y, 7., =0 (k=1,2,3,..),
then (3.37) follows from Theorem 2.7. §

Remark 9. Since F (x; @) of (3.29) is an entire function of order 1t

follows from the Hadamard factorization theorem that F,(x;®) has
infinitely many zeros. Therefore, by Remark 4 of Section 2, we see that the
Riemann Hypothesis is valid if and only if

AL F)>0  (teR—{0};n=1,2,3,..). (3.38)
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