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Dedicated to G. G. Loventz on the occasion of his 80th Birthday

Abstract. In this article, we survey the recent results on real vs. com-
plex best rational approximation to continuous real-valued functions on the
interval [—1,1].

§1. Introduction

We describe here a phenomenon, of recent research interest, which results
when complez rational functions are pitted against real rational functions (of
the same order) in approximating (in the uniform norm) real continuous func-
tions on the real interval [—1,+1].

For notation, let m;, and 77, be respectively the sets of polynomials (in the
variable z or ) of degree at most m, with real and complex coefficients. For any
pair (m, n) of nonnegative integers, T and 7, then denote respectively the
sets of rational functions of the form p/q, with p in 77, (7¢,) and ¢ in 77 (7).
With

Ii=[-1,41],

let C.(I) be the set of all continuous real-valued functions on I. Then, for any
[ in Cp(I), we further set

Bonl$) = dof 1 = dllrwwi Enn(F):= dnf 1f =gl (L1)

where, for any real- or complex-valued function h defined on I,
IAll Loo(ry i= sup {|A(z)| : z € I}.
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The phenomenon to be studied here is this. We claim that, for each pair
(m,n) of nonnegative integers with n > 1, there exists an f in C,.(I) for which

(1) Bpn(f) < B a(f),and
(4) best uniform approximation to f from 77,  on I (1.2)
is not unique.

Since my, . is a proper subset of 77, for each pair (m,n) of nonnegative
integers, it is obvious from (1.1) that E W(f) L Ep, o (f) for any f in Co.(1).
Because an arbitrary complex number consists of two real parameters, then any
Tm,n I 7y, , can be associated with an R,, , in 75, | with thce the number of
real parameters. This alone might heuristically suggest that E¢, ,, (f) is roughly
at most Ey, ,(f)/2 in (1.24) for certain f in C(I). We shall Jater see in (1.19)
that, except for the case n = 0 when Ey, ,(f) = E}, o(f) for any f in C\(I)
and any m > 0, this heuristically deduced inequality (and more) is essentially
correct.

It is known (cf. Meinardus [5, p. 161]) that any f in C,.(I) admits a unique
best uniform approximant r., , from «7, , on I. On the other hand, Walsh [14,
p. 356] has given an example of a continuous complex-valued function, namely
f(z) := z+ 27! which, on a certain compact crescent-shaped set in the complex
plane, does not possess a unique best uniform rational approximation from LS
on this set. That this phenomenon of nonunigueness can hold even in the case
of real functions on real intervals, as in (1.24), may come as somewhat of a
surprise to the reader.

To give a concrete example exhibiting both parts of (1.2), we first recall
(cf. [5, p. 161]) that, for any f in C,(I) and for any pair (m,n) of nonnegative
integers, the unique r, ., = p/q in Tn (where p and q are assumed to have
no common factors) satisfying

Er o) =1f = rmallLecn, (1.3)

is precisely characterized by the existence of an alternation set {£;}% j=1, With
—1<6 <& < <& <1, for which (with fixed A=1o0r A = ~1)

f(f]) - rm,n(gj) = /\(_I)JErzz,n(f) (.7 =12,--- 7£)v (14)

and for which

£ > 2+ max{m + deg ¢;n + deg p}. (1.5)

(Here, we adopt the convention that if p = 0, then degp := —oo and degq := 0,
so that £ > 2+m in (1.5) in this case. We also call £ the length of the alternation
set {f] }ﬁ:l )

Consider now the particular function f(z) := z? in C,.(I). With 1 ;(z) :=
p(z)/q(z) = 1/2 for all real z, we have that

By, (a*) = 1/2, (1.6)
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since all the conditions of (1.4) and (1.5) are fulfilled (with £ =3, A= -1, m =
n=1, degp=degqg=0, & := -1, & :=0, and & := 1). On the other hand,

consider

z4+ (V2 -1)i

= 1.7
g1.1() Y (L.7)
which is an element of 7§ ;. A short calculation shows that
l2? = g11(@)l| ey = V2— 1 =041421 -+, (1.8)
so that with (1.1), Ef ;(2?) < 0.41421 - - . This implies from (1.6) that
Elc,l(xz) < Ef,1(m2)- (1.9)

Next, for any pair (m,n) of nonnegative integers and for any f in C.(I),
there always ex1sts (cf. Walsh [14, p. 351]) an R, in 75, ,, for which ||f -

Runllbw() = ES o(f)- Specifically, there is an Ry in #{; for which [lz* —
Ryl = Ef 1(39 ). But from (1 9), it is clear that Ry 1(33) cannot be real
for all real z. Consequently, as 2 — Ry 1(z) and its complex conjugate have
the same uniform norm on I, then

Efy(a%) = ||le* = Rig(@)lze(ny = 12 = Ria(@)l|zeu(n- (1.10)

Thus, Ry and Ry,1, which are distinct elements in 7§ ,, are both best uniform
approximations to z? from 7§, on I, and the function x? exhibits both prop-
erties of (1.2) in the case m = n = 1. We remark that this argument shows
in general that if E, , (f) < Ey, ,(f), as in (1.24), then the non-uniqueness in
(1.24t) necessarily follows.

A.A. Gonchar first mentioned in 1968 this possibility of nonuniqueness in
a footnote of his paper [2]. This possibility was followed up by K.N. Lungu,
a student of Gonchar, who gave sufficient conditions in [4] in 1971 for the
properties of (1.2) to hold. Independently, Saff and Varga [9,10] made the
same discovery in 1977, and obtained more general sufficient conditions for

Er W (f) < E], n(f) to hold for an f in C,(I), as well as a sufficient condition

for EC () =Ep, .(f) to hold for an f in C,.(I). The former sufficient condi-
tions of Saff and Varga were later sharpened by Ruttan [6] who showed that
E7, (f) < E, .(f) holds if the best real uniform approximant from 77, ,, to
f on I attains its maximum error on no alternation set (cf. (1.4)) of length
greater than m + n + 1, and that this lower bound is, in general, best possible.
For a survey of such results, see [12, Chapter 5].

What we wish to focus on here is the following problem raised in Saff
and Varga [10]. For each pair (m,n) of nonnegative integers, determine the
nonnegative real number 7y, », defined by

T = 0 (B () B ()£ £ € CINTL ). (L11)
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In essence, determining the number +,, , amounts to seeing just how much
better best uniform approximation from T, » on I can be, than best uniform
approximation from 77, , on I, for particular functions in C,.(I)\ny, ,. For
example, for the function z? in C,(I), it is known (cf. Bennett, Rudnick and
Vaaler [1]) that B, (z%) = (4/27)1/2 = 0.38490- - -, so that with (1.6),

Ef ,1($2)

Consequently, this gives the following upper bound for 7y ;:

y11 < 0.76980 - . (1.12)

To precisely determine 7, o for any nonnegative integer m, we first estab-
lish
Proposition 1. ([10]). Given any f in C.(I) and given any pair (m,n) of
nonnegative integers, then

Erinan(f) < dof |If =Re gllzer) < Epn(f) < Bpn(f)- (1.13)

Proof: As the final inequality of (1.13) is obvious, consider any p,, /gy in 77, ..

On taking real parts, it is evident that
() Pm(2)
-z be-me ()l e

which establishes the second inequality of (1.13). Since Re (pm/g¢y) is an ele-
ment of 7,4, 5,, the first inequality of (1.13) then follows. B

2

On choosing n = 0 in (1.13), we see that

Efn,ﬂ(f) ZE;z,O(f) (fECT(I);mZO’lv”'>a (1'14>
so that (cf. (1.11))

Ym0 =1 (m=0,1,---). (1.15)

It turns out that the exact determination of the constants vym,, of (1.11),
when m > 0 and n > 1, is more delicate than the determination of ¥y, in
(1.15). Four recent papers have described the behavior of Ym,n for n > 1. First,
Trefethen and Gutknecht [11] established in 1983 the rather remarkable result
that

Y =0 (n>m+3m=0,1,---). - (1.16)
Next, Levin [3] established in 1986 the complementary result that



Real vs. Complex Best Rational Approzimation 219

Yom = 1/2 (m+1>n>1). (1.17)

Levin’s proof of (1.17) consisted of a direct construction to show that ym,» <
1/2, and an algebraic method to show that v, < 1/2 was impossible for
m+1 > n > 1. The results of (1.16) and (1.17) left unresolved only the
constants Y, m+2 (m > 0). This case was most recently settled by Ruttan and
Varga in 1989, where it was shown in [7] that ym,m+2 < 1/3 and in [8] that
Ym,m+2 < 1/3 was impossible. Thus, ‘

Tm,m+2 = 1/3 (m:O,l,--'). (1.18)
The results of (1.15) - (1.18) give all the entries {ymn }m,n>0 of Table 1.

R AR ARV AR

2 |l13l1/2]1/2]1/2

3 0 |1/3|1/2|1/2

4 0] o0 |1/3]1/2

0] o] o |1/3]1/2

Table 1. {Vmn}tmn>o
It is interesting that the constants {Ym}mn>o0 of (1.11) take on only
four distinct values: 1,1/2,1/3 and 0, and only three distinct values when
n>1:1/2,1/3, and 0. Specifically, this implies for any € with 0 <& < 1 that,

for each pair (m,n) of integers with m > 0 and n > 1, there exists an f in
Cr(I)\m}, , for which

() B (f) < Q+)En(f)/2  (mt12n>1) |
(i) Boman(f) < (14880 (/3 (m=01,-)  (119)
(#i1) E& . (f) <eEp.(f) (n=>m+3m=0,1,--)

which is a sharper form of (1.2%).

In the next sections, we give a unified treatment from [8] for the-determi-
nation of the constants v, , when m > 0 and n > 1. We are also iriterested in
those functions f in C.(I)\7,, which satisfy
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Brn(f)

m,n = 7PN m >0 > ) 1.
Yrm, <E$n,n(f)<7 ante (m>0n>1) (1.20)

for some given £ > 0. For such an f satisfying (1.20), if g in 7}, , and if h in

T
M. are such that

1f = 9Ly = Ermn(f), and ||f = klloon = Eqn(f),

we are likewise intrigued by the behavior of the associated errors:

f(z) = g(z) and f(z)— h(z) (xel).

This will generate a number of interesting grdphs.

§2. Upper Bounds for ym;n

As a means for obtaining general upper bounds for v,,, for n > 1, we
next establish ‘

Proposition 2. ([8]). Given any pair (m,n) of nonnegative integers with
n > 1, assume that

g isin 75, \77, ., with Re g in C(I), (2.1)

m,n

and assume that S in C.(I) is such that there are L > m + 2 distinct points
{zj}oy with =1 < @1 < 29 < -+ < zp < 1, for which (with fized X = 1 or
A= =)

A(=1)? [S(x;) + Re g(z;)] > 0 (G=1,2---,L) (2.2)

Then,
TYm,n S ”S —1Im g”Lm([)/M, (2.3)

where
M := 115%211:]5(3:]') + Re g(xj)| | (2.4)

Proof: Set f := S+ Re g, so that f is an element of C.(I). If the best approx-
imation to f in 77, , were the identically zero function, then the convention
in (1.5) requires the existence of an alternation set in I of length £ > m + 2.
Now, the hypothesis of (2.2) gives that f oscillates in sign in L > m+2 distinct
points in I, and from this, using a result of de la Vallée-Poussin (cf. [5, p. 162]),

one has the following lower bound for E7, ,(f):

Enn(f) 2 M,
where M is defined in (2.4). On the other hand, as
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Ernf) SN =glloeny =18 =i Im gl (1),
we have from the definition of 7, , in (1.11) that (2.3) is valid. B

It turns out that Trefethen and Gutknecht [11], Levin [3], and Ruttan and
Varga [7] each, in essence, applied a variant of Proposition 2, with appropriate
choices of g(z) and S(z), to determine upper bounds for vy, ,. Their con-
structions of particular complex rational functions, which lead to sharp upper
bounds for v, ,, are described in the next paragraphs.

We begin with the clever construction of a complex rational function, by
Trefethen and Gutknecht [11], for establishing that vm m4s =0 (m=0,1,--).
For any fixed nonnegative integer m and for any € with 0 < ¢ < 1 (and with
0<e<1/(2m—1)if m > 1), consider the following complex rational function
In 7 3\ T mas, defined by

H[ 14 (2j - 1)e — 2]

(@) = [m+1:g]m+1(iﬁ_ D) 1+e—z) (25)

(where, as usual, [] :=1if m = 0). It follows from (2.5) that
j=1

—ExH[ 1+ (2j —1)e — 7]

Bom.e : 2.
Re hne(®) = G e r i ae =g € Trimse (20)
and
—eVE[1[-1+4(2j — 1)e — 1]
Im ko (2) = =1 T 7
m fimc (2) [z+1+e]mt (e +22)(1+¢e—2a) € Tm,me4 (2.7)

It is evident from (2.6) that Re A, .(2) has m + 1 distinct zeros in (-1,0],
with m closely packed zeros to the right of —1, plus an additional zero at the
origin. Next, define the m + 2 distinct points, namely {z;(¢) := -1 + 2je} 7,
and zm41(e) 1= 1, which satisfy

—l=2o(e) <z1(e) < -+* < Tymp1(e) = 1.

These m + 2 points {z;(¢)}] b interlace the m 4 1 zeros of Re b, (z), and
it can be verified that Re hm e( ) oscillates in sign in these points. Moreover,
the pole of order m+1 at —1 —¢ and the pole of order 1 at 1+ ¢ of Re hy, ((z)
contribute in making these oscillations roughly of the same modulus, i.e., there
is a constant ¢, dependent on m but independent of €, such that (cf. [11])

(—1)Re hme(2(€)) 2 c|Im hmellron/vVE (G=0,1,---,m+1). (28)
With the rational function h,,.(z) of (2.5) and with Proposition 2, we
have :
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Theorem 3. (Trefethen and Gutknecht [11]). For any nonnegative inte-
ger m and for any integer n > m+ 3,

Proof: We first show that v, m+s = 0 for every nonnegative integer m. With
ni=m+3,set §:=0,L:=m+2, and g := Ay € 75, ny3, and apply
Proposition 2. The discussion above shows that (2.2) of Proposition 2 is valid,
and from (2.8) we see (cf. (2.4)) that

Mi= | _min | [Re o e(25(€)] 2 ellm e/ VE-

It thus follows from (2.3) of Proposition 2 that

Ymmts < VEfc. (2.10)

But since ¢ is independent of ¢ in (2:10) and since £ can be taken arbitrarily
small, then

Ym,m+3 = 0. (211)

Moreover, as Tonm O 7r;i%m+3 for every n > m+ 3, the same function A, . can
be used to deduce that

7m,n=0 (n2m+37m=0715),
the desired result of (2.9). B

In the above construction, f(z):= Re hm(z) of (2.6) is the function in
C,(I) which is simultaneously approximated by the identically zero function
of M), nys and by Ay, . () of 7%, 43 Because of the oscillations of f in the
m + 2 distinct points of I of (2.8), the identically zero function in 77, ., .5 is a
near best approximation to f from «7, .5 on I, and

B mtsf) = L = IRe Amell Lo (n)-

Thus, in Figure 1 we graph the function f(z) := Re hs () for  in I, with
¢ = 0.1, to show its 7 oscillations in I. As some of these oscillations are very
tiny, there is a 15-fold magnification (in y) given in Figure 2, of the dotted
rectangular portion of Figure 1, which show these tiny oscillations more clearly.
Next, the complex error in this case is, from our definitions, just f(z) —g(z) =
—i I'm hg (), and its path, as = increases from —1 to 1, in the complex plane
is wninteresting (and omitted), since this path is just motions confined to a
symmetric segment of the imaginary axis.

Concerning the result (2.9) of Theorem 3, it was pomﬁed out by E.B. Saff
that the existence of arbitrarily small numbers vy, , was already implied in 1934
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by a result of Walsh [13, Theorem IV], although this connection of Walsh’s
result to the numbers v, , was not previously noticed. Specifically, Walsh
showed, for each fixed nonnegative integer m, that the functions J;_,75, ,
are dense in C(I), the space of all continuous complex-valued functions on I.
Thus, on choosing any f in C,.(I), a subset of C.(I), this density implies that

lim B, (f) =0 (m=0,1,--). (2.12)

On the other hand, let Tj(z) (5 > 0) denote the j-th Chebyshev polynomial (of
the first kind). On specifically choosing f(z) := Tmy1(z) in Cr(I) and rppn =0
in 7], .., then f —0 has an alternation set in I of length exactly m + 2, and it

follows from the known fact that || Tony1lr.,, = 1 that (cf. (1.4))

Bna(f)=1 (n=0,1,--). (2.13)
Obviously, combining (2.12) and (2.13) then gives

im Y, =0 (m=0,1,---). (2.14)
=00

We see however that (2.9) of Theorem 3 is a much more precise form of (2.14).
We next present the construction of Levin [3] for obtaining upper bounds
for Yn42kn where n > 1 and k > 1. (We show later in §3 that these upper
bounds are sharp.)
For ¢ > 0 sufficiently small, consider the complex rational function defined
by

T — 1

h2k,n,a(£€) = Tzk(l‘) ( > (S W§k+n,n\ﬂgk+n,n (n 2 1), (215)

T+ e

where Thx(1) again denotes the 2k-th Chebyshev polynomial (of the first kind)
for any positive integer k. Then,

z—ie\" ”
Re hno(0) = Tur(o) Re{ (255) | € Mhusnan: 216)

For each real z, write & + ic = pe'®, so that [(z — i)/(z + ig)]" = e~ 2", This
gives that

Re {[(z —ie)/(z +1e)]"} = cos(2nb), (2.17)
from which it follows that Re {[z —ig)/(z + ie)]"} has 2n distinct
zeros, namely {z;(¢) := —ecot [%ﬁ] ?Z;l, which are all clustered in an

e-neighborhood of the origin in I. Next, the 2k distinct zeros in I of Tax(z)

. 2k—1
are given by {y; := cos [&Z,%E] o As Tp(0) = (=1)F # 0, these zeros of

Tyor(x) are disjoint from the Zeros_{wj(a)}ﬁzgl for all € > 0 sufficiently small,

and hence
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{2} Ulviis?

are the 2n + 2k (distinct) zeros of Re Aok nc(z) in I, for all & > 0 sufficiently
small. From this, it is not difficult to verify from (2.16) and (2.17) that there
are 2n+2k+1 distinct points {w; (6)}?:—52k of I which interlace these zeros and
for which (cf. [3]) Re hokn.e(z) takes on the values 1 — o(1), with alternating
sign, in these points; i.e.,

(=1)7 Re hogne(wj(e)) = 1—0(1) (j=0,1,---,2n+2k), (2.18)

as e — 0.
With the rational function hgg e of (2.15) and with Proposition 2, we
establish the special case m = 2k +n of

Theorem 4. (Levin [3]). For any pair (m,n) of nonnegative integers with
m+1>n>1,

Y < (m+1>n2>1). (2.19)

Proof: We show that yap4n,n < % With m :=n + 2k where k > 1 and n > 1,
set S(z) = Re hopme(®), L:=2n+2k+1, and g(2) := hak,ne(T) € Toppp
and apply Proposition 2. First note that since n > 1 by hypothesis, then
L > m+2=n+ 2k + 2. The discussion above shows that (2.2) of Proposition
2 is again valid, and from (2.18), we see (cf. (2.4)) that

M = oo 2 12 Re hokpe(wj(e))] > 2—0(1), as e — 0.

Next, a calculation shows that

I1S(2) — i Im g(2)|| 1.y = IRe hokn,e(z) =i Im hogme (@)l ()
= ||hokne(@) Lo =1,

since, from (2.16), ||(ﬁii—€)”]|Loo(I) = 1= ||Tok|lpo(r) and hakn,(0) = 1. Ap-

z—1ie

plying (2.3) of Proposition 2 then directly gives

1
nn S 5N 0). 2.20
72k+ ST 2 - 0(1) (6 - ) ( )

Letting € — 0 in the above expression results in

B | =

Y2k+n,n <
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the special case m = 2k +n of (2.19). The construction for the remaining cases
is similar (cf. [3]). B

In the previous construction, f(z) = 2Re hoy n(z) is a function in C,.(I)
which is simultaneously approximated by the identically zero function in
Toktnn a0d by hogn . (z) in Toktn,n- 10 Figure 3, we graph the function
2 Re hg s () for z in I with ¢ = 0.1, to show its 9 points of near equioscillation
in I. Next, the complex error in this case is just

f(@) = g(z) = hapse(z) (z€1),

and its path, as ¢ increases from —1 to 1, in the complex plane is given in
Figure 4. Note the interesting near-circularity of this path!

Finally, we give the construction of Ruttan and Varga [7] for determining
the upper bound v mi2 < 1/3 for any m = 0,1,---. For any £ satisfying
0 <e<1/(m+1),let m be any fized nonnegative even integer and consider
the following functions

_2ei(_1V)J )
G = flsem) = — T Gmoi o mb). a1
m+1

It is evident from (2.21) that

(o2 N2, o2, ) AF9EY
12](1 m+1)_3( 1),and€](1 m+1:l:s)— 2 , (2.22)

for all j = 0,1,---m + 1. Since each £;(z) is a Mobius transformation, each
£; maps the real axis R onto some generalized circle in the complex plane.
As £j(c0) = 0, this generalized circle necessarily passes through the origin.
Moreover, as the pole of £;(z), namely 1 — (25)/(m + 1) + i, when reflected in
IR, is the point w; := 1 — (25)/(m + 1) — e1, it follows from (2.21) that

1 ; .
Glwy) =5(=1)"  (G=0,1,-,m+1). (2.23)
Thus, from the symmetry principle for Mobius transformations, the image of

R under w = {;(z) is the circle with center (—1)7 and radius 1/3 (since this
circle passes through the origin). It is then geometrically clear that

9 1
[Re EJ'“LOO(]R) ::“EjHLOQ(]R) =3 and ||Im 4]z rr) = 3 (2.24)
for j=0,1,---,m+1.

To extend the results of (2.24), define the real intervals I (m) by
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2k+1
m+1’

Ii(m) := {1— —m_{_l}ﬂf (k=0,1,---,m+1), (2.25)

so that these intervals cover I := [~1,+1], i.e.,
m+1
U Ze(m) =
k=0

From the definitions of £;(z) and Ix(m), it follows (as m is fixed) that

1651 Lo (i(m)) = O(e) forany k #j (ase— 0), (2.26)
and from (2.22) that

2 1 .
IRe £l oorymyy = 35 a0 I Gl gyomp = 5 (= 0,1, m+1).
(2.27)
Next, consider the complex rational function g(z) defined by

m-+1

h(z) = h(z;e,m) Z 25( (2.28)

On rationalizing h(z), we find that

m+41 m+1
=425 ()] {o -1+ By i)
= ki
h(z) = — { - } , (2.29)
z—14 = —c1
kl-—Io mtl

so that h is at least an element of 75, ; ;1. However,the numerator of A(z)
of (2.29) is

— 9% m-+1 )
Ly ghas Z (=1)? + lower terms in 2°(0 < s < m)
3 par

But since m is by hypothesis even, then zm+1( 1)7 = 0, which implies that &
is an element of 77, .1, More preasely, it can be verified that the coefficient
of ™ in the numerator of h(z) of (2.29) is

_ 2(m + 2)ei £0,
3(m+1)
so that h is an element of 7, .5, but not an element of 7, ., for any
s < m. It is interesting to mention here that (2.28) is Just the partml fraction
decomposition of h(z).
With the rational function h of (2.29) and with Proposition 2, we have
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Theorem 5. ([7]). For each nonnegative integer m,

')’m m+2 S (230)

oo|»-n

Proof: For a fixed nonnegative even integer m, consider the real continuous
function s(u) on RR, defined by

1—u?
-1 <u<+1
= ¢ 14u? = =7 2.31
3(u) { 0 , otherwise, (2.31)

so that s(0) = 1,s(£1) =0, and 0 < s(u) < 1 for 0 < |u| < 1. Recalling that
0<e<1l/(m+1),set

m+1 ) 42
Sem(2) Z (=1)’s (————g—"‘—*—l—) (zr € RR). (2.32)

It follows from (2.32) that S, ,,(z) is a real continuous function on RR with

2]
m+1

—1)J
)h—( 1) ,and Se,m(l—};?]—‘:*: ) O(]:07177m+1)

43 +1
(2.33)
Geometrically, we note that S, ,,(z) has m + 2 alternatmg spzkes on I, with
one spike for each of the disjoint intervals [1 — —2_']_—1 g2, 1— E+LI +e% (=
0,1,---,m+1).
With the above definitions, set n :=m + 2, L:=m+ 2, S(z) := S m(2)
of (2.32), and g(z) := h(z; e, m) of (2.28) and apply Proposition 2. With these
definitions, we obtain from (2.22), (2.26) - (2.28) and (2.33) that

Sem(1—

j 2j 2j .
-1y - — = V= = S
(2.34)
as € — 0, so that (cf. (2.4))

M= min [Sem(l-—2—)+ Re (1_—2—)1_1+0() (2.35)

0<j<m+1' 7’ m+1

On the other hand, consider S, ,,(z)—¢ Im g(z) on I. For the particular interval
I (m) of (2.25), it follows from (2.26) that

Se.m(z) — 1 Im g(z) = Se m(z) — 1 Im L (z) + O(e)  (z € I(m)).
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Moreover, a short calculation shows from (2.27) and (2.32) that

1
1Se.m(@) = i Im Le(@) | Low(rimp = 5 +0(6)  (R=0,1,---,m+1),

so that with (2.26),

. 1
19e.m(z) — i Im g(x)||po(r) = 3 +0(e) (ase—0). (2.36)
Thus, it follows from (2.3) of Proposition 2 that

1
Tmm+2 < 3 +0(e)  (ase—0),

and on letting € — 0, we have

1
Ym,m+2 S ga

the desired result of (2.30) when m is even.
For the case when m is odd, one simply modifies the definition of (2.21)
to

=2t (=1)
Li(z) = Li(z;e,m) = 3 - (j=0,1,---,m+1), (2.37)

2 .
2—1—]—;7—{_{_—1—5/13'2

where the numbers {uj}gn:'zl are any m + 2 fixed positive numbers satisfying
0< p; <1,and

m+1 ) m+1 )
Z(—l)f,uj =0 and Zj(—l)ﬁuj # 0. (2.38)
j=0 j=0

An application of Proposition 2 again yields the desired result. B

In the above construction, feom(z) := Secom(z) + Re h(x;e,2m) is the
function in C.(I) which is simultaneously approximated by the identically zero
function in 75, 5,45 and by h(z;&,2m) in 75, 5,4 5. In Figure 5, we graph the
function Se 2(z)+ Re h(z;¢,2) for z in I with & = 0.1, to show its 4 spikes and
its 4 points of near equioscillation in I. Next, the complex error in this case is
just Se o(z) — ¢ Im h(z;¢€,2), and its path, as z increases from —1 to 1, in the
complex plane is given in Figure 6. This path is confined, from (2.36), to the
disk {z € C: |z| < § + O(e)}, but this path does not exhibit near-circularity.

The constructions and the figures of this section collectively show how
differently the functions in C,(I) must be chosen in order to obtain sharp
upper bounds for ¥, in the three cases of (2.9), (2.19), and (2.30).
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§3. Lower Bounds for ymn

To determine lower bounds for the 7y, ,, we describe the following two
results of Ruttan and Varga [8, Theorems 4 and 5.

For a given real or complex polynomial p, let p denote the ezact degree
of p. If R = p/q is continuous on I where p and ¢ are real polynomials, it
is evident that Re R = R can have at most 8p sign changes in I, since each
sign change of R corresponds to a zero of p. But, if R = p/q is a continuous
complez-valued function on I, the number of possible sign changes of Re R on
I depends not only on dp and dq, but also on the magnitude of the oscillations
of Re R in I. This is discussed in the following result of [8]. For additional
notation, || denotes the greatest integers N satisfying NV < z.

Theorem 6. ([8]). Let ¢ =p/q be a complex rational function, with no poles
in I, which satisfies ||Im @||z_ (1) < 1. Assume that there exist real numbers d >
0 and {xj}le, with —1 < @1 < 22 < -+ < zp < 1, for which (with fized )\ =

1 or A=-1)

M=1) Re ¢(z;) >d (j=1,2,---,L). (3.1)
If 9g < 9p and if d > 1, then

L<op+1. (3.2)
Stmilarly, if Oq > dp, then
L < 9q, whenever d>1, (3.3)
and
L< Lap—-i_égj—_—lj, whenever d > 2. (3.4)

- 2

Proof: We shall establish (3.2) using a geometrical argument, suggested by
the work of Levin [3]. Assuming d¢ < dp and d > 1, let B denote the closed
rectangle in the complex plane with vertices + d % 4, so that the circle C' :=
{z 1 |z] = 1} is a subset of B, as indicated in Figure 7. Condition 3.1 and the
hypothesis ||Im ¢||; < 1 imply that the curve (in the extended complex plane)
I'y := {z = ¢(z) : « € R} intersects the vertical sides of B, and hence the
circle C, in 2(L — 1) points as & increases from z; to zr. (Here, points where
I'; is tangent to C' are counted twice.) If ¢(t), for ¢ in I, is such an intersection
of the I'y and C, then

p(t)

q(t)

so that ¢ is a zero of the polynomial real polynomial

2

()" =

?
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P(z) := Ip(z)|* - la(2)[*.

The above discussion shows that there are at l®st 2(L — 1) zeros of P(z) in
1. Since dp > dq, then OP < 28p. Thus, 2(L — 1) < P < 20p, which gives
L < 8p+1, the desired result of (3.2). The proof of the remainder of Theorem
5 is similarly geometrical in nature, but involves many separate cases (cf. [8]).
|

We remark, as shown in [8], that the results of (3.2) - (3.4) of Theorem
6 are sharp, in the following sense: i) there exist complex rational functions,
satisfying the appropriate hypotheses, for which the upper bounds for L given
n (3.2) - (3.4) are attained; i.e., equality can hold in (3.2) - (3.4); and i) for
any positive d with d < 1(< 2), there exist rational functions satisfying all
hypotheses of Theorem 6 except the hypotheses on d in (3.3) ((3.4)), for which
the bound on L in (3.3) ((3.4)) is exceeded.

With Theorem 6, the following lower bounds for v, , can be determined.

Theorem 7. ([8]). Let (m,n) be a pair of nonnegative integers with n > 1,
let f € C™(I\7], s and let Ty and Ro n be respectively rational functions of
best uniform approzimation of f from wp, . and wy, , on 1. Then,

— Runllro 1 .
and
”f_Rmn”L (€] 1.
|l Lo z 2>n>1. 3.5
If = rmnllLe(n >3 fmazanz &
Consequently,
1.
and

Proof: Let s := || f = Rmnllzo(n)/IIf = "monllLo(r), SO that 0 < s <1, and set
e:=f—Tmmn, Rmn =Dp1/q1, and rp, n = pa/ga, where the pairs (p1,¢1) and
(p2,q2) are assumed to contain no common factors. Since f ¢ . ,, we may
assume, upon multiplication by a suitable nonzero constant, that |lel|z_ () = 1,
so that

s=|If = Rnnllren- (3.9)
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Since T, is the best uniform approximant of f from 77, ,, on I, there
exist (cf. (1.5)) at least

L > 2+ max [m 4 8gz; n + Opy] = m +m+2 — min [m — dpa;n — dgs] (3.10)

distinct points {a:j}f:17 with =1 < 1 < 9 < -+ < z < 1, such that
e(z;) = (=1)X for all 1 < j < L (with fixed A = 1 or A = —1). Again,
upon multiplication by —1 if necessary, we may assume that A = 1, so that
e(z1) = -1

With these normalizations, then

s =f = Rmnll ety 2 1(25) = Rrnn(25)] = [(=1) 4 Pmn(5) = B, ()]

for all 1 < j < L, which implies, on taking real parts, that

(—1)j {Re Rypn(zj) = Tmn(z;)} 21—5s  (1=1,2,--- ,L). (3.11)

Next, set ¢(z) = (Rmn(z) = rmn())/s = p(x)/q(z), where p and ¢ are
complex polynomials with no common factors. From (3.11), it follows that

(=19 Re ¢(z;) > (1~s)/s=:d (j=1,2,---L), (3.12)
and since (cf. (3.9)) s = [If = Rmulle(n 2 [Im Rmn

have

ILOO( Iy, we similarly

1Im @l < 1. (3.13)

Consider the sought result of (3.5) of Theorem 7, which, with our reduc-
tions and definitions, is the statement that

m+1>n>1implies s > 1/2,

or equivalently, using the contra-positive, that s < 1/2 implies m+1 < n; Le.,

s < 1/2 implies m +2 < n. (3.14)

To establish (3.14), assume that s satisfies 0 < s < 1/2, which gives from (3.12)
that d > 1. Because all the hypothesis of Theorem 6 are fulfilled, we see from
(3.2) and (3.3) of Theorem 6 that

L <dp+1if 8g < dp, and L < dq if 0q > Op. (3.15)

Supposing that dg > dp, the second part of (3.15) gives L < Jq, which can
be expressed from (3.10) and the definitions ¢ = p/qg = (Rmpn— Tmn)/[$ =

(Pl/(h - p2/92)/3a as
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m + m + 2 — min [m — dpa;n — 9g2] < 9g = g1 + 0ga,

or equivalently, as

{n—08q}+{(n —0¢z2) — min[m — Opa;n — dg2]} <n— (m+2). (3.16)

But as each term in braces of (3.16) is clearly nonnegative, then n—(m+2) > 0,
giving m 4+ 2 < n, the desired result of (3.14), under the assumption that
dq > Op. However, as similar arguments show that the assumption dq < Op
leads to a contradiction, then (3.5) of Theorem 7 is valid. But then, it is evident
from (3.5) that

1
Yma 2 5 mA L2021,

and as the reverse inequality also holds from (2.19), then, as deduced in Levin

31,
1.
7m,n:‘2‘1fm+12n21>

the desired result of (3.7). Similar arguments (cf. [8]) establish (3.6), from
which, with (3.20), the desired result of (3.8) follows. H

We note that the strict inequality in (3.5) gives us the stronger result that
there is no f in Cr(I)\7y, , for which

”f - rm,n”Lm(I)

1
Y = 5 fm+1>n>1, (3.17)

where rp n € 7], , and Ry, , € 5, , are respectively the best uniform approx-
imation from 77, . and g, ,, of f on I. Thus, ym,x is a true infimum (and not
a minimum) as defined in (1.11), when m + 1 > n > 1. But the same is also
true, for the same reasons, for Ym mt2 = 1/3 for all m > 0, and for v, =0
for all n > m + 3. This is why, in retrospect, that all the constructions of §5.2
depended on a small parameter € > 0.
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