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1 INTRODUCTION

Understanding the structure of defects in liquid crystals is of fundamental and
practical importance. In spite of considerable analytic® and numerical’>>*%'2 work,
unresolved questions remain. In an inhomogeneous liquid crystal, spatial variations
of both the director and the scalar orientational order parameter contribute to the
free energy. A consistent description is provided by the Landau-de Gennes free
energy model® in terms of the order parameter tensor and its derivatives.

To determine the equilibrium configuration of a system, the spatially varying
order parameter field which minimizes this energy must be calculated. Since the
order parameter tensor contains five independent components, this calculation is
formidable; we are only aware of two instances!-!? where it has been carried out.
We have undertaken to develop a general numerical procedure to carry out this
minimization for a variety of geometries. As a concrete first problem we consider
here a nematic confined to a cylindrical capillary with homeotropic boundary con-
ditions and strong anchoring on the surface of the cylinder, and with oppositely
directed “escape in the third dimension™ director configurations at the ends in
order to force the existence of defects. We have developed here a representation
of the order parameter tensor which results in a simple formulation of the min-
imization problem. The numerical procedure is a direct minimization based on
Newton’s method and successive overrelaxation.

2 PROBLEM

Let ) C R? be a bounded, connected, open region with a “sufficiently smooth”
boundary, i.e., any piecewise-smooth bounded region for which the Divergence
Theorem applies. For Q(x) a sufficiently smooth, symmetric, traceless, 3 X 3,
order parameter tensor field on (), the Landau-de-Gennes free-energy density (in
the absence of surface terms and applied fields) is defined by (see, for example,
Reference 10)

1 1 1
fQ = 5A1(QY) - 3Bt(Q) + 7C (@
1 1 1
+ 'Q‘LlQaﬁ,'rQaﬁn + ‘Q'LZQaﬁ»ﬁQa%'v + ‘2‘L3Qaﬂf7Qa%ﬁ
and the associated free-energy functional is defined by

H@zLﬂ@~

Here we use the conventions that such integrals are with respect to volume, sum-
mation over repeated indeces is implied, and Q,, , denotes 40, 4/0x.,. We seek to
minimize F(Q) over “admissible fields” that satisfy prescribed conditions on the
boundary 2.
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From a mathematical point of view, the appropriate “smoothness class” is ¥,
the space of tensor fields whose components have derivatives that are square
integrable (i.e., Q,5, € L*({2)). We let ¥ denote the affine subspace (of H')
containing all tensor fields that take on the prescribed (“essential”) boundary
conditions, and we denote by 9} the subspace of all ¥ fields that vanish on 9Q.

A detailed mathematical analysis of this problem will appear elsewhere. For now
we mention that appropriate analogues of the scalar L? and H' inner products
here are given by

(Q)P)O = /ntr(QP)’ (Qap)l = /{;{Qaﬁ,‘yPaﬁ,w +tr(QP)} .

The spaces £? (symmetric, traceless tensor fields with square-integrable compo-
nents) and ¥, equipped with these inner products, are Hilbert spaces.

3 SIMPLIFICATIONS

It is convenient to express the problem in dimensionless terms. We define length
and energy spaces X and E by

_(Lie\Y? _ B*X®
X = -—BT y E = 03 s
dimensionless variables
- To - C - Ly = L3
e =—, A=—=—A, Lo=—, L3z:=—,
Ta =X B2 2EI BT

and a scaled order parameter

c
Q= ~B—Q.
In terms of these, we get the dimensionless free-energy functional
- FQ -
r@ =9 - ﬁf(Q) ,
a
where the dimensionless free-energy density f takes the form
— 1— 2 1 =3 1 =2
@) = At(Q) = 3tr(Q) + 1tr(Q )?
- = - = = los e —
t5Qap5@any + 5L2Q0p 5Qor 5 + 5L3@as 700y 5
This is in the form in which we will treat this function, and to simplify notation,
we will drop the overbars from the dependent and independent variables in sub-
sequent formulas.

For the case of prescribed Dirichlet boundary conditions on the entire boundary
90} (the case we consider here), we can, without loss of generality, omit either the
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second or third (L, or L,) gradient term. The reason for this is the following. It
is a consequence of the Divergence Theorem that

/ﬂQaﬁ"rPamﬁ = /nQaﬂ,ﬁPa’yn + /an{Qav,ﬂ”'r = Qyg,yna}Pap

for all sufficiently smooth, symmetric tensor fields Q and P—here n denotes the
outward unit normal on d€}. Now the condition (necessary and sufficient) for Q in
¥k, to be a stationary point of F(Q) is (see below)

[ AA(QP) = tr(QQP) + tx(@)(QP) + Qugy Pos
+L2Qap,pPavyy + L3QapyPays } =0, YPEH].

The vanishing of P on the boundary eliminates the boundary integral in the previous
identity and yields

/ QGﬁy‘YPOf'Y,ﬂ = / Qaﬁ,ﬁpa'y,'y;
o (9]

for all such fields. It follows that the stationary points are the same for all three
of the functionals

1 1— 1—
+ Qa5 @asis + 3T1Qu1Qursy + $TaQupn Qs |

/ﬂ {%Xn(qz) - %tr(Qi*) + %u(@?)?
+ %QaﬁﬁQaﬁ,‘y + %(fz + ZE))Qaﬁ,ﬁQG%‘Y} ’
and
[ {5Am@) - 62(Q%) + 2t1(Q?)?
0 12 3 1

1 1
+ 'éQaﬁeraﬂn + §(L3 + L2)Qaﬁ,’1Qa7,ﬂ} .

For our problem, we will discard the L; term. It is important to note that if a
problem does not have Dirichlet boundary conditions on the entire boundary, then
this is not necessarily justified.

From a numerical standpoint, the L, and the L, gradient terms require different
treatment. The first expression simply consists of a sum of lengths squared of the
gradients of the components of Q. There are no cross couplings or mixed-derivative
terms involved, and the discretization that results for the system is very similar to
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that for simpler, scalar equations. The L, term of the density, on the other hand,
involves more complicated couplings and mixed derivatives.

The L, term contains contributions from the elastic deformations splay, twist,
and bend. In the uniaxial case, the “equal elastic constant” approximation (K, =
K, = K;) corresponds to L, = Ly = 0 (cf., [11, pp. 156—7]). We shall make this
approximation in the numerical experiments below, although most of the following
analysis applies to the more general problem.

4 A REPRESENTATION FOR Q

For analytical as well as numerical purposes, it is necessary to use a good repre-
sentation for the tensor field O, which has nine components but only five degrees
of freedom because of the contraints of symmetry and tracelessness. Any five “‘in-
dependent”” components of O can be used. We have found it simpler (for our model
problem) to use a representation based on the following. Define the five 3 by 3
matrices

3-3 13613
6
E, = —‘Z:i‘—% 3 , Eq = L ,
_¥3 VA
3
(1
0 X2 V2 0

2 2 ﬁ
E3 = )g 0 s E4 = 0 s Es = 0 3
0 2 2 g

Here omitted entries of these matrices are zero. Any symmetric, traceless, 3 X 3
tensor can be uniquely written as a linear combination of these basis elements. We
express Q then in the form

Q(z) =q(z)E1+ - +gs(z)Bs (¢ €RQ).

The transformation from Q to (¢, , . . . , g5) can similarly be expressed in terms
of a simple linear relationship.
The basis elements (1) have the important property

tI‘(E,'EJ') = (5,'j ,

which helps to simplify various terms in the free-energy functional, e.g.,

/tr(QP)z /(q1p1+-~-+q5ps)
Q 9]

and
/ QapyPapy = /ﬂ(V(Il -Vpr+---+Vgs - Vps).
aQ

The transformation Q <> g provides an isometric isomorphism between £*(Q2) and
L2(Q) (:= LYQ) X - -+ x L*{)), as well as between #'(2) and H'(Q)°.
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In terms of this representation, the density for the simplified model takes the
form

@ = 5QupyQaps+ 3AU(@) - 5tx(@) + (@)’

1 1—
= §(|V<11|2 + -+ |Vgs|?) + EA(q'f7 + o+ qd)
1 1
- §f3(Q1,~-,Q5)+ Z(Qf+"‘+qg)2,

where f; is a homogeneous polynomial of degree three given by

V3 3
fa(qr, ... q5) = —G—-(q'“i‘ +¢3) + -\é—_(qx + ¢2)(43 - 9192)
3+ V3 3—-3
+ (~ 4\/_«11 + 4\/_412) A

) -+ 1 2)9%+—7

L (3= V3 3+v3 \ 5, 3
) .
\/59’3‘14‘15

Our representation therefore yields a very convenient formulation for the density
in this problem.

In this form, the mathematical structure of the functional, which we consider
more carefully in the next section, becomes transparent. A scalar-field analogue

is given by
/{){chpl +2A<p —3¥ T390

whose Euler-Lagrange equation is

~Vip+Ap—p? + 2 =0.

5 ALGEBRAIC STRUCTURE AND STATIONARITY CONDITIONS

The functional F can be written as a sum of three multi-linear forms:

FQ)=4a(Q,Q)+4Q,Q,Q)+¢(@,Q,@,Q),

where
1 - - _
a(Q, P) := 3 / {QapyPapy + L2Qap,pPoyy + L3Qap,yPays + AQapPpa},
[}

and

1

4@ P.5)i= = [ QuoPiSra oQPST) =} [ (QuaPau)(SraTin).
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As a function on #1(Q) to R, F is infinitely differentiable. The condition for O
in ¥} to be a stationary point of F is the vanishing of the “gradient” (Fréchet
derivative)

DF(Q)P=0, VYPeEH;.
The stationary point Q will be a local (or relative) minimum if
DF(Q)(P,P)>0, VPeH};

it will be isolated (or “locally unique”) if this inequality is strict for all such P +
0.

These derivatives can be easily computed in terms of the formsa( -, - ),b( -, -, +),
and ¢( -, -, -, ). Exploiting their symmetries, we get

DF(Q)P =2a(Q,P)+3bQ,Q,P)+4¢(Q,Q,Q,P)
and
D*F(Q)(P,P)=2a(P,P)+6b(Q,P,P)+4¢(Q,Q,P,P)+8¢(Q,P,Q,P).
For the sake of completeness, we mention that

DPF(Q)(P, P, P)
D*F(Q)(P, P, P, P)

6b(P, P,P)+24¢(Q, P, P, P),
24¢(P, P, P, P),

Il

and D3F = DSF = - - - = (.

Thus F has the structure of a real quartic “polynomial” on 9¢'. Direct discreti-
zations of F, via finite elements or finite differences/quadrature, will lead to finite-
dimensional problems with exactly the same algebraic structure.

6 A MODEL PROBLEM IN A CAPILLARY

For concreteness and as a first application, we consider a nematic liquid crystal
confined to a capillary with homeotropic anchoring. We take

Q:={(r0,2)|]0<r<R 0<0<2m 0<2<L}.

For boundary conditions, on the lateral surface (r = R), we assume strong hom-
eotropic anchoring, that is,

Qus(@) = 5(3nal2)ng(z) ~ 6ap),

where n(x) denotes the outward unit normal to the surface at x € (). At the ends
of the cylinder (z = 0 and z = L), we impose axially symmetric, oppositely directed




E. C. GARTLAND, JR., P. PALFFY-MUHORAY AND R. S. VARGA

436/[914]

“escaping in the third dimension” director fields®: if s denotes the angle of incli-

nation of the director from the axis of the cylinder, then we impose

A portion of the director field of one of our starting configurations is shown in

Figure 1. It is “‘sliced” along the plane 6 = 0 (continued to 6§ = w), and it clearly

indicates the boundary conditions. The lengths of the line elements in this picture

(and all subsequent pictures) are proportional to the largest eigenvalue of O, and

the segments are directed parallel to the corresponding eigenvector at each point.
Their directions therefore represent the local director, and their lengths the local

scalar order parameter S. The boundary conditions force the equilibrium field to

Va
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FIGURE 1 Starting configuration director field (6 = 0 slice).
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have at least one interior defect, and we are interested in exploring the resulting
structure.

7 FINITE-ELEMENT DISCRETIZATION

We consider now the question of discretizing the problem

.
g2 F@

with
F@) = [ {5000Qun + yA0(@) - J1x(@) + Ju(@' |

where Q is the cylinder of the previous section and the boundary conditions are
as described there. Several issues need to be addressed. We have already discussed
an effective approach to representing Q and handling the constraints for this prob-
lem. It is natural to use cylindrical coordinates for the independent variables. The
tensor field Q can be expressed with respect to a fixed Cartesian frame of reference
(since the only derivative terms in the density are Vg, . . . Vgs)—however, when
the L, or L, gradient terms are present, it is necessary to use the local cylindrical-
coordinate frame in order to achieve a discretization that is rotationally symmetric.
We mention that transforming such gradient terms to local cylindrical coordinates
complicates the functional somewhat, since these terms are invariant only under
rigid-body rotations.

The Euler-Lagrange equations for the simplified model problem form a semi-
linear elliptic system of five partial differential equations with the following compact
form:

~ V2 +Agi— Piqr, ..., q5) + (P +-+¢¥)a=0inQ, i=1,...,5, (2

with ¢;(x) , ..., gs(x) prescribed for x € Q). Here the P, are homogeneous
quadratic polynomials given by

V3 3++3 3-3
Pi(q1,...,q5) = ?(qf—2q1q2—q§+q§)— 12 q + 12\/_‘1?
V3 3-V3 3+3
Pa(q1,...,q5) = T(—Qf“’241¢12+qg+qg)+ 50— 12‘/_(13
V3 1
Pi(q1,...,q5) = T(‘II + q2)q3 + 7—'2’(1445
3+3 3-3 1
Pi(qr,...,q5) = (— 12 q1 + 13 <12)<I4+7—-§Q3Q5
3-v3 3+3 1
Ps(q1,...,95) = ( 12 Q- 19 fu)%-ﬁ-ﬁ%%-
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This system can be discretized via finite differences, finite elements, or other
approaches.

In the case where L, or L, is nonzero, the form of (2) becomes more complicated.
Then there is coupling in the derivative terms, there are mixed derivatives, the
Euler-Lagrange equations are more complicated in general, and a 27-point (instead
of a 7-point) stencil is required. With an eye towards future enhancements (in-
volving the incorporation of the other gradient terms, surface terms, more general
boundary conditions, and field terms), we have chosen to discretize the free-energy
functional directly using a finite-element procedure, which we now briefly describe.

The cylinder (} is partitioned into geometric “elements”

Qjm :={(r,9,z)395<9<9j+1, T <7 < Tryt, z1<z<zl+1},

fory=0,...,J-1,k=0,...,K—-1,andl=0,...,L — 1, where

0=6<th < ---<by=27r, 0=rg<r < ---<rg=R,

and
0=znn<znn< <2z =1L.

This gives JKL elements and (JK + 1)(L + 1) nodes. There are two different
kinds of elements: “wedge” type (case k = 0) with 6 nodes and edges along the
axis of the cylinder and “shell” type (case k = 1, ..., K — 1) with 8 nodes.

Because of the “connectivity” of the nodes along the cylinder axis to the entire
innermost ring (r = ry, k = 1), it is natural to order/index the nodes with respect
to 0 (or j), then r (or k), then z (or /). This gives rise to global finite-element
matrices with a block-tridiagonal structure, each block corresponding to all mesh
points in a given z-plane.

We use tensor-product trilinear basis functions. Denote A8, := 6,, with similar
expressions for Ar, and Az,. Define the piecewise-linear “hat functions”

6 —0;-1
— ;1 <6<6;
Ae,«_le’ imh=T =
9;(0) =1 fisr1 -0 0: <0 <6
Aa] ) ) = =Uj+1
0, otherwise .

The functions R, () and Z,(z) are defined in analogous fashion. The “interpolating
basis” functions

@i(r,z) == Ro(r)Zi(2), 1=0,...,L,
and

‘P.‘i“(r’ g, z) = Rk(r)ej (H)Zl(z) s

j=0,...,J-1L,k=1,...,K,andl =0, ..., L,then have the property
that each has the value one at a single distinct node and vanishes at all the other
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nodes. These functions also have the desirable property of being locally supported,
that is, identically zero outside some small region.
We seek a finite-element approximation to the tensor field Q in the form

5 L J=-1 K
Q(r8,2) = QMr,0,2)=>_ > S ha(rDE+ > alieiu(r,0,2)E;
i=1 [=0 J=0 k=1

Any such Q" isin #! and can be made to satisfy the essential boundary conditions
(at least to second-order accuracy) by appropriately fixing the scalar coefficients
associated with the boundary nodes.

A measurement of the fineness of our partition is given by

h:= max {RAG;, Ary, Az} .
]Y b

Let $* C %! denote the (finite-dimensional) linear subspace spanned by our basis
functions; let $% C S* denote the affine subspace of all functions that interpolate
to the boundary data; and let S§ C S” denote those functions that vanish on the
boundary. Our computational problem then is to determine

in F(Q").
o, (@)

This is a large sparse unconstrained minimization problem. It has on the order
of 5JKL unknowns—{five degrees of freedom at each interior mesh point. In the
next section, we discuss an iterative procedure to accomplish this minimization.
We first mention some properties of the discrete functional F(Q").

Let q, = (g")Y_, denote some natural ordering of the coefficients g/ and
qly, and let @ (r, 0, z) denote the similarly ordered basis functions ¢,(r, 2)E;
and @;,(r, 8, z)E;. Then the quadratic part of F(Q") takes the form

af A*qn = ¢h AR, ¢b

where
Az,, = a(Py, ).

This “global finite-element matrix’” can be assembled from local stiffness and mass
matrices. These local matrices (which just involve integrals over a single element)
are either 30 x 30 or 40 X 40, depending on whether it is a “wedge” or a “shell”
type element. There are simplifications because of our representation for Q and
because of the tensor-product nature of the geometry and basis functions. However
these matrices are large, and there are many integrals to be evaluated. We have
found that using a symbolic computing package (“vaxima” in our case) was helpful
for this purpose.




440/[918]  E. C. GARTLAND, JR., P. PALFFY-MUHORAY AND R. S. VARGA

It becomes too costly to treat the contribution to F(Q") from the b( -, -, -)
and ¢( -, -, -, - ) forms in this “consistent” way, viz.,

N
H(QM QM QM = D qhaleh b(Du, By, 2,);

#yv,0=1

“mass lumping” is recommended. This replaces exact integrals over generic wedge
and shell elements e = {0 <r < Ar, 0 <0 < A0, 0 <z < Az}ande,: = {r, <
r<ry+ Ar, 0 < 6 < A0, 0 < z < Az} by quadrature rules:

/f (fi 4 +f6)Ar AOAz

and

/ f= {(3TO+A")(f1+f2+fs+f6)+(3r0+2Ar)(f3+f4+f7+f8)}ArA9Az

Here the nodes have been ordered in the natural (increasing 6, then r, then z)
way.
This maintains the same degree of approximation in the discretization, and it
eliminates the cross-coupling of different nodes in expressions of the form b(®,,
®,) and (P, ®,, ,, @.). In the lumped-mass approximation, these forms
simply contribute only to the 5 X 5 diagonal blocks.

8 MINIMIZATION

Our problem is originally posed as a minimization problem, and we have attacked
it directly as such (rather than dealing with the Euler-Lagrange equations). It is
natural to use Newton’s method (applied to the gradient equations) to approximate
the local stationary points since the exact gradients and Hessians are easy to con-
struct here—the algebraic structure of the discrete “lumped-mass” functional

FHQ) = a(Q",Q") + " (Q", Q" Q") + " (@*, @", Q" Q")
(where b*( -, -, -)and ¢*(-, -, , ) denote the lumped-mass approximations
tob(-,-,-)andc(-, -, -, ))isidentical to that of F(Q).
A basic Newton step, given the current approximate solution Q" € S%, is to
solve the linear system

D FM QM) (AQ", PPy = —DF*(Q*)P*, VP e St
for AQ” € St and then update:
Qh — Qh + AQh .
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This is based on the local quadratic model
1
FMQ + AQM) = FM(Q") + DF*(Q")AQ" + §D2F"(Q")(AQ", AQY),

which is minimized by the solution above if the Hessian D2F(Q") is positive def-
inite.

Now this requires that a large sparse linear system of equations must be solved
for the components of AQ”. It is most efficient to solve this by some iterative
procedure—a second (“‘inner”) iteration. Various questions arise: how accurately
should this linear system be solved before doing the Newton update, what if D2F(Q*)
is not positive definite, etc. The procedure we chose to implement (given time
constraints and the “first-effort” nature of the project) is known as One-Step Block
SOR-Newton. It proceeds as follows.

Successive sweeps are made through the mesh. At each mesh point, one step of
the minimization is made over the five unknowns at that point (augmenting the 5
% 5 Hessian along its diagonal if necessary to force it to be positive definite). So
if we let g(q,, ..., qs) denote the discrete free-energy functional as a function
of the five generic nodal unknowns g, , . . . ., gs, then we solve the system

(V29(q1,---,q5) + oI )Ag = —=Vg(qu,...,gs5)

and then update
g —q+wiq.

Here o and w are augmentation and overrelaxation factors.

This algorithm was used to perform the numerical experiments described in the
next section. Although the algorithm is robust, it is slow. Several enhancements
are planned, and we plan to carry out a detailed numerical analysis of these in a
subsequent paper.

9 NUMERICAL RESULTS

We performed several numerical simulations for the capillary problem using the
scheme described above. We report our results for problems with parameters
tabulated below. All calculations were done on the CRAY Y-MP8/864 at the Ohio
Supercomputer Center. No effort has been made yet to analyze and enhance the
performance of the code on this machine (other than the optimization done by the
CRAY Fortan compiler). Starting configurations were taken to be either (1) a field
of zero tensors throughout the interior (“isotropic” initialization) or (2) an ad hoc
tield constructed to qualitatively resemble a single point defect at the center (‘‘point
defect” initialization) which is pictured in Figure 1, or (3) primitive continuation
from a previously computed field at a nearby temperature.
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TABLE I
Problem Parameters for Numerical Experiments
radius 20
length 40
r mesh lines 40
# mesh lines 8
z mesh lines 80
unknowns 123,635
A (“temperature”) | —.2,—.1,...,.3

We strived for an accuracy of three to four digits. The iteration was terminated
when the seventh digit of F”(Q") had settled down and the gradient DF*(Q") had
reached an acceptably small tolerance. Computing times ranged from around 15
cpu minutes to 1.5 cpu hours. The slowest times were in the low-temperature
simulations where the solution that had been continued from the ‘“‘isotropic” ini-
tialization became unstable and the “point-defect” initialization was also very far
from the eventual fully three-dimensional biaxial solution field. Summary infor-
mation and accompanying figures appear below.

The solutions for A = .3, .2, and .1, and .0 are essentially axially symmetric
and consist of smaller and smaller isotropic cores at positions removed from the
boundary where order is rigidly imposed. This solution loses its stability between
.0and — .1, where a truly three-dimensional (not axially symmetric) biaxial solution
emerges. The distinction between these two solutions is well illustrated by the
behavior of the three eigenvalues of Q" along the axis of the cylinder.

10 CONCLUDING REMARKS

These results require some interpretation and some further exploration. The high-
temperature solution is distinguished by the fact that it possesses a dominant ei-
genvalue pair. The eigenspace of this pair is a plane parallel to the xy-plane. If we
consider the unique (nondegenerate) eigenvector to correspond to the diretor, then
this configuration may be viewed as a uniaxial nematic with a negative order pa-
rameter. Since all the eigenvalues are small, this inner region is nearly isotropic.
As the temperature is lowered, the pair of eigenvalues separate indicating the
emergence of a preferred direction in this plane. As we further lower the temper-
ature, we see what appears to be an abrupt transition in the middle of the sample
to a uniaxial configuration with the director normal to the symmetry axis of the
cylinder.

For this configuration, boundary conditions require the director to change di-
rection by 90 degrees between the center and the ends of the cylinder. Rather than
by a continuous rotation of the director, this is accomplished by one of the smaller
eigenvalues becoming dominant and its associated eigenvector assuming the role
of the director. In the region where this interchange of dominant eigenvalues takes
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FIGURE 9 Eigenvalues (A = .2).
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place, the system is strongly biaxial. Similar behavior was observed in the vicinity
of a disclination of strength 1/2 by Sluckin in Reference 12.

This low-temperature solution is three-dimensional, not axially symmetric, de-
spite the fact that the geometry and boundary data are completely symmetric about
the axis of the cylinder. Because of the rotational symmetry of the solution, we
actually get an infinite family of solutions here. This nonuniqueness (and associated
non-positive-definiteness of the Hessian D?F((Q")) certainly contributes to the
degradation of the convergence rate of our iterative procedure.

We intend to explore this problem further. Improved visualization techniques
are needed. It is also of interest to carefully resolve the transition from the high-
temperature solution to the family of three-dimensional solutions and determine
any “overlap” temperature range where both are stable or meta-stable. We also
intend to consider the effect of different sizes of cylindrical capillaries and different
ratios of radii to lengths. These factors have been found in other types of simulations
and experiments to influence the number and distribution of defects (see References
5,7 and 13).

Further enhancements that are planned include the addition of other gradient
terms to the free-energy density, the addition of surface terms (and allowance for
weak anchoring), and the incorporation of electric and magnetic field effects. We
also intend to include periodic boundary conditions at the ends of the cylinder and
to consider other geometries.

Enhancements of the numerical procedures will mainly be concerned with im-
proving the convergence properties of the iterative scheme. One-step minimizations
over larger blocks (entire z slices, for example) will be implemented, as will the
mechanism to relax on multiple levels of coarse to fine meshes. In appropriate
settings, such multi-level procedures enjoy essentially optimal convergence prop-
erties (in the sense that the work required to iterate to convergence grows linearly
with the number of unknowns). An improved continuation procedure will be uti-
lized to follow a solution branch parametrized by the temperature A. Another
numerical issue that requires addressing is the implementation of procedures to
cope with the singularity of the Hessian at the three-dimensional solutions families.
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