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ABSTRACT. We continue the work of Szegé and others
on describing the convergence of the zeros, {zkn}p.,, of
the normalized partial sum sn(nz) of e* where sn(zs
Z;L:o 23 /41, to the Szegd curve Do, where

Doo i={z€ C:|ze! 7% =1 and |z| < 1}.

It turns out that the convergence rate of these zeros to D is
exactly O(1/+4/n), as n — oo, whereas this convergence rate
improves to O((logn)/n), as n — oo, on compact subsets of
A\{1}, where A := {z € C: |z] < 1}. We further show that
there are new curves, Dy, now depending on n, for which the
zeros of sp(nz) are O(1/n?) in distance from the curve Dn,
on any compact subset of A\{1}.

Included also are a number of figures which illustrate these
results graphically.

1. Introduction. With s,(z) := >°7_;2//j!, n > 1, denoting the
familiar partial sum of the exponential function e*, we investigate here
the location of the zeros of the normalized partial sums, s,(nz), and
the rate at which these zeros tend to the Szegé curve Do, defined by

(1.1) Do :={2€C:|ze!™*| =1 and |2| < 1}.

By way of review, the well-known Enestrom-Kakeya Theorem (cf.
Marden [6, p. 137, Exercise 2]) asserts that, for any polynomial pn(2) =
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" a7 with a; > 0, 0 < j < n, all the zeros of p,(z) necessarily lie
j=04j J J

in the annulus
. a; a;
min [ — | <|z| < max ~— .
0<i<n \ @441 0<i<n \ @41

Applying the final inequality above to the partial sum s,(z) of €*
immediately shows that s,(z) has all its zeros in [z| < n, for every
n > 1. A sharpened form of the Enestrom-Kakeya Theorem (cf.
Anderson, Saff, and Varga [1, Corollary 2]) actually shows that all zeros
of 5,,(2) satisfy |z| < n for any n > 1. Thus, if {2}, }}.; denotes the set
of the zeros of the normalized partial sum s,(nz), then these zeros lie
in the closed unit disk A := {z € C: |z| < 1} for every n > 1, and they
lie in the interior of A for every n > 1. (This can be seen quite clearly
in Figure 1.) Consequently, compactness considerations guarantee that
the set of all zeros of all normalized partial sums {s,(nz)}5%, have at
least one accumulation point in A.

In a remarkable paper in 1924, Szegd [11] showed that each accumu-
lation point z (of zeros of the normalized partial sums {s,(nz)}5%;)
must lie on the curve Dy, of (1.1), and, conversely, that each point of
Do, is an accumulation point of zeros of the normalized partial sums
{sn(n2)}%2,. Subsequently, it was shown by Buckholtz [2] that the
zeros of s,(nz) lie outside the curve Dy, for every n > 1. To indi-
cate these results, we have graphed in Figure 2 the 16 zeros of s16(162)
(these zeros being represented by x’s), along with the Szegé curve Do,
(cf. (1.1)) and DA, the boundary of A. The same is done in Figure 3
with the 27 zeros of s27(272).

Figures 1, 2 and 3 tend to indicate that the zeros of s,(nz) converge
in a seemingly “regular” way to the curve D, and these figures also
indicate that this convergence seems slowest in a neighborhood of the
point z = 1 of Dy,. As a measure of the rate of convergence of these ze-
ros to the curve D, Buckholtz [2] established the result that the zeros
{2k.n}2_, of sn(nz) all lie within a distance of (2e)/y/n from Dy, i.e.,

with the notation dist [{zk 5 }7.1; Doo] 1= maxi<r<n(dist (24,0, Doo])s
then

. 2e
(1.2) dist [{zkn}pe1; Do) £ —=, alln>1.

vn'
This implies, of course, that
(1.2") Tim {v/n - dist [{zk 0 }7o1; Dool} < 2€ = 5.436 563.
n—odo
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{
—-1.00 -0.80 0.00 0.50 1.00

FIGURE 1. Zeros of {sn(nz)}4% .

Based on results of Newman and Rivlin [7] and Saff and Varga [9], we
will easily deduce here that the exponent, —1/2, of n in the upper bound
of (1.2) is best possible. More precisely, we have below in Proposition 1
(whose proof is given in Section 2) that the limit inferior of the quantity
in (1.2') is positive.

Proposition 1. If {zx.}7., denotes the zeros of sy(nz) and if
t1 denotes (cf. (2.2)) the zero of erfc(w) := (2/v/7) I et dt with
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1
-1.00 -0.50 0.00 0.850 1.00

FIGURE 2. Zeros of s16(162).

Imt; > 0 which is closest to the origin, then

(1.3) lim {Vn - dist [{2kn}7—1; Doo]} > (Imt; + Ret;) = 0.636 657.

On examining Figures 2 and 3, we note that there is apparently faster
convergence (to the curve Do) of those zeros of {2} ,}7._, which stay
uniformly away from the point z = 1. In fact, if we use the open circle
Cs about the point z = 1, 1.e.,

(1.4) Cs:={ze€C:|z—1]< b}, 0<b6<]1,
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| I
—-1.00 -0.50 0.00 .80 1.00

FIGURE 3. Zeros of s27(27z2).

to exclude points of {z,}7_, near z = 1, this observed faster conver-
gence can be quantified. More precisely, we shall prove in Section 2 the
new result of

Theorem 2. If {zxn}}_, denotes the zeros of the normalized partial
sums sn(nz) and if 6 is any fived number with 0 < § < 1, then (cf.

(1.4))

logn

(15)  dist [{2k.0}721\Cs; Doo] = O ( > . asn— o0

n
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We remark that the result (1.5) will also be shown to be best possible,
as a function of n.

It is natural, on seeing the seemingly “regular” way the zeros
{zkn iy of sp(nz) are distributed in Figures 2 and 3, to conjecture
that there is a smooth curve D,, (dependent on n) in the unit disk A
which provides a much closer approximation, than does the curve D,
of the zeros {zin}y_, of sp(nz). As already suggested from the work
of Szego [11], we set

1—2z

D, = {z €C:|ze! ™" = 7,V2mn —}, |z| <1, and
z

-2
|arg z| > cos " (n )},
n

for all n > 1, where, from Stirling’s formula,
(1.7)

(1.6)

n! PR 139 s o
Ty = e = —_ - T — 00.
" pneny/2mn 12n ' 288n2  51840n3 ’

We remark that log 7,, can be expressed (cf. Henrici [5, p. 377]) in terms
of the Binet function J(z):

n«l n—S n-—S n-«?’ n——9

logr, = J(n) &2 — +1188m”.'

12 360 1260 1680
Our next result, which will be proved in Section 3, shows that D,, of
(1.6) is a well-defined curve in the closed unit disk A, for any n > 1.

Proposition 3. For each positive integer n, and for each fized real
number 6 with |0] > cos™" ((n—2)/n), there is a unique positive number
7 = 1r,(0) such that z = re'® lies on the curve D,, of (1.6).

With Proposition 3, we shall prove in Section 3 the new result of

Theorem 4. If {2k ,}7_; denotes the zeros of the normalized partial
sums sp(nz) and if § is any fized number with 0 < § < 1, then (cf. (1.4))

1
(1.8) dist [{zk,n }r—1\Cs; Dn] = O (ﬁ) , asmn — o0o.
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As in our previous new results, the result (1.8) will also be shown to
be best possible, as a function of n.

To illustrate the result of Theorem 4, we have graphed the 16 zeros
of s16(162), along with the curve Dig, in Figure 4. The same is done
in Figure 5 for the 27 zeros of s7(27z) and the curve Dg7. Up to
plotting accuracy, it appears that the zeros of s16(162) and s27(272) lie
respectively on the curves Dyg and Dar!

In a subsequent paper, we will establish formal series for the zeros z »,
of the normalized partial sum s, (nz). Specifically, expansions about a
point z # 1 on Dy or Dy, (cf. (1.1) and (1.6)), as well as an expansion
about the point z = 1, will be carried out to high orders of precision.

2. Proofs of Proposition 1 and Theorem 2. We begin with the

Proof of Proposition 1. As shown in Newman and Rivlin {7],

2 o0
(2.1) {————-—S"(H nw)}
en+ 2nw
n=1

1 > 1
converges uniformly to ﬁ/w et dt = -2—erfc(w),

as n — 0o, on any compact set in the upper-half complex plane (i.e.,
Imw > 0). If t; denotes the zero of erfc(w) in the upper half-plane (i.e.,
Imt; > 0) which is closest to the origin, then it is known numerically
(cf. Fettis, Caslin, and Cramer [4]) that

(2.2) t, = —1.354 810 + 1.991 467i.

Now, as the only zeros of s,(n + mw)e“"” 2w are values of w
for which s,(n + v2nw) vanishes, then the uniform convergence in
(2.1) implies, with Hurwitz’s Theorem, that sn(n + V2nw) has a zero
in any small closed disk with center t;, for all n sufficiently large.
Consequently, as shown in Saff and Varga [9], s,(n + V2nw) has a
zero of the form

n+v2n(t +o(1)):n{1+\/——g(t1 +o(1))}, as n — 00,
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1.00r-
O .50k
CYAN
O .00
-0.50
—-1.00+
i 1 i i i
-1.00 -0.80 0.00 0.80 1.00

FIGURE 4. Dj¢ and the zeros of s14(16%).

or, equivalently, s,(n2) has a zero 21, of the form

2
(2.3) 21 =14 \/;(tl + o(1)), as n — 00.

Next, if z lies on Dy, with Rez = 1—§, where § > 0 is small, it easily
follows from the definition of Dy, in (1.1) that (1—6§)%2+ (Im 2)? = e~%,
so that

(2.4) {Im z| :5{1 - §5+O(52)}, as 6 — 0.
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1.00r
0 .50R
AN
0.00
-0.50+
—-1.00+
] i 1 1 i
—-1.00 -0.50 0.00 0.50 1.00

FIGURE 5. Dy7 and the zeros of s27(272).

Note that (2.4) establishes that the curve D, in the upper-half plane,
makes an angle of 7/4 with the real axis as it passes through z = 1.
(This can also be seen from Figures 2 and 3.) From (2.3) and (2.4), it
readily follows (cf. Carpenter [3, p. 137]) that, for n large, the distance
of z1,,, of (2.3) to the curve Dy, satisfies

1
dist [21,n; Doo] = —ﬁ{lmtl + Reti +o(1)}, as n — 00,

whence

(2.5) lim {v/n - dist [21,n; Do)} = Im ¢y + Ret; = 0.636 657,
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the last result following from the numerical estimates of (2.2). But,
by definition, as dist [21,,; Deo] < dist [{2kn}7_1; Doo], We have the
desired result of (1.3). O

For the proof of Theorem 2 of Section 1, we need the following

construction. From the definition s, (z) := Z?:g 27 /41, it is well-known

(cf. Szegd [11]) and is easy to verify (by differentiation) that

, 1 [
(2.6) e Fsp(z)=1—— [ ("e CdC.
n! Jo
Replacing ¢ by n¢ and z by nz in the above expression results in -
nn+l z
(2.7 e s (nz) =1- — / ¢"e ™ dC.
. 0

Using the definition of 7, of (1.7) in (2.7) then gives

—nz 1 _ \/ﬁ i 61_’ n
(2.8) e "s,(nz) =1 Tn\/g/o (Cel=)de.

Next, from Szegd [11], it is known that w = (e!™¢ is wunivalent in
|| < 1. (For a proof of this, see the special case 0 = 0 in Saff and
Varga [10, Lemma 4.1]). Since we are ultimately interested only in the
zeros of s,,(nz) (which, from Section 1, must lie in |z| < 1 for all n > 1),
we make the change of variables w = Ce!™¢ in (2.8), which gives

(2.9) e s, (nz) =1- Tn\\//ﬁﬂ /Ozelz w" ! (é—%%) dw.

The form of the above integral brings us to the following result, which
is again motivated by the original work of Szegd [11]. Consider the
integral

A
(2.10) /0 w1 G(w) dw,

where the path of integration in (2.10) is taken to be the complex line
segment joining 0 and A. Assuming that G(w) is analytic in an open
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region containing this line segment [0, A}, then expanding G(w) in a
Taylor’s series about the point w = A gives

A % ~(m) A
(2.11) /0 w1 G(w) dw = Z g—#/o w™ (w — A)™ dw.
m=0 !

Since the integral associated with the m'" term of the above sum is
(after a change of variables) just the Beta function, this term then
satisfies

G (4)

m/!

fl)mAm‘i“"G(m)(A)
H;nzo(” +7) ’

/OA (o AY™ duo = &

for all m > 0 and n > 1. Thus, the integral of (2.10) can be expressed
as

A X 1\ym Am(m)
(2.12) /0 w" ' G(w) dw = A" }_::0 ( 11_)1272)(751 j)(A).

We connect the two integrals of (2.9) and (2.10) by setting A :=
ze!=%, F(C) := ¢/(1 = (), and G(w) := F(¢{(w)), where w := (e!™C.
If z is any interior point of the closed unit disk A, then G(w), so
defined, is indeed analytic in an open region containing the line segment
[0, ze'72], and the representation of (2.12) is valid. A short calculation
of the explicit values of G(™ (ze'~#), for 0 < m < 4, allows us in this
case to give the first few terms of (2.12):

(2.13)

1—z

24— 2)

2(zel7#)n {1 3 1 N
n(l - 2) (n+1)(1~-2)? (+1)(n+2)(1-2)*
22(27 — 14z + 22%)
T (n+D(n+2)(n+3)(1-z2)8
23(256 — 2032 + 582% — 62%) } -
[ (n+4)-(1-2)8 T
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Moreover, on estimating the Cauchy remainder for the sections of the
Taylor series in (2.11), it readily follows from (2.12) that, for each
nonnegative integer N,

(2.14) /Ozel_z w™! (TE(QL(L)) dw

. N —1)™(zel—2 mG(m) zel—? 1
= et 3 CEE R o (L)),

m=0

as n — 00, uniformly on any compact subset of A\{1}. (The moti-
vation for this result, of course, comes from Szegd [11], who derived
(2.14) for the case N =0.)

As a consequence of the case N = 0 in (2.14) and (2.13), we have
(2.15)

/Ozel—zwn_l (%) dw = ig?—lel__%i{u«o(%)}, as n— o0,

uniformly on any compact subset of A\{1}. Thus, if z is a zero of the
normalized partial sum s,(nz) of e, then, from (2.9) and (2.15), we

have .
e S o))

or, equivalently,

(2.16) (ze'"*)" = 1, 27m<1;Z> {1+0<%)}, asn — o0,

uniformly on any compact subset of A\{1}.

We are now in a position to give the

Proof of Theorem 2. From Szegé [11], it is known that w = zel™?
maps the interior of the Szegd curve, D, conformally onto the interior
of lw| < 1, and it also maps, in a 1-1 fashion, the points of Dy
onto |w| = 1, such that the argument of w = ze'™*, as z traverses
Dy, in the positive sense starting at z = 1, increases monotonically
from 0 to 2m. Szegd [11] also showed that the zeros of s,(nz) are
asymptotically (as n — oo) uniformly distributed in angle under the
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mapping w = ze'!~%. More precisely, let ¢; and ¢, be any real numbers
with 0 < ¢ < ¢2 < 2w, and let z; and zg be respectively the inverse
images of w; = €' and wy = €!*?, under the mapping w = ze' ™2, so
that z; and 29 are points of D,,. Let S be the sector in the z-plane,
defined by

S={z€C:argzn <argz < argzy, where 0 < argz < 27}.
Then, if p,, is the number of zeros of s,(nz) in S, Szegd showed that

lim bn _ ~—-——¢2w¢1.
n—oo 7 27

This result implies that, for n large, the zeros of s,(nz) are roughly
uniformly distributed in angle in the w-plane, under the mapping
w = zel ™%,

This can be used as follows. If we take the n uniformly distributed
points {exp[i(2k — 1) /n]}7_; on |w| = 1, let {2k ,}}_; be the unique
inverse images of these points in the z-plane under the mapping w =
ze' 7%, ie.,

(2.17) Zp et = expli(2k — 1) /n), k=12,...,n

By definition, the points {2k ,}7_; lie on Dy, and we have graphed,
in Figure 6, the points {Zx,16}1, as *’s on Do, along with the zeros
{2k,16}1%, of s16(162). The same is done in Figure 7 for {27 }27 , and
the zeros {2k 27 }27, of s97(272).

From (2.17), we have
(2.18) (Zene! ") =1,  k=1,2,...,n.

Regarding 2y, as an approximation of zj ,, write zj n, a zero of s, (nz),
as Zkn = Zkn + Okn and insert this in (2.16). On using (2.18), a
straightforward calculation shows, on taking logarithms and dividing
by n, that

1

Zk,n

=~ log{r,v2rn(1 — 5k,n)} + O( ” Y+ O(n2 )

—(1 = =)k + O(6; )

(2.19)
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i
-1.00 -0.8%0 ¢.00 0.50 1.00

FIGURE 6. {2116} ,°, and {Zx,16} 405

provided that we consider only those points zx, which lie outside of
Cs (where 6 is a fixed number with 0 <6 <1 and where Cs is defined
in (1.4)). (For the logarithm in (2.19), we choose its single-valued
extension on C\[0, +o0) for which log(—1) = ir.)

For the set {2k, }7_;\Cs, there evidently exists a positive constant
c1, dependent only on 6, such that

1
0<01§i14———

~ bl
Zk,n

for all points Zx . associated with points of {2kn}t-1\Cs. Thus, we
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! 1
-1.00 —0.50 0.00 G .50 [e]¢]

FIGURE 7. {z07},2", and {Z07} 2%

deduce from (2.19) that

(2.20) Sk =0 (bgT"T V27m) ~-0 (loin

),asn—»oo,

for all points of {zxn}i_;\Cs. But because Z ,, is not necessarily the
closest point of Dy t0 2k, then dist [2k,,; Doo] < |6k,n| for all points
of {zxn}7_1\Cs, which from (2.20) gives the desired result of Theorem
2.0
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As remarked in Section 1, the result of (1.5) of Theorem 2 is best
possible as a function of n. To establish this, let n = 2m + 1 be any
odd positive integer, and let —u denote the negative real point of the
Szegd curve Do, i.e., u is the unique positive root of pelt™ =1 and

1= 0.278 464.
From (2.18), we see that
(221) §m+l,2'm+1 = — U, m = 0, 1, ey

and it similarly follows that zpy412m+1 is the unique real (negative)
zero of the odd polynomial sam.1((2m + 1)z). Using (2.21), it follows
from (2.19) that

(2.22)
2m+1 1

1i —_— m = —— = —0.108 905.

mT&{<mgmn+m> m2 “} 2(1+ 1)
Since zm+1,2m+1 lies outside the curve Dy, note that Om+1,2m+1 < 0,
that ‘(5m+1,2m+1 = dist [Zm+1,2m+1; DOO], and that 2zm+41,2m-1 lies
outside Cs for any 0 < § < 1. Thus, (2.22) becomes
(2.23)

2m +1 1

Jii — ) . dist [z, i D = ——— = (.108 905.
mg;{G%QM+ID st o1, om 1 oo]} 21+ 1)

But as dist [zm+1,2m+1; Doo] < dist [{zk,2m+1}i2fl\Cg;Doo], then,
from (2.23),
(2.24)

1 . 2m +1 . 9
0<——m——< 1 o~ ). dist m+1 Db
S+ D) —m—%%—o{ﬁog(zmﬂ)) dist [{zk,2m+ 1} \Co 1}

For the case when n = 2m is an even positive integer, it can be
similarly shown that the analogue of (2.23) is

1

2(1+4)

. 2m
e (et

so that (cf. (2.24))

.mamwmpﬂ}= = 0.108905,

1

2m
2.26) 0 < ———— < i —
(2.26) 0< 2(1+ %) = s {log(Qm)

- dist [{zk’Qm}zgl\C& Doo]} .
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Combining (2.24) and (2.26) gives

n—0C

(2.27) 0.108 905 < lim {-—2— ~dist [{zg, n}r—y \Cs; Doo]}
n—oo | logn
for any 6 with 0 < 6 < 1, which is the desired sharpness of Theorem 2.

3. Proofs of Proposition 3 and Theorem 4. In (2.16), we have
a relationship which holds, uniformly in n as n — oo, for any zero z
of 5,,(nz) which lies in a compact subset of A/{1}. On taking moduli
and n-th roots in (2.16), it is eminently clear why, as n — oo, the
Szegd curve, Do, of (1.1), emerges as the only possible place where the
zeros of {5,(nz)}2%, can asymptotically accumulate. As we know from
Proposition 1, the distance of the zeros of s,(nz) to the curve Dy is
O(1/+/n) as n — oo, and this distance can be improved in Theorem 2
to O((logn)/n) on compact subsets of A\{1}.

But, it is natural to ask if there is a way of defining a curve, say Dy,
now depending on n, for which the zeros of s,(nz) lie substantially
closer to D,, than to the curve D,,. Of course, any smooth curve
through the zeros {zgn}7_; of sp(nz) would trivially answer this
question. It turns out that it is possible to define such a curve Dy,
without explicit knowledge of the zeros {zxn}7_; Of sn(nz). In fact,
one obtains the definition of the curve in D,, in (1.6) by dropping the
term O(1/n) in (2.16) and taking moduli throughout!

We begin by showing first that D,, of (1.6) is a properly defined curve
for all n > 1.

Proof of Proposition 3. We recall from Szegé [11] that w = zel *
is univalent in |z| < 1. For any n > 1, fix  to be any real number in
(0,27) with 0] > cos™*((n — 2)/n), and consider the function, defined
on the ray {z = rei® : r > 0}, by

(31) hl(T;g) = Izelﬁzi — ,,,,elf'rcose‘

As differentiation shows, hi(r;6) is strictly increasing in r on the
interval [0,1]. Similarly, on setting

1—z {1—2rcost9+7'2}1/2
=71,V2mn{ ——Mm ,

(3.2) hao(r;0) := 1,V2mn =
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where 7, is defined in (1.7), it similarly follows that ho(r;0) is strictly
decreasing in 7 on (0,1]. Moreover, hq(0;8) = 0 while hy(0;6) = oo,
and hy(1;60) = e' 7% while hy(1;6) = 7,,v/4mn(1 — cos 0)'/2. Thus, if
(3.3) hi(1;8) > (hy(1;0))Y/", for all n > 1,

we can conclude that there is a unique r, = 7,(f) in (0,1) for each
n > 1, such that hi(r,;60) = (ha(rn;0))*/™. (In other words, with (3.3)

we will have that the ray {z = re’® : » > 0} intersects the curve D,, of

(1.6) in a unique point in the open unit disk, for each n > 1 and each
18] > cos™1((n —2)/n).)

Now (3.3) is equivalent, from (3.1) and (3.2), to
(3.4) el 70080 5 £1/n(4rn) /27 (1 — cos §)1/2",
Calling t = 1 — cos 6, so that 0 < ¢ < 2, (3.4) becomes
(3.5) e’ > r2mnt, 0<t<2
On setting 2nt =: u, (3.5) then becomes

(3.6) e — 2rriu > 0, 0 <u< +o0.

Consider the related equation
(3.7) fu) :=e* — 8u, 0<u< +oo.

Now it follows from (3.7) that f(u) is strictly increasing on the interval
(log8 = 2.079, +o0), and that f(log8) = —8.636 < 0. Thus, f(u)
has a unique zero, say uj, on the interval [log8, +00), given by u; =
3.261 686, and, moreover,

(3.8) f(u) >0 on [u,+o0).

From (3.6), we can write e* — 2w72u = f(u) + 27[4/7 — 72]u. Since 7,
can be verified to be strictly decreasing for all n > 1, with 1 < 7, <
71 = 1.084 for all n > 1, it can also be verified that 27w[4/7 — 72] > 0
for all n > 1. Since (3.8) holds, then

(3.9) ev —2772u >0 forall u> u;, and all n > 1.
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As u = 2nt = 2n(1 — cosf), (3.9) implies that (3.4) is valid for all 6
with |0] > cos™(1—wuy/2n), for all n > 1. But as u; = 3.261 686, then
1—wui/2n>1- 2 = (n—2)/n, whence

(3.10) cos ™! <n — 2) > cos™ (1 - “—1) .

n

In other words, for each n > 1 and for each fixed value of 8 with
18] > cos!((n — 2)/n), there is a unique point where the ray {z =
re? : v > 0} intersects the curve D, for every n > 1.0

We remark that the restriction that |argz| > cos™((n — 2)/n), in
the definition of D,, in (1.6), comes from the fact that s,(nz) has all
its zeros in the sector |argz| > cos™((n — 2)/n) (cf. Saff and Varga

(8])

We now come to the

Proof of Theorem 4. For any fixed § with 0 < § < 1, we consider the
set {zk.n}7_,;\Cs (where Cs is defined in (1.4) and where {zxn}n_;
again denotes the zeros of s,(nz)). Then, for any zeros zp, of
{zk,n}7-1\Cs, (2.16) is valid, i.e.,

B11) (e 7) =7 27m<1;z) {1+0<%)}, as 1 — oo,

where the constant implicit in O(1/n) depends only on 8. On the other
hand, from Proposition 3, we have that, for any § with §,, <0 < 27—6,,
where 6, := cos™}((n — 2)/n) for any n > 1, there is a unique r,(f) in
(0,1) such that z = r,(0)e® lies on the curve D,,. This implies from
(1.6) that there is a real ¥(n,#) such that

(3.12) z(zetF)" — ¥ (nf)

TnV21n(1 — 2)
where (cf. (3.1) and (3.2))

(318)  Wn,0) = nlp —ra(@)sind] + 0+ tan™! [ OS],

1—r,(0)cosb
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for all ,, < 8 < 27 —8,,. It turns out that ¥(n, ) is a strictly increasing
function of 6 on [#,,, 27 —8,,], and that there are exactly n distinct values
of § in (0, 2w — 6,,) for which ¥(n,#) = 0(mod 27). If we denote these
n particular points on D,, by {Z; ,}7_,, it follows from (3.12) that

1—-2n

(3.14)  (Zgne' ™2 = 1,210 ( ) , k=1,2,...,n.

Zkn

With {zxn}}_, denoting the zeros (with increasing arguments) of
sn(nz), express zgn, as 2gn = Zkn + Okn. Thus, for any zero in
{2k n}i_1\Cs, we have from (3.11) that

(3.15) (2gne' ™) = 7,/ 210 (1 — Zk’n) {1 +0 <~1—> } .
Zk,n n

Replacing 2z by Zkn + k,n in (3.15) and using (3.14), this becomes,
on taking logarithms and dividing by n,

bk,n
(3.16) log (1 + __...,) — ko

k
ék,n

1 1 1 Ok 1
= —log 1 ——hn — —log 1+ 22} 40 = ,
n 1-2pn n Zk,n n?

as n — oo. On expanding these various terms (with the assumption
that 6y, is sufficiently small), one easily determines that

1
(3.17) Ok =0 (—5) ,  asm — 00,

n
for all points of {zx» }7_;\Cs. Again, because Zj , is not necessarily the
closest point of Dy, to zj,, then dist [z5n; D] < 8k, for all points of
{2k,n}72_1\Cs, and the desired result of Theorem 4 follows from (3.17).
O

To show that the result of (3.17) is best possible, as a function of n,
consider (as in Section 2) the special sequences {Zm+1 2m+1}ro-; and

{Zm,2m ooy of zeros of s,(nz). To be precise, it can be similarly shown
(cf. (2.27)) that

12 . . n
7 = 0133261+ < lim {n® - dist [{zkn}r_; \Cs; Dnl}
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for any § with 0 < 6 < 1, which establishes the sharpness of Theorem
4.

Having completed the proof of Theorem 4, we now remark that the
result of Theorem 4 can be easily generalized in the following way.
In essence, only the first term (corresponding to the case N = 0) of
the sum in (2.14) was used in approximating the integral in (2.14),
to derive (2.16), and from this, Theorem 4 resulted with the error
bound O(1/n?). Now, it is clear from the error bound in (2.14) that
increasing N (the upper bound of the sum in (2.14)) not only improves
the approximation to the integral of (2.14), but it also serves to define
a new curve, say DY), N >0, in A (cf. (1.6)), which gives a better
approximation of the zeros of s, (nz). In particular, with the same basic
proof as that of Theorem 4, it can be shown that, for any nonnegative
integer N,

1
i . N
dist [{Z'C,n}ZZI\CtSa D‘£L )] B O (m) > as n — 00,
for each fixed 6 with 0 < 6 < 1.
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