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ACCELERATION OF RELAXATION METHODS FOR
NON-HERMITIAN LINEAR SYSTEMS*

M. EIERMANNT, W. NIETHAMMER!, AND R. S. VARGA!?

Abstract. Let A = I — B € C™", with diag(B) =0, denote a nonsingular non-Hermitian
matrix. To iteratively solve the linear system Ax = b, two splittings of A, together with induced
relaxation methods, have been recently investigated in [W. Niethammer and R. S. Varga, Results in
Math., 16 (1989), pp. 308-320]. The Hermitian splitting of A is defined by A = M h — Nh, where
M" .= (A+ A*)/2 is the Hermitian part of A. The skew-Hermitian splitting of A is similarly defined
by A= M? — N® with M?¢ := I+ (A — A*)/2.

This paper considers k-step iterative methods to accelerate the relaxation schemes (involving a
relaxation factor w) that are generated by these two splittings. The primary interest is not to deter-
mine the optimal relaxation factor w that minimizes the spectral radius of the associated iteration
operator. Rather, a value of w is sought such that the resulting relaxation method can be most effi-
ciently accelerated by a k-step method. For the Hermitian splitting, the choice w = 1 (together with
a suitable Chebyshev acceleration) turns out to be optimal in this sense. For the skew-Hermitian
splitting, a hybrid scheme is proposed that is nearly optimal.

As another application of this latter hybrid procedure, the block Jacobi method arising from a
model equation for a convection-diffusion problem is analyzed.

Key words. iterative methods for non-Hermitian matrix equations, relaxation methods, Her-
mitian splittings, skew-Hermitian splittings, Chebyshev acceleration

AMS(MOS) subject classification. 65F10

1. Introduction. To solve a nonsingular linear system of algebraic equations
(1.1) Ax=x—-Bx=b (A,B € C™", diag(B) =0, be C")

whose coefficient matrix A is non-Hermitian, Niethammer and Varga [11] recently
studied relaxation methods based on either the Hermitian or the skew-Hermitian
splitting of A = I — B. Letting

(1.2) F:=(B+B*)/2 and G:=(B—B*)/2

denote, respectively, the Hermitian and skew-Hermitian parts of B, then the Hermi-
tian splitting of A is defined by

(1.3) A=M"—-N" withM":=I—-F and N":=G

(here, we assume that M h is invertible, which is, for instance, guaranteed if the
Hermitian part M" of A is positive definite). The naturally associated skew-Hermitian
splitting of A is given by

(1.4) A=M°*—-N° with M*:=I-G and N°:=F.

It should be mentioned that Concus and Golub [2] earlier introduced the Hermitian
splitting (1.3) of A. Under the assumption that M h is positive definite, they chose
M™" as a preconditioner for an associated conjugate gradient method.
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Each splitting A = M — N of A gives rise to a class of one-parameter relaxation
schemes for the solution of (1.1), namely,

(1.5) {@ - +wM}xpy :={(1~w)+wN}xp_1+wb,
or equivalently,
(1.6) Xm = TyXm—1 + Cu (m=1,2,--),

where w # 0 is an arbitrary complex number for which (1 ~ w)I +wM is nonsingular
and

T, ={(1-w)I+wM} {1 -w)I+wN}, c,=w{(l-w)l+wM}'b.

In this way, the specific splittings defined in (1.3) and (1.4) generate the following two
relaxation methods:

(1.7) X =T X1 +c (m=1,2,--),
where
Th = (I - wF) Y1 —w)I +wG}, ch = w(I —wF) b,
and
(1.8) X =T X1 + €8 (m=1,2,--+),
where
72 = (I - wG) {1 - w)I +wF}, ¢t = w(l - w@) b,

these methods each depending on a single relaxation parameter w.

Under the assumption (cf. (1.2)) that I — F is Hermitian and positive definite,
Niethammer and Varga [11] determined inclusion sets for the eigenvalues of the cor-
responding relaxation matrices 7* and 7.*. To be more precise, they showed that the
spectrum o(7*) of T* is contained in a certain rectangle (which degenerates to an
interval on the imaginary axis when w = 1) (cf. [11, Fig. 1]), whereas (7%) is con-
tained in a bow-tie region (cf. [11, Fig. 2]). In this paper, we examine the question of
whether these facts can be used to effectively accelerate the procedures (1.7) and (1.8)
by the application of k-step iterative methods, such as the Chebyshev semi-iterative
method (when k = 2).

To go beyond the special schemes (1.7) and (1.8), we need some additional ter-
minology. Let

(1.9) Xm =TXpm-1+¢C (m=1,2,...),

with 1 ¢ o(T), be called a basic iteration for the solution of (1.1) which results from
a splitting of the matrix A. We assume that we have a priori information about the
eigenvalues of T' of the form

(1.10) o(T)CcQ,

where ) is a compact subset of the complex plane with 1 ¢ Q. In addition, with the
notation C := C U {oo}, we always require that Q has no isolated points and that
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C\ Q is of finite connectivity. Note that for o(Th) of (1.7), as well as for o(7) of
(1.8), inclusions of this type are available, as previously mentioned. To (1.9), we now
apply the k-step method (cf. [10])

(1-11) Ym = ﬂm,O(T Vel +€) + m,1Ym—-1 + Um2Ym-2 T+ bm kYm—k

where pim,j € C (fm,; := 0 for j >m) and Z?:o pm,j =1 (m=1,2,--+), in order to
accelerate the convergence of the basic iterations (1.9). It is well known that these k-
step methods belong to the class of semi-iterative methods or polynomial acceleration
methods applied to (1.9) (cf. Varga [12]). The error vectors e, := (I — T e —ym,
associated with the mth iterate y,, of (1.11), can be written as ey, = pm(T’)eo, where
the polynomials pm(2) = 3= Tm,j 29 are recursively defined by py,(z) := 0 (m <0),
po(z) =1 and

D (2) = (ltm,07 + fim, 1 )Pm—1(2) + fim 2Pm—2(2) + -+ fm kPm—k(2) (M =1,2,--").

For notational convenience, we collect the Taylor coefficients of each of the polyno-
mials p,, into an infinite lower triangular matrix P = (Tm,j)m>j>0 which we call the
generating matriz for the k-step method (1.11). Then it is known (cf. [4]) that, for a
given P, the value of

lewll ™™
k(T, P) := limsup sup [ }
m—co o0 | |l€oll

depends only on the structure of the Jordan canonical form of the matrix 7. With
regard to (1.10), we therefore define the asymptotic convergence factor of the k-step
method (1.11), with respect to the information o(T') C £, by

(1.12) k(Q, P) == max{x(T,P): T € C"",n > 1, with o(T) € Q).

The best, i.e., smallest, convergence factor we can hope to achieve by any k-step
method (k = 1,2,--+) in this worst-case philosophy is the asymptotic convergence
factor of Q, defined by

(1.13)  k(Q) := inf{x(Q, P) : P generates a k-step method ,k =1,2,- -}

The infimum in (1.13) is actually a minimum (cf. [4]), and each k-step method for
which this minimum is attained will be called asymptotically optimal with respect to
Q). The best-known examples of asymptotically optimal methods are the Chebyshev
semi-iterative methods studied by Manteuffel [9]. In [9], © is an ellipse with either
real foci or complex conjugate foci, with 1 ¢ €, and in these cases there exists a
Chebyshev semi-iterative method, i.e., a two-step method, which is asymptotically
optimal with respect to §2. (We note, more generally, that any ellipse  in C with
1 ¢ O admits an asymptotically optimal two-step method (cf. [10]).)

The quantity ~(€2) of (1.13) has some interesting capacity-like properties. For
example, it is known that

(114) F\?(Ql) < K,(Qz)

if Q; is a proper subset of Q2 (cf. [3, Prop. 3]). To compare the convergence factors
of two compact sets ) and Q with €3 € Q2 and (22 ¢ €1y, another observation is
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helpful. Let Q be a compact subset of C with 1 ¢ 2, and let ¢, € II,,, be a polynomial
of the exact degree m satisfying ¢,,(1) = 1 and the condition

tm(z) =1 implies 2z ¢ Q.
Then it is known (cf. [3, Lemma 4]) that
(1.15) K(Q) < [K(tm (@)™,

where t,,(2) denotes the image of 2 under the polynomial transformation z + t,,(2).
Moreover, equality holds in (1.15) if and only if the implication

(1.16) z ¢ Q implies t,(2) € tm(S2)

is valid for every z € C (cf. [3, Thm. 6]).

If C\ Q is simply connected, and if ® denotes the Riemann mapping function that
maps the complement of { conformally onto the exterior of the unit circle such that
the points at infinity correspond to each other, then £(Q) can be expressed explicitly
(cf. [4, Thm. 11]) as
(1.17) Q) = —— < 1

' o)
the last inequality in (1.17) following from the assumption that 1 ¢ Q. In what
follows, (1.17) turns out to be useful when one must decide whether it is worthwhile
to apply a k-step method of the form (1.11) to a given basic iteration (1.9) whose
operator T satisfies o(T") C Q.

We briefly describe the contents of this paper. For the relaxation method (1.7)
associated with the Hermitian splitting of A, we examine in §2 which choice of w in
(1.7) is best. Here, we are not interested in merely minimizing p(7.*) as a function of w;
rather, we seek a value of w such that (1.7) can be most efficiently accelerated by a k-
step method. It turns out that the choice w = 1 is best in this sense. For the relaxation
method (1.8) associated with the skew-Hermitian splitting of A, we accelerate (1.8),
in §3, by means of a new hybrid scheme, consisting of a polynomial transformation of
the given linear system, together with the application of a stationary one-step method
to the transformed equations. An optimized Chebyshev acceleration of (1.8), as given
in Chin and Manteuffel [1], will be shown here to converge more slowly than this
hybrid method. In §4, we apply our hybrid procedure to the block Jacobi method for
a model equation of a convection-diffusion problem. Again, we make use of results
due to Chin and Manteuffel [1], who determined sets in the complex plane containing
all eigenvalues of the block Jacobi matrix in this example. Finally, a comparison with
the associated block successive overrelaxation (SOR) method is given.

2. The Hermitian splitting. We first consider the Hermitian splitting (1.3) of
A and its associated relaxation methods (1.7). Let {v;}7.,; denote the eigenvalues
of F (cf. (1.2)) with oo := 11 < 79 < --- < 7, =: B. We always assume that the
Hermitian part of A, namely I — F, is positive definite. This assumption, coupled
with the hypothesis of (1.1) that the trace of F' is zero, implies that

(2.1) a<0<B<1.

For all w € (0,1/0), the matrix I — wF is evidently nonsingular and the relaxation
matrix T* of (1.7) is thus defined for these values of w. From [11, (3.13) and Fig. 1],
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we further have the inclusion

{zeC:c<Rez<d, |Imz| < f}, f0<w<1,
(2.2) o(TH C Q=< [-if,if], fw=1,
{zeC:d<Rez<c, |Imz| < f}, ifl<w<1/B,

where

c=c(w) = 11::;, d=dw):= Il—_——-;%, and f=f(w):= ;Jf)_(g})g

In every case, the rectangle Q, is contained in the open unit disk if and only if
d?(w) + f?(w) < 1, which is equivalent (cf. [11, Thm. 3.2]) to

_ o 20-p
(2.3) 0<w<w9'—1+p2(G)—,82'
The relaxation method (1.7) is therefore guaranteed to converge for any w in the
interval (0,wg).
A natural question now is which choice of w is optimal. The classical concept of
optimality seeks a minimum of the spectral radius p(Th) as a function of w. With
our limited information, o(T?) C Q,, i.e.,

p(13) < pw) = Vd*(w) + f2(w),

we seek to minimize p(w) for w € (0,w,). An easy calculation shows that p has exactly
one minimum in (0,w,), which is attained at

* __ 1—6
T 1-8+0%(G)

p(G)
V(A =8)2+p*(G)

The question is whether this definition of optimality really malkes sense in our context.
Let us consider the following example. For p(G) = 1 and 8 = 0.5, we obtain from
(2.4) that w* = 3 and p(T{}s) < p(w*) = 2/+/5 = 0.8944 - - .. On the other hand, if we
choose w = 1, then ©; reduces to a line segment, i.e., {1 = [—2i, 23], and T} may be
divergent. But the Chebyshev semi-iterative method for this interval, or equivalently,
the stationary two-step method

(2.4) w with p(w*) =

(2.5) Vim = po(TYm—1 + €1) + 1¥m-1 + p2¥m-2  (M=2,3,-")
with
po:=(5-1)/2, =0, and pr=1-po

has an asymptotic convergence factor of (v/5—1)/2=0.6180- - (cf. Niethammer and
Varga [10, Ex. 2]). Is w = 1 therefore a better choice than w = 17 At this stage, this
could be a hasty conclusion since we can also accelerate X, = Tlh 3Xm—1+ ci‘ /3 by
a Chebyshev procedure or another k-step method, with the goal of constructing an
even faster scheme.

After these considerations, we believe that it is more appropriate to determine an
w that minimizes ©(€2,) (cf. (1.13)), rather than j(w). The assertion of the following
theorem is that w = 1 is optimal in this sense, i.e., the introduction of a relaxation
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parameter w # 1 does not improve the iterative method based on the Hermitian
splitting (1.3) of A.

THEOREM 1. For each rectangle Q, (cf. (2.2)) with 0 < w < wy (cf. (2.3)) and
w # 1, there holds

_ p(G)
") > W) = T G

Proof. Let w be arbitrary (but fixed) in (0,w,) with w # 1. The interval

L, = [dw) - if(w), d(w) + if(w)]
(cf. (2.2)) is a proper subset of the rectangle €2,,. The polynomial (in II;) defined by

. 1-wB _
ti(z) := m(z -D+1 (a(1)=1),

induces a bijection of I, onto £;. From (1.14) and (1.15), we therefore obtain
K(Q) > k(1w) = k(t1 (L)) = k().

The explicit expression for £(£;) has been derived in [10, Ex. 2]. O

We conclude this section with a simple example which shows that the bounds of
(2.2) may be a considerable overestimation of the spectrum of T.».

Ezample 2.1. If we discretize the boundary value problem

(2.6) —u’(t)+ 74/ (t) = f(t) on (0,1) with given u(0),u(1) € R

(r > 0), by using central differences with mesh size h = 1/(n + 1), a linear system
results whose coefficient matrix A is an n x n Toeplitz tridiagonal matrix. Normalizing
its diagonal entries to be equal to 1, we have

(2.7) A = tridiag{—(1 + R)/2,1, —(1 — R)/2] € R™"

with the mesh Reynolds number R := 7h/2 (cf. Elman and Golub [5, §2]). Thus, its
Hermitian splitting is given (cf. (1.3)) by

(2.8) A = (I - tridiag[1/2,0,1/2]) — tridiag[R/2, 0, —R/2].

Since the eigenvalues of the matrix tridiag[a,0,b] € C™" are known (cf. [5, Lemma
2]) to be

)\k=2\/c;500s( Tf ) (k=1,2,---,n),

n+1
we deduce from (2.2) the estimate

(29) (1) < 20 _ 7

1 —cos(mh)  w2h TOk)  (h=0)

(where, because of Theorem 1, we only consider w = 1). On the other hand, in this
simple example, the eigenvalues A of 7* = (I — F)~1G can be computed explicitly.
Let A be such an eigenvalue. If XA # 0, then

~ R/
2

711

(I-—F)—%G:tridiag [—1 —1+R/)‘]

2
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must be singular, or equivalently, there must be a k€ {1,2,---,n} such that

1 R?
24/ 10 cos(mkh) =1.

From this, it is easy to see that the eigenvalues of Th= (- F)~1G are given by

k=1,2---,n/2, if n is even,
=1

A = £Rcot(rkh}i, {k o (n—1)/2, ifnis odd.

(If n is odd, then T has in addition the eigenvalue A = 0.) This implies that
p(T*) = Reot(rh) = -2% + O(h?) (h—0),

which is an order of magnitude smaller than the estimate (2.9).

3. The skew-Hermitian splitting. We turn now to the investigation of the
relaxation methods (1.8) induced by the skew-Hermitian splitting A=(I-Q)-F
(cf. (1.4)) of A. As in the previous section, we again assume that the Hermitian part
Mh = I — F of A is positive definite, i.e., for the eigenvalues o =y, < - <y =20
of F, there holds, as in (2.1),

a<0<p<l.

For the relaxation matrix 7* of (1.8) with w > 0, Niethammer and Varga [11] derived
the eigenvalue inclusion

(3.1) o(TH) COui={z€C:|z—aW) <laW)or|z-cW)] < lea(w)l}
where
l-w+wh _l-wtwa

a(w) = 5 , ca(w) == 5

They actually proved more, namely, that o(7;3) is contained in a bow-tie region (cf.

[11, Fig. 2]), which is itself contained in ). These bow-tie regions depend on the

spectral radius p(G) of the skew-Hermitian part G of A, and fill out Q,, as p(G) tends

to infinity. The estimate (3.1) has the advantage of being independent of p(G).
Note that under the given assumption on « and 3, we have

W) <aw) <3,

ie., p(T2) < 1if co(w) > —3, which is equivalent to p(T8) < 1for 0 <w < wg:=
2/(1 — @) (cf. [11, Thm. 4.1]). The optimal relaxation factor wo, with respect to the

information (3.1), occurs when the condition c; (wo) = —c1(wo) holds, i.e.,
2 8 —a

3.2 = ith p(7°5 ) < ———=

( ) Wo 2—-(Oé+,8) wi p( wo)~—2_(a+18)

(cf. [11, Thm. 4.1]). In this latter case, we give the associated bow-tie region in Fig. 1.
We now apply these results to the example already discussed in the last section.
Ezample 3.1. The skew-Hermitian splitting (1.4) of the matrix A of (2.7) has the

form A = (I — G) — F, where F = tridiag[1/2,0,1/2] and G = tridiag[R/2,0, —R/2|

(cf. (2.8)). With a = —cos(rh) and 8 = cos(rh), we have wp = 1 and

(1) < cos(wh) < 1.
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—~
_/

F1G. 1. Shape of the bow-tie region containing o(73) (cf. (3.1)) together with Ac (cf. (3.4)),
where c1(w) = —ca(w) (left-hand side). A2 (cf (3.9)) and the enclosing (“embracing”) disk
D(¢(ug), m(to)) (cf- Proposition 3.2) (right-hand side).

Thus, the matrix 7;° is convergent for any value of the parameter 7 (cf. (2.6)) and
for any mesh size h. As in the case of 7}*, the eigenvalues of T can be calculated
explicitly in this simple example. With the technique used in Example 1, we see that
the spectrum of 7;* consists of the points

Ae 4 cos(mkh) {
V/R?cos?(rkh) + 1’

2,00, %, if n is even,
2,---, %5, ifnisodd.

(If n is odd, we again note that 7;° has the additional eigenvalue A = 0.) Note further
that o(7;°) possesses only real elements. We thus conclude that

(T7) = cos(rh)
A= VRZcos?(nh) +1

To accelerate the convergence of the basic iteration (1.8), the Chebyshev semi-iterative
method can be applied to the interval [—p(7), p(7)].

The problem we wish to consider now is how we can use the information of (3.1)
to accelerate the convergence of the basic iterative method x,, := T *xy—1 + c*.

To simplify our notation, we consider the basic iteration method

(33) Xm =TXm-1+c¢€ (m =12 ')1
where we assume that o(T) C A., where
(3.4) Ac:={2€C:jz—¢c|<c or |z+c|<c},

with 0 < ¢ < 4. (Note that Q,, of (3.1) has this form for w = wp.)
We first wish to design a stationary two-step method

(3.5) Ym = po(TYm-1+C€) + p1¥m-1 + f2¥m-2  (m=2,3,---)

(with po + p1 + pe = 1), which is compatible with this information for o(T). Re-
cently, Chin and Manteuffel [1] solved an analogous problem. They determined the
optimal relaxation parameter w of the SOR method under the assumption that the
corresponding Jacobi matrix T is weakly cyclic of index 2 and satisfies the condition
(3.4). Their result is the following proposition. ‘
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PROPOSITION 3.1. [1, §3.4]. For 0 < ¢ < 3, define the positive numbers ¢t €
(v2,2) and k, € (0, 1) by

_3+vBodc t+1 (1—\/1—c2t2)

. 2 . 1
(3.6) t*: 20+ ) and Ky : o g

Then, the asymptotic convergence factor k(Ac, P) (cf. (1.12)) of any stationary two-
step method (3.5) satisfies the inequality

K‘(AC;P) 2 Kz,

with equality holding if and only if the parameters {[J:j}?:o are chosen to be

Ho=1+4k3, p =0, and B2 = —K3.

The quantity x2 of Proposition 3.1 also represents the best asymptotic convergence
factor that can be obtained by applying a Chebyshev acceleration to (3.3), since these
Chebyshev procedures are asymptotically stationary two-step methods (cf. Golub and
Varga [7]).

But neither a Chebyshev method nor a stationary two-step method is asymp-
totically optimal with respect to the information o(T) C A, where A, is defined in
(8.4). The asymptotic convergence factor of such a method, i.e., the quantity x(A,)
of (1.13), is given by

3.7) K(Ae) = %ﬁ%@ .

This follows from (1.17), together with the fact that the exterior mapping function
® of A. is known in closed form (cf. [8, §5.7]). Knowing ®, we can construct an
asymptotically optimal nonstationary one-step method based, for example, on the
Fejér nodes of A, (cf. [6]).

Finally, we present a hybrid scheme that is nearly optimal with respect to the
information o(T) C A, (0 < c < 3). Instead of x = Tx +c, we consider the equivalent
linear system

(3.8) x=T?x+Tc+c.
The eigenvalues of T2 are contained in A?, whose boundary is the cardioid
(3.9) ON2={2€C:|z] = 2c¢*(1 + cos(arg 2))} .

Since A2 can be easily enclosed (“embraced”) by a circle, we solve (3.8) by the follow-
ing stationary one-step method, often also called a stationary first-order Richardson
method:

(3.10) Xm = po(T?Xm—1+ Tc+¢) + (1 — po)Xm_1 (m=1,2,--)

(1o € C, po # 0). In general, as it certainly is not efficient to compute 72 explicitly
(especially if T is sparse), we divide (3.10) into two half-steps:

Xm-1/2 = TXpm—1 +c,
(3.11) 12 '
Xm = NO(TXM—I/Z +¢) + (1- NO)xm—l (m= 1,2,--4).
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Before we answer the question as to which choice of pg is optimal (with respect to
the given information o(T?) C A?%), a remark concerning the asymptotic convergence
factor of a hybrid method such as (3.10) or (3.11) should be made. If we apply a k-step
method, as in (1.11) for instance, we must perform one matrix-vector multiplication by
T in each iteration step. The hybrid method (3.11), however, requires two such matrix-
vector multiplications per step. To compare both schemes fairly, we must compare 2
of Proposition 3.1 with [x(A2, P(uo))]*/2, where P(uo) denotes the generating matrix
(cf. (1.13)) of the stationary first-order Richardson extrapolation with parameter uo.
Qur new result is found in Proposition 3.2.
PROPOSITION 3.2. For 0 <c¢< -12-, the effective convergence factor

kn (o) = [K(AZ, P(po))]*/?

of any hybrid scheme of the form (3.11) satisfies the inequality

| c 27 2 14 *
(3.12) k(o) 2 7= |7 (1-¢)| = K (H0)
with equality holding if and only if
.« 2+ c?
Fo=9 9"

Proof. Since the residual polynomials associated with a stationary first-order
Richardson method are pn(z) = [woz + 1 — po]™ (m = 0,1,--+), the convergence
factor k(AZ, P(po)) is given by

13 AZ, P = 1—po| =
(3.13) w(Ae, P(uo)) = max |oz + ol = maxx
where ¢ = ((po) := 1 —1/po. Writing ¢ = 2¢2t, observe that to minimize (3.13) as a
function of ¢, we can confine our attention to those t that are contained in [0,2]. For
the function r(t) := max,eaz |z — 2¢°t], there holds

4c*(t—2)? for 0
2
r°(t) = { 3

8c* 2—:—_—1 for %—
Furthermore, £2(A2, P(u0)) = r2(t)/(1 — 2¢2t)? (with po = 1/(1 - 2¢?t)) is monoton-
ically decreasing for t € [0, 2] and attains its minimum in [2,2] at to = 3/(4 + 2¢?).
Therefore,

L, 1 24e
Po = T 202, ~ 2-22

is the optimal extrapolation parameter, and substituting this into (3.13) gives the
desired result of (3.12). O

The asymptotic convergence factors of the relaxation method (1.8) with w of (3.2),
of the stationary two-step (or Chebyshev) acceleration (3.5) described in Proposition
3.1, of the hybrid procedure (3.11) (cf. Proposition 3.2), and finally, of an -asymptoti-
cally optimal method with respect to A (cf. (3.7)), are compared in Table 1. )
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TABLE 1

Convergence factor of equation
c (1.8) | (36) | (312) | (3.7)
0.2 0.4000 | 0.3420 | 0.3324 | 0.3249
04 0.8000 | 0.7451 | 0.7348 | 0.7265
0.45 | 0.9000 | 0.8661 | 0.8595 | 0.8541
0.495 | 0.9900 | 0.9859 | 0.9851 | 0.9844

The entries of the last two columns of the table below are seen to be more nearly

equal as ¢ increases to 1. More precisely, on settin.
2 Y

c=i3—¢ (0<e<i withe small),

it can be verified from (3.12) that, as a function of ¢,

2%, _ 437

kn(pug) = 1 -3+ % " e3 4+ 0(e?) (e —0),

whereas (3.7), as a function of ¢, is
m g m g 4
K(A1j2-e) = 1 —me+ 28 3¢ + O(e%) (e —0).

In terms of rates of convergence, we have that

-1 Aqjo_
lim __Og__ﬁg._ﬂ?_f_z =T _ 10471
=0 | —logkp(u) 3

Thus for & small, the loss in the rate of convergence of the hybrid method (3.11) over
that of the best rate of convergence, i.e., — log K(A1/2—¢), is less than 5 percent. (In
fact, from the numerical evaluation of the quantity in braces above, it appears that
this loss in the rate of convergence never exceeds 5 percent for any ¢ with 0 < ¢ < %)

4. An example. The constant coefficient convection-diffusion equation
(4.1) —AutTu, = f

(7 > 0) on the unit square (0,1) x (0,1), with Dirichlet boundary conditions, is often
used to construct test problems for iterative methods (cf., e.g., Chin and Manteuffel
(1] or Elman and Golub [5]). The standard central difference discretization with
mesh size h = 1/(n + 1) in both coordinate directions leads to a linear system whose
coefficient matrix A has the block tridiagonal form

A = tridiag[—I, K, —1I] € R™"  with K = tridiag[—(1+ R,), 4, —(1 - R;)] € R™",

where R, := 7h/2 for the rowwise natural ordering of the mesh points. The corre-
sponding block Jacobi matrix 7" has the eigenvalues

cos(mkh)
2 — /1 — RZ cos(nlh)

(cf. [5, Thm. 1]). For R, < 1, the eigenvalues of T are therefore all real with

(4.2) Ak =

(k,1=1,2,---,n)

1 1

Mt € | — ,
ot [2- 1-R 2-/1-R2

(k,1=1,2,---,n).
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If, however, R, > 1, then from (3.4),
o(T) C Ay -

This inclusion is not sharp: Chin and Manteuffel showed that o(T) is contained in a
certain bow-tie region (cf. [1, Fig. 2.2]) whose size depends on R;. As R, becomes
larger, however, these bow-tie regions fill out A; 4. (Besides that, we have ignored
the factor cos(wh), which is not essential for our analysis.)

For R, > 1, we now apply the hybrid scheme (3.11) to the block Jacobi method,
which has the asymptotic convergence factor

kn (o) = 0.4229 - for the optimal po = 1.1 (when ¢ = })

(cf. Proposition 3.2). For the same problem, Chin and Manteuffel [1, (4.15)] found
the spectral radius of the associated block SOR matrix L., (with optimal relaxation
parameter) which is p(£,) = 0.1885- - if R, > 1.7177. Clearly, the straightforward
application of the hybrid procedure (3.11) is not competitive with the block SOR
method for this model problem.

However, the block Jacobi matrix T in our example is weakly cyclic of index 2
(cf. [13, p. 39]), i.e., there exists an n x n permutation matrix Q such that

(13 7=010 = |-

where the null submatrices on the diagonal are square. The transformed system
x = T2x + Tc+ ¢, which was the starting point of the hybrid scheme (3.11), then has
the form

(4.4) [2}=[T10Tz Tle][z;]+[i;]

where the vectors x and & := T'c + ¢ are partitioned conformally with respect to the
partitioning of (4.3). In view of (4.4), it is sufficient to solve the reduced problem

xg = ThT1x9 + Tocy + C2

for the vector x. Since o(ToTy) \ {0} = o(T?) \ {0}, we have o(T2T1) C A 4, and
thus the optimal extrapolation parameter pg of the cyclically reduced hybrid scheme

Xm—-1/2 = T1Xm-1 + €1,

(4.5)
Xm = HO(T2Xm—1/2 +c2) + (1= po)Xm—1 (m=1,2,-- )

is again given by Proposition 3.2. One step of the iterative method (4.5) requires one
matrix-vector multiplication by each of the blocks T} and T3. The effective asymptotic
convergence factor of (4.5) (with optimal po = 1.1) is therefore [k, (uo)]? = 0.1789-- -,
indicating that (4.5) is marginally faster than the block SOR method, since p(Ly) =
0.1885.-- for this latter method when R, > 1.7177.
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