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How high-precision calculations can
stimulate mathematical research

Richard S. Varga *
Institute for Computational Mathematics, Kent State University, Kent, OH 44242, USA

1. Introduction

It comes at no surprise that ubiquitous high-speed computers are powerful tools in the hands
of modern scientists. Our goal is to show, in a few examples, how recent high-precision
calculations have directly stimulated mathematical research in the area of rational approxima-
* tion theory.

As a gradient student at Harvard University many years ago, Professor Garrett Birkhoff
introduced this author to the new area of scientific computing, an area that still fascinates me.
With a great debt of gratitude for this introduction, this article is dedicated to Professor
Birkhoff on the occasion of his 80th birthday.

2. The “1 /9” Conjecture

It is well known (cf. [30, Section 8.3]) that certain classical time-stepping procedures, such as
the forward-difference, backward-difference, and the Crank—Nicolson methods, for numerically
approximating the solutions of second-order linear parabolic partial differential equations, can
be interpreted as specific Padé rational matrix approximations of the matrix exponential

exp(—td) = T (—0)* A% /kl, 130, e
k=0

where A is a real symmetric and positive-definite N X N matrix (which arises from finite
difference or finite element approximations to the associated time-independent self-adjoint
differential operator). These Padé rational approximations, being defined as the best local
rational approximation of e ™ at x = 0, are generally poor approximations of e ™ for x large,
and this leads, for reasons of stability and /or accuracy, to restrictions on the step size At which
can be used with such time-stepping schemes.

In contrast to the local nature of Padé rational approximations of e ™*, are of Chebyshev
semi-discrete rational approximations, introduced in [29], which are global rational approxima-
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tions of e ™ on [0, +). More precisely, if, for each pair (m, n) of nonnegative integers, m,, ,
denotes the collection of all real rational functions r,, ,(x) = p(x) /q(x), where p(x) and g(x)
are, respectively, polynomials of degree m and degree n, with g(x) > 0 on [0, + ), then one is
interested in the error of best uniform approximation from ,, , to e * on [0, +), i.e.,

Am,n = lnf{“ e — rm,n(x) lle[ 0,4+ Finon = Wm,n}‘ (22)

It is known (cf. Meinardus [16, p. 161]), after dividing out possible common factors, that there is

A

a unique 7, , in 7, , for which

Am,n =]|eix _;n1,n(x)“l,w[0,+oo)> (2'3)
and 7, ,(x) is completely characterized by m + n + 2 equi-oscillations of the error e ~* — Py X)
on [0, +), ie., there are distinct points {x}721"*? with 0 <x, <x, < *** <x, ., , <% such
that

e =, (x)=e(~1) A, l<j<m+n+2, (2.4)
where € = +1 or e = — 1. A standard numerical technique for determining 7, , is the second

Remez algorithm (cf. Remez [20] or [16, p. 105)).

But, how rapidly does A, , of (2.3) approach zero, as n — «? This is of course the very key
ingredient in the use of the Chebyshev semi-discrete approximation for numerically approxi-
mating the solutions of linear parabolic partial differential equations. The first step in this
direction was the following result of Cody, Meinardus and Varga [9] from 1969:

Theorem 1 [9]. Let {m(n)}%_, be any sequence of nonnegative integers with 0 < m(n) <n for each
n>=0. Then,

1 _ 1/n 1
- < nll_r}:o(/\m(n),n) < 229878

(2.5)

While the result of (2.5) certainly gives the geometric convergence of {A, ) _, to zero as
n — oo, the limited computations in Table 1, from [9], indicated a much faster convergence.
Thus, the geometric rate of convergence to zero of A, , appeared to be substantially better
than the upper bound estimate of (2.5). Subsequently, Schonhage [23] proved in 1973 that

1
<
6y(4n + 4)log3 + 2 + 2log?2

3", <V2, n=0,1,...,

Table 1

n Ao /X0 n Apn /X n A /N0
0 5.000(— 1) — 5 9.346(—6) 10.14 10 1.361(—10) 9.696

1 6.685(—2) 14.96 6 1.008(—6) 9.987 11 1.466(—11) 9.658
2 7.359(—3) 11.66 7 1.087(—-7) 9.882 12 1.579(—12) 9.626
3 7.994(—4) 10.77 8 1.172(-8) 9.804 13 1.701(—13) 9.600
4 8.653(—3) 10.37 9 1.263(—9) 9.744 14 1.832(—14) 9.577
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so that in fact

Jim 7 = 24
But then, since the number of coefficients available in the rational function 7, ,(x) which
determines A, ,, is essentially twice the number of coefficients available in 7,(x) which
determines A,,, the combination of Schonhage’s result (2.6) and the numbers from Table 1
(weakly) suggested the following conjecture in 1977:

Conjecture (Saff and Varga [21)).

?
lim A7 = . (2.7)

n—>x

Table 2
Chebyshev constants A, , for n=0,...,30 (50 significant digits)
n /\n,n
0 5.0000000000000000000000000000000000000000000000000( — 01)
1 6.6831042161850463470611623827115147261452912335145(—02)
2 7.3586701695805292800125541630806037567449132444213(— 03)
3 7.9938063633568782880811900971119616897657016325167( — 04)
4 8.6522406952888523482243458254146735250070248312132(— 05)
5 9.3457131530266464767536568207923979896088688301112( — 06)
6 1.0084543748996707079345287764100020604073115263471(— 06)
7 1.0874974913752479608665313072729334784854440482418(—07)
8 1.1722652116334907177954323039388804735105573142020( — 08)
9 1.2632924833223141460949321009097283343341503331607(— 09)
10 1.3611205233454477498707881615368423764725511956239(— 10)
11 1.4663111949374871406681261995577526903481661603094( — 11)
12 1.5794568370512387714867567328183815746851594910467(— 12)
13 1.7011870763403529664164865499450815333370532262774(—13)
14 1.8321743782540412751555017565131565305593964959525( — 14)
15 1.9731389966128034286256658020822992417697007771241(—~ 15)
16 2.1248537104952237487996344364187178090447946797672( — 16)
17 2.2881485632478919604052208612692419494718110924698( — 17)
18 2.4639157377651692748310829623232282977743134908752( — 18)
19 2.6531146580633127669264550346953305434632777390920( - 19)
20 2.8567773835490937066908938449300680288297707203370( — 20)
21 3.0760143495057905069144218639753086839478993352108(—21)
22 3.3120205005513186907513737108226141460287572456630( — 22)
23 3.5660818606364245847698227997651372597237663431761(—23)
24 3.8295825821681321269364868473011895629431895000911( —24)
25 4,1340125172853630062707580554526301970561733375450( — 25)
26 4.4509753557304246897932636072797330395116595664658( — 26)
27 4.7921973758889041899314199978855209710518995114011(—27)
28 5.1595368582571326546650112912554530364106857672396( — 28)
29 5.5549942137516226746420079038791349910276155552236( —29)
30 5.9807228828496954372714270071247982846421892890349( — 30)
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Table 3
Ratios A,,_;,,_; /A, , forn=1,...,30
n /\nfl,n—l//\n,n
1 7.4815532397221509829356536616817047817627984227696( + 00)
2 9.0819455991000169708588696090116053013062015321681( + 00)
3 9.2054646248528427537813883233351970910096341895810( + 00)
4 9.2390013695637342229492228910895668594203903511860( + 00)
5 9.2579780201008948071386386966176824253418736773867( + 00)
6 9.2673633886078728002406169193047563695298406988185( + 00)
7 9.2731650684028757880126091410302398681948193463184( + 00)
8 9.2768895688704833336324198589706052242724880476172( + 00)
9 9.2794442071765347804120940269531440575883814379160( + 00)
10 9.2812683495309755120464682831533111454037182839080( + 00)
11 9.2826170054814049413318434721810547537510453765262( + 00)
12 9.2836420758101343365763572286526847004054823670187( + 00)
13 9.2844394306651793615709775312796518943731046644594( + 00)
14 9.2850718606898552364565090058954105627072638256542( + 00)
15 9.2855819149043751995853520164465592457350862957931( + 00)
16 9.2859992519340952301903430112062879793060351437360( + 00)
17 9.2863450591648612312069660869905305380460379908323( + 00)
18 9.2866347991400778934888938646138283512490395348046( + 00)
19 9.2868799705918004397301050888494834728534387767879( + 00)
20 9.2870892682832631479754585814309629455011369059197( + 00)
21 9.2872693653333554026168814849193491692724731187991( + 00)
22 9.2874254522088778823625744929007529809804239100012( + 00)
23 9.2875616152014957847981034264879772236314002103896( + 00)
24 9.2876811967903443960632445539185855003199200785395( + 00)
25 9.2877865418013514399321174449489929772550616085232( + 00)
26 9.2878800417598657237157599122881662160311796009207( + 00)
27 9.2879633425048853224353278979631458037287458900494( + 00)
28 9.2880378753756707950994314690770008799076337263447( + 00)
29 0.2881048291364217038868850048114151489211447279412( +00)
30 9.2881651976905816378400677087169532012794506558118( + 00)

Next, a numerical update of the estimates (from 1969) of {A,, J,%, of Table 1 was carried out

in 1984 by Carpenter, Ruttan and Varga [8], using Richard Brent’s MP (multiple precision)
package [4] with 230 significant digits. Using the (second) Remez algorithm, these calculations
gave the.Chebyshev constants {A, )2, to an accuracy of about 200 significant digits. These
numbers are given in Table 2, rounded to 50 significant digits.

From these numbers, the ratios {A,_,,_/A, )2, were computed in [8], and these are given
in Table 3.

To the last eleven entries of Table 3, Richardson’s extrapolation (as described in (3.8) and
(3.9) of Section 3) was used (with x,:=1/n?). These extrapolations are given in Tables 4-7.

The best extrapolated numbers come from Table 5, which yields, numerically to 15 signifi-
cant digits, that

9 1
lim A" = . 2.
nl—?:o " 9.28902 549192081 28)
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Table 4
Third Richardson’s extrapolation

9.2890254919264426246904315998037974616346229535605( + 00)
9.2890254919246363633882112757200795725544689684432( + 00)
9.2890254919235212361782552355452310998144517528836( + 00)
9.2890254919227472919000844467255805180069646466419( + 00)
9.2890254919222163735816605228071443149565143016341( + 00)
9.2890254919218439884743390512914155757325560186146( + 00)
9.2890254919215797099009277334795760282585652815175( + 00)
9.2890254919213896705910708011872612164000901127673( + 00)

Table 5
Fourth Richardson’s extrapolation

9.2890254919205312240649832664389025519177553659037( + 00)
9.2890254919208485671587410305609475319973452742869( + 00)
9.2890254919207963073654937082427113430339242329911( + 00)
9.2890254919208120946294556940428805578880731390886( + 00)
9.2890254919208127681771411301709359901892869271757( + 00)
9.2890254919208150149547144296258736339472494913060( + 00)
9.2890254919208161591023954162336683020414775499319( + 00)

Table 6
Fifth Richardson’s extrapolation

9.2890254919214127320587548334445830521388384447460( + 00)
9.2890254919206982368598678821050851331068234703891(+ 00)
9.2890254910209432825305071272154597415183101617465( + 00)
9.2890254919208141654584179760993333379827853346193( + 00)
9.2890254919208198985165341295732097954739907627740( + 00)
9.2890254919208187594380340221604743658919958649908( + 00)

Table 7
Sixth Richardson’s extrapolation

9.2890254919196627357020607062507403229154974205964( + 00)
9.2890254919210653837136734712907208606483991578876( + 00)
9.2890254919207671899154474789653160736121386135206( + 00)
9.2890254919208296189900708128670580198741435560234( + 00)
9.2890254919208167344095893867600558244128938244875( + 00)

Using a different computational procedure, namely the Carathéodory-Fejér method, Trefethen
and Gutknecht [28] numerically estimated the quantity of (2.8) as follows. Let

oo

exp[(x —1)/(x +1)] = kZ oT(x), xe[-1, +1], (2.9)
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denote the Chebyshev expansion of exp[(x — 1) /(x + D] on [—1, +1], where
B [ +1exp[( x—l)/(x—i—l)]Tk(x)
\/1 —_

and where the prime in the summation in (2.9) means that 3¢, is used in place of ¢,. From the
infinite Hankel matrix H:=[c; ; ,17_;, let

dx, k=0,1,..., (2.10)

o, = nth singular value of H (where o, >0,> ).

It was conjectured in [28] that
?

App ~0, a8 n—x,

and, on the basis of numerical estimates of o,, Trefethen and Gutknecht [28] conjectured that

9 1
s oal/n o
A A = 9 28903 ° (2.11)
The close numerical estimates of (2.8) and (2.11), based on entirely different numerical
methods, gave strong evidence that the conjecture of (2.7) is false.

There has been a large number of research contributions to the ideas related to the “1/9”
Conjecture, and, up to the year 1982, this was surveyed in the monograph of Varga [31]. These
research contributions took several distinct directions, one being to find lower bound estimates
of A, and another to find upper bound estimates of A,, where (cf. (2.2))

A= lim X}/" Ay= Tim AY/” (2.12)

n,n? n,n?
n—-»oo n—wx

for the geometric convergence rate, by best uniform rational approximations of the function e ™
on [0, +). The best specific lower bound for A, of (2.12) was determined by Schonhage [24] in
1982, who showed that

5908 < A= lim Y7, (2.13)

n-—>0©

and the best specific upper bound for A, of (2.9) was determined by Opitz and Scherer [19] in
1985, who showed that

1
1/n )
nllf:o)\nn A, < ——— 5057 (2.14)
This result, of course, proved that the “1,/9” Conjecture of (2.7) is false. Actually, (2.14) proves
that the degree of geometric convergence to zero of the constants {A, }7_, is actually better
than 1/9.

In a beautiful and deep new development, Gonchar and Rakhmanov [11] have given an exact
solution of the “1/9” Conjecture using potential-theoretic methods in the complex plane,
methods which unfortunately cannot be adequately described in a few pages. An important role
in the development of this theory has been played by results of Nuttal [18] on local rational
approximations, based on the theory of Abelian integrals on compact Riemann surfaces, and by
the results of Stahl [25] on the asymptotic behavior of multipoint Padé approximants. For a
survey of these results, see also Stahl [26].
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A special case of the results of Gonchar and Rakhmanov [11] is:

Theorem 2 (Gonchar and Rakhmanov [11]). With A, ,, defined in (2.2), there is a positive number
A with 0 <A <1 such that

lim (A, (e ™))" =A. (2.15)

This result of course establishes that the numbers A, and A, of (2.12) are equal. But what
this number A numerically is and how it can be described, is very fascinating!

It turns out that Magnus [15] has earlier correctly identified in 1986 (without a complete
proof) that

1
9.28902 5491920818 91875 54494 35951...

where K and K’ are complete elliptic integrals of the first kind for the moduli k¥ and k'
=1V1—k?, evaluated at the point where K = 2E, E being the complete elliptic integral of the
second kind. On the other hand, Gonchar announced, at the International Congress of
Mathematicians at Berkeley in August 1986, the following result.

A=cexp(—mK'/K)= (2.16)

Theorem 3 (Gonchar and Rakhmanov [11]). The number A of (2.15) can be characterized in a
number-theoretic way as follows. Define

f(z)= ¥ a7, @17)
j=1
where
a =Y (-1, j=1,2,.., (2.18)
dlj

so that f(z) is analytic in | z | < 1. Then, A is the unique positive root of the equation
f(A) =1 (2.19)

Using Newton’s method, Carpenter [7] has computed A from (2.19) to high precision, and, to
101 significant digits, 1/A is given by

1
i 9.28902 5491920818 91875 54494 35951 74506 10316 94867 75012 (2.20)

4408239700 61421 72937 52472 86507 07052 415870614247144 . . .,

which confirms the numerical approximations of (2.8) and (2.11).
In a truly interesting development, Magnus wrote to Gonchar in late 1986 that A of (2.15) is
also the unique positive solution (less than unity) of

Y (2n+1)°(=A)"" TP =0, (2.21)
n=1

which is equivalent to the formulation of (2.19), and, moreover, that exactly one hundred years
earlier, Halphen [12] in 1886 had computed the value of A from (2.21) to six significant figures!
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(Halphen had arrived at the equation in (2.21) in this studies of variations of theta functions.) It
is thus fitting and proper that the “1/9” constant be called the Halphen constant!

3. The Bernstein Conjecture

A central issue in approximation theory is the relationship between the smoothness of a
given function and the behavior of its error of best uniform approximation, on the interval
[—1, +1], by either polynomials or rational functions. For example, it is known (cf. Jackson
[14]) that if f(x) and all its derivatives less than order k are continuous on [—1, +1] with
f®(x) € Lip a, then there exists a positive constant M such that

E(f)y<sM6* p=**0 p>k>1, (3.1)

where
En(f) = min{H f—zg ||Lw[—1,+1]: g€ 77,,}- (3.2)

(Here, m, denotes the set of all polynomials of degree at most n.) Hence, roughly speaking, the
smoother f is, the faster its error, of best uniform approximation by polynomials of degree n,
tends to zero as n — «,

In the opposite direction, suppose we consider continuous functions on [—1,+ 1] which are
not continuously differentiable on [ — 1, + 1]. Perhaps the first example which comes to mind of
such a function might be | x |, and it is of interest to know just how the lack of differentiability
of | x| at x =0 affects the asymptotic behavior of its best uniform error, E (| x|), as n — o.
This particular problem was treated in considerable depth by S.N. Bernstein [2] who, by means
of a long and difficult proof, established the following result.

Theorem 4 (Bernstein [2]). There exists a positive constant B (B for Bernstein) such that
lim 2nE,,(1x]) =8, (3.3)
n—oo

where B satisfies

0.278 < B < 0.286. (3.4)

In addition to this above result, Bernstein noted in [2, p. 56], as a “curious coincidence”, that
the constant

1
— = (.2820947917 ... 35
e (3:5)

also satisfied the bounds of (3.4) and is very nearly the average, namely, 0.282, of the upper and
lower bounds for B of (3.4). This observation has, over the years, become known as the

Bernstein Conjecture (1913).

) 1
B = 5= = 02820947917 ... (3.6)
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Table 8
The numbers 2nE,,(|x|) for n=1,...,52
n 2nE,, (1x]) n 2nE,,(Ix])
1 0.25000 00000 00000 00000 27 0.280109236522206 18525
2 0.2704835791 1113710107 28 0.28011 34608 8995028384
3 0.2755743724 0117538604 29 0.28011 7256249499 61792
4 0.2775178246 75052 69646 30 0.2801206787 72662 82833
5 0.27845 1185535508 60152 31 0.2801237757 3166088450
6 0.27896 79174 64958 70636 32 0.280126587138731 91844
7 0.2792829449 58518 02460 33 0.280129147043904 51720
8 0.27948 88375 9450744771 34 0.28013 1484570012 61069
9 0.27963 0657410128 20125 35 0.28013362474403004676
10 0.279732433771973 82968 36 0.28013558916927111713
11 0.2798079172 88743 87383 37 0.28013 7396572336 69662
12 0.27896 5432123793 27279 38 0.280139063250782 89591
13 0.27991 02543 1555769036 39 0.28014 06034 4158248218
14 0.27994 58584 8578213247 40 0.2801420296 2599794087
15 0.27997 46066 86407 49231 41 0.28014 3352783104 08169
16 0.27999 8151956316 72827 42 0.28014 4582601611 08707
17 0.28001 7677133297 25379 43 0.28014 5727657645 50097
18 0.28003 40474 14993 50964 44 0.28014 67955 6460041624
19 0.28004 79072 85905 85156 45 0.28014 7793099959 13546
20 0.28005 9744760423 15265 46 0.28014 87263 13048 74446
21 0.28006993483180943067 47 0.28014 96006 1693143684
22 0.28007 88694 7528753423 48 0.2801504208 6704695023
23 0.28008 64787 5707557049 49 0.28015 1191428744 92326
24 0.28009 3245938808 50547 50 0.28015191623546527355
25 0.28009 92184 52382 83558 51 0.28015259883901781632
26 0.2801045159 86556 70489 52 0.2801532424 53163 84249

In the more than 70 years since Bernstein’s work appeared, the truth of this conjecture
remained unresolved, despite numerical attacks by several authors (cf. Bell and Shah [1],
Bojanic and Elkins [3], and Salvati [22]). The reasons that this conjecture remained open so
long were probably due to the fact that

(i) the accurate determination of the numbers E,,(|x]), for n large, is numerically
nontrivial, and

(ii) that the convergence of 2nE, (| x|) to B, guaranteed by (3.3), is quite slow.

Recently, it was shown by Varga and Carpenter [33] in 1985 that the Bernstein Conjecture is
false; this is a consequence of the following improved bounds of [33] for B:

0.2801685460... =L,y < B < 2u,40 = 0.2801733791... . (3.7)

Since the upper bound for B in (3.7) is less than 1/(2yw) = 0.2820947917 ..., the Bernstein
Conjecture (3.6) is therefore false! Based on calculations involving the second Remez algo-
rithm, the numbers {2nE,, (| x|)}32, were determined by Varga and Carpenter [33] to 95
significant digits, where the calculations of E,,(|x|) were carried out to a precision of 100
significant digits. These numbers are given in Table 8.
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The numbers {2nE,, (| x )}>2, appearing in Table 8 indicate that the convergence of these
numbers to the Bernstein constant B is quite slow. A typical scheme for improving the
convergence rate of slowly convergent sequences is the Richardson extrapolation method (cf.
Brezinski [5, p. 7]), which can be described as follows. If {S,}V_ |, where N > 2, is a given (finite)
sequence of real numbers, set 7§ = S,, 1 <n <N, and regard {T{}¥_, as the zeroth column,
consisting of N numbers, of the Richardson extrapolation table. The first column of the
Richardson extrapolation table, consisting of N — 1 numbers, is defined by

x, T —x,, T
T = 0 0 , 1<sngN-1, (3.8)

xn _er—l

and inductively, the (k 4+ 1)st column of the Richardson extrapolation table, consisting of
N — k — 1 numbers, is defined by

an(n+1) _xn T(”)
T, = k ThrITk , l<sn<N—-k-1, (3.9)

Xy T Xptk+1

for each k=0, 1,..., N —2, where {x,}¥_, are given constants. In this way, a triangular table,
consisting of $N(N + 1) entries, is created. In our case of {2nE,,(|n|)}>2 ,, a triangular table of

1,378 entries was created. As for the choice of the numbers {x,}>2, in (3.8)-(3.9), preliminary

calculations indicated that

2nE,,(1x|) =B + K/n* + lower-order terms,

so we chose x, == 1/n* We remark that the potential loss of accuracy in the subtractions in the
numerators and denominators of the fractions defined in (3.8) and (3.9) suggested that the
calculations of 2nFE,,(| x |) be done to very high precision (95 significant digits).

The Richardson extrapolation of {2nE, (|x )}72, produced unexpectedly beautiful results.
Rather than presenting here the complete extrapolation table of 1,378 entries (giving each
entry to, say, 95 significant digits), it seems sufficient to mention that of the last 20 columns of
this table, all but 3 of the 210 entries in these columns agreed with the first 45 digits of the
following approximation of 3:

B = 0.28016 94990 23869 13303 64364 91230 67200 00424 82139 81236. (3.10)

The success of this Richardson extrapolation (with x,:=1/n%) applied to {2nE, (|x|)}>2,
strongly suggests that 2nE, (| x|) admits an asymptotic series expansion (cf. Henrici [13, p.
355)) of the form

K, K, K,

? 1
ZnEanxl)zB—‘;—f'FF—;g—i—‘”, n—> 00, (311)
where the constants K; are independent of n. Assuming that (3.11) is valid, it follows that
K, Kj
n2(2nE2n(|xi)—,8):—-K1+7~?+'-‘, n— . (3.12)

Thus, with the known high-precision approximations of 2nE,,(|x|) of Table 8, and with an
estimate for B determined from the last entry of the Richardson extrapolation table for
{2nE,,(Ix);2,, we can again apply Richardson extrapolation to {n*(2nE,(|x|)—pB}2,
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Table 9

{K j}}g , for equation (3.11) (10 significant digits)

J K; J K;

1 0.04396752888 6 0.5954353151
2 0.02640716877 7 2.925915470
3 0.03125342646 8 18.49414033

4 0.05889001657 9 146.94301 23

5 0.1601069971 10 1438.032717

(with x,=1/n?) to obtain an extrapolated estimate for K; of (3.11). This bootstrapping
procedure can be continued’ to produce, via Richardson extrapolation, estimates for the
successive constants K; of (3.11). As might be suspected, there is a progressive loss of
numerical accuracy in the successive determination of the constants K.

In Table 9, we tabulate estimates of {K}/2,, rounded to ten significant digits. As Table 9
indicates, the latter constants K; begin to grow quite rapidly. Because these constants all

turned out to be positive, we have the following new conjecture:

Conjecture (Varga and Carpenter [33]). 2nE,, (| x |) admits an asymptotic expansion of the form

2nEp(lx) =B =3 +-F——5+-, now (3.13)

where the constants K (independent of n) are all positive.

As of this writing, the above conjecture is still unsolved!

4. The “8” conjecture

Since the previous section of this paper was devoted to the Bernstein Conjecture, i.e., to the
problem of best uniform polynomial approximation to | x| on [—1, +1], it is natural to finally
consider in this section the corresponding problem of best uniform rational approximation to
|x|on[~1, +1]. As in Section 1, let m,, denote, for any nonnegative integer n, the set of all
real rational functions r, ,(x) =p(x)/q(x) with p € 7, and g € 7. (Here, it is assumed that p
and g have no common factors, that g does not vanish on [—1, + 1], and that g is normalized
by ¢(0) =1.) Then for any real-valued function f(x) defined on [—1, +1], we define, in
analogy with (3.2),

En,n(f) = ll’lf{ ” f— Foon ”Lw[—lﬁ‘l]: Ton = 11-n,n}‘ (41)

Interestingly, while Bernstein [2] considered in depth in 1913 the asymptotic behavior of best
uniform polynomial approximation to | x|on [—1, +1], it was only pointed out fifty years later
in 1964 by D.J. Newman [17] how decisively different best uniform rational approximation to
| x|on[—1, +1]is, in that Newman constructively showed that

1 3
WSE,[,”(|X|)<;7—,;‘, n=4,5,.... (4.2)
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Newman’s inequalities in (4.2) generated much research interest, and, in the spirit of Bernstein’s
earlier work on the asymptotic behavior of E, (| x]|) as n— «, a good part of this research
interest focused on the analogous problem of sharpened asymptotic results for E, (| x|) as
n— o,

For the general theory for the asymptotic behavior of E, ,(f), important contributions have
been made by Gonchar [10] and others. For specifically E, (| x |), the best results to date have
been found by Bulanov [6], who proved that

E, (Ix)ze ™ n=0,1,..., (4.3)
and by Vjacheslavov [35], who proved that there exist positive constants M; and M, such that

M <e™E, (Ix])<M,, n=1,2,.... (4.4)
Obviously, (4.3) and (4.4) imply both that

e"1-VD _027218... <™ E, (Ix])<M,, n=1,2,..., (4.5)
and if

M= lime™"E, (|x]), M= Tm e E,,(1x]), (4.6)

. "o >

that

I<M<M. (4.7)

The result of (4.4) clearly gives the asymptotically sharp multiplier, namely =, for Va in the
asymptotic behavior of E, (| x|) as n — . What only remains then is the determination of the
best asymptotic constants M and M in (4.7).

To give insight into this problem, we now describe very recent high-precision calculations of
Varga, Ruttan and Carpenter [34] for the numbers {E, ,(|x|) 40 .. As in the polynomial case of
Section 3, for each nonnegative integer n, the best uniform approximation to | x |on[—1, +1]
from m, ,, say 7, ,(x), is unique (cf. [16, p. 158]), so that

Epn(lx) =1z~ () oo, n=1,2,.... (4.8)
Furthermore, since | x | is even in [—1, +1], so is 7, ,(x), and this can be shown to imply that
E2n,2n( | x 1) =E2n+l,2n+1( lx]), n=1,2,.... (4.9)

Thus, it suffices, for our purposes, to consider only the manner in which the sequence
{E;,2.{1 x};_, decreases to zero.

Next, if 4, (1) €, , is the best uniform approximation to V¢ on [0, 1] from , . for each
n=1,2,..., ie., if

CE, (V5 10,1]) = inf Ve —r, ()l

T S Thon

=Vt — fln,n(t) ||Lm[0,1], (4'10)
then it can be easily shown that

E2n,2n( 1 X |) =En,n(‘/—t_; [0’ 1])’ n= 1’ 27-- . (411)
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Table 10
The numbers E,, ,,(|x|) and eﬂ‘/aEZrl,Zn( |x|) for n=21,...,40 (25 significant digits)
n Eppon(xl;[=1, +1D e E, o (xli =1, +1D
21 9.6011226128422364808987184E — 9 6.6756165126491228856564179
22 5.9708233987055580552986137E -9 6.7032142882249977256424257
23 3.7523813816413163690864502E — 9 6.7291099634760209110520998
24 2.3814996907217830892279694€ —9 6.7534733658511869861964983
25 1.5254732895109793748147207E -9 6.7764513791852569033345348
26 9.8567633494964529958137413E — 10 6.7981717950311136695770741
27 6.4213580507266246923653248E — 10 6.8187464002912796750796788
28 4.2158848429927145758285061E — 10 6.8382734742229698180371436
29 2.7883241651339275411060214E — 10 6.8568398240938623267702643
30 1.8570720011628217953125707E — 10 6.8745224571336711172475540
31 1.2450783250744235910902360E — 10 6.8913899632991017639055615
32 8.4005997557762786343216049E — 11 6.9075036662673253080419613
33 5.7022115757288620263774447E — 11 6.9229185872920030400076656
34 3.8929505815993459443909823E — 11 6.9376842569099166681845857
35 2.6724435566456537363975894E — 11 6.9518454021392401752909853
36 1.8442995092525441602503777E — 11 6.9654425311662094614637204
37 1.2792448409247089881993010E — 11 6.9785124331456697053440800
38 8.9163582949186860871201939E — 12 6.9910886(73298323319862475
39 6.2438281549962812624730424E — 12 7.0032016330585887701672461
40 4.3920484091817861898391037E — 12 7.0148794900233669056665337
where

Ponon(X)=h, (x?), n=1,2,.... (4.12)

From (4.12), our estimates of {E,,,,(|x};L, were obtained directly from high-precision
calculations of {E, (V¢ ; [0, 1D}, . These calculations, as in Section 3, involved the (second)
Remez algorithm, where Brent’s MP package [4] was used with up to 250 significant digits, and,
allowing for guard digits and the possibility of small - rounding errors, we believe that
the numbers {E, (V¢; [0, 1D}**, are accurate to 200 significant digits. The numbers
{Eqon(1x D25 and {e“‘/ﬁEzn,Zn( | x D)2, are given in Table 10, truncated to 25 digits.

As in Section 3, we performed several different extrapolation techniques, such as Richard-
son’s extrapolation, Aitken’s A? extrapolation, etc. (cf. Brezinski [5]), on the numbers
{6“‘/2_"—E2,, 21 x DY 5, Our best results were obtained from Richardson extrapolation with

=1/vVn f and the results of the ninth and tenth Richardson extrapolations {r, :=

1T‘/2—”E2n ([ x D}, are given in Table 11. The ninth and tenth Richardson eextrapolations of
Table 11 are, respectively, strictly decreasing and strictly increasing. Based on these extrapola-

tions in Table 11, Varga, Ruttan and Carpenter [34] then made the numerlcaﬂy very plausxble
new conjecture:

Conjecture [34].

?
lim e™?"E, , (1x])=38. ’ (4.13)
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Table 11
Extrapolation of {7,}!% 5,
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§th Richardson extrapolation

10th Richardson extrapolation

8.0000000004818513852150904
8.0000000002792857242205205
8.0000000001662223537658992
8.0000000001018861846283786
8.0000000000644065954058002
8.0000000000419621984410583
8.0000000000280990775511207
8.0000000000192489204346099
8.0000000000134077625530325

7.9999999993370575957653022
7.9999999996174919169009855
7.9999999997766671415448461
7.9999999998673924596859198
7.9999999999194597844657179
7.9999999999496419688750299
7.9999999999673808389086599
7.9999999999779992400786189
7.9999999999845068292101649

8.0000000000094285808538428
8.0000000000066398157884231

7.9999999999886129550248035

It is interesting to mention that Professor Herbert Stahl asked the authors of [34] for samples
of their numerical results concerning the distribution of the extreme points of the error of best
uniform rational approximation, namely En’n(\/; : [0, 1] of Vx on [0, 1], and these numerical
results were apparently of great utility to him; Stahl was able to theoretically establish in [27]
that conjecture (4.13) is correct!

With the apparent success of the Richardson extrapolations (with x,:=1/ Vn) of the
numbers {e™V2"E,, , (1 x|;[—1, + 1D}, it is consistent with conjecture (3.13) to make the
following new conjecture:

Conjecture [34]. e“‘/ﬁEZn,zn( |x|; [—1, +1D admits an asymptotic series expansion of the form

K K K
w/in CT ~ it 5
e™E,, o.(1xl; [—1, +1]) 8+\/E+ " +n3/2+ , n—oo, (4.14)
Assuming that (4.14) is valid, it would follow that
K K
Y {e™ Ey (1 x15 [—1, +1]) =8} = K, + —\/—E— +— 4, noow. (4.15)
n n

With the known high-precision approximations of the numbers 7, := e“‘/EEZn,zn( lx|;
[—1, +1] of the second column of Table 10, we can similarly perform Richardson extrapola-
tion (with x,:=1/Vn) on the numbers Vz (7, — 8), to estimate the constant K, of (4.15). In
Table 12, we similarly give the eight and ninth columns of the Richardson extrapolation
method, applied to the numbers (cf. (3.3)) of {Vn(r,—8)}i%,,, for the particular choice
x,=1/ Vvn (n=21,22,...,40), these numbers again having been truncated to 25 decimal
digits. Here, we similarly see strict monotonicity of the numbers in each of these two columns,
and it appears that

—6.664324407227... <K, < —6.664324407190... . (4.16)

This bootstrapping procedure can be continued to produce, via Richardson extrapolation,
estimates for the successive constants K; in (4.14). As might be expected, there is a progressive
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Table 12

Extrapolation of {yn (r, —8)}}° ,,

8th Richardson extrapolation 9th Richardson extrapolation
—6.6643244082814322566680373 —6.6643244056422235361938739
—6.6643244078503439726613513 —6.6643244062953468702991632
—6.6643244076053130326767931 —6.6643244066650174044155402
—6.6643244074621918084852786 — 6.6643244068769002380708173
—6.6643244073760385664278707 — 6.6643244070004868069058853
—6.6643244073225197839348864 -~ 6.6643244070742680700833267
—6.6643244072882341387675361 —6.6643244071196396734608119
—6.6643244072656467633538892 ~6.6643244071485601513855522
—6.6643244072504158643384467 —6.6643244071677648651080498
—6.6643244072399678761510565 —6.6643244071810864075910701
—6.6643244072327288717801809 — 6.6643244071907349895094533
—6.6643244072277039192319918

loss of accuracy in the successive determination of the constants K;. In Table 13, we tabulate
estimates of {K } °_1, where each number is truncated to 10 dec1ma1 digits.

Note that as K1 is negative in Table 13, it would follow from conjecture (4.14) that the
product 7, = e“\/’TEZ,,,Z,,(!x I; [=1, +1D would be eventually increasing to the value 8, as
n — o, which turns out to be consistent with the behavior of the numerical values in the second
column of Table 10. Then, one might ask how large n, would have to be so that the inequality,

>8-0.1=79, all n>n,, @7

is valid. Surprisingly, using the constants of Table 13 in the series of (4.14), the answer to (4.17)
appears to be

o = 4,386. (4.18)

This would mdlcate that to numerically extend the second column of Table 10 to values of T
which satisfy (4.17) would be computationally nearly impossible!

It is of interest to observe how the error curve —Vt +r};,(¢), associated with

Es,3,(Vt; [0, 1)), behaves on the interval [0, 1]. In Fig. 1, we graph — V¢ +r3232(t) on [0, 1].

Though it is very difficult to count from Fig. 1, there are exactly 66 extreme points in [0 1], i.e.,
there are distinct points {z,}’°; with

O0=1t,<t, <+ <tge=1

Table 13

{K; }5 ; for equation (4.14) (10 significant digits)

J K j

1 —6.6643244072
2 +2.7758262379
3 —0.14601 15270
4 -0.35994 22092
5 +0.0728948673
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for which
G +r3"§’32(tj”)=(——1)“1E372732(\/t—; [0,1]), j=1,2,...,66.

It is clear from Fig. 1 that there is a severe bunching up of these extreme points in the
neighborhood of ¢ = 0, for the case n = 32, and, in fact, this bunching up of the extreme points
near t =0 becomes progressively worse as n increases. As can be imagined, this is another
reason for working numerically with very high precision (at least 200 significant digits) in such
computation! ‘
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