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1. Introduction.

Let S(A) denote the closed strip of width 24 in the complex plane C symmetric about
the real axis:

5(4) ={z € C||Im(2)| < A},

where A > 0.

DEFINITION. Let A be such that 0 < A < oco. We say that a real entire function f
belongs to the class S(A) if f is of the form

(1.1) flz) = Cemo"+bzm ﬁ(l — z/z)e*
k=1
where a > 0, zx € S(A)\ {0}, and 352, 1/|2x]? < o0.
We allow functions in &(A4) to have only finitely many zeros by letting, as usual,
zp =00 and 0 = 1/zk, k > ko, so that the canonical product in (1.1) is a finite product. If
a function f € &(A), for some A > 0, and moreover f has only real zeros (i.e., if A = 0),

then f is said to belong to the Laguerre-Pélya class, and we write f € £ — P, We say
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feL—P*if f=pg, where g € £L— P and p is a real polynomial. Thus, f € £~ P* if
and only if f € G(A), for some A > 0, and f has at most finitely many nonreal zeros.

We use L[g] to denote the Laguerre expression associated with an entire function g;
that is, we let

Llg) = (¢')* ~ 94"
Observe that if N
p(z)=C [](z~a)
k=1

is a nonconstant real polynomial with only real zeros, then

(12) 2bl(e) = (o) (2 ) (@) =00 Y gy 20
k=1 "

1
for all z € R, with equality holding throughout if and only if z is a multiple zero of p.

A function g is in £ — P if and only if g is the uniform limit on compact subsets of
C of real polynomials having only real zeros (see [16, Chapter VIII], [22] or [25]). Thus
it follows that if g € £ — P, then Lig](z) > 0 for all + € R. Moreover, a calculation,
similar to the one carried out for p in (1.2), shows that if g € £ — P is not of the form
g(z) = Cexp(bz), then Ligl(zo) = 0 if and only if zq is a multiple zero of g. Our main
goal in this paper is to investigate possible converses to this observation. That is, we wish
to find conditions on the Laguerre expression of a function in &(A) that imply that the
function has only real zeros. A short computation shows that for g(2) = z(z? +1) € &(1),
L[g](z) = 3z*+1, and so some hypotheses beyond L[g](x) > 0 are required if one hopes to
conclude that g has only real zeros. The additional hypotheses we use involve the following
family of functions closely related to g.

For an entire function g and for p € R, we define the function g, by the equation

9u(@) = g(z +ip) + gz — ip).

(We note that if g € &(A), then g, = 2cos(uD)g, where D denotes differentiation with
respect to z (see [10]). All of our results involving the functions g, can be restated using
these differential operators.) Thus if g is a real entire function, then g, is also a real entire
function, and the relationship between the zero set of g, and that of g has been studied

by several authors (see [2], [ 13], [15], [20 ], [22] and [24]). For example, it is well known
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([2]) that if g € &(A), for some A > 0, then g, € £ — P for all real p such that |u| > A.
(It should be pointed out, however, that g, may be a constant function, even if g is not.
The function g(z) = exp(z) and x = 7/2 is an example.) In particular, if g € £ — P, then
gu € L~ P for all u € R. Hence, if g € L — P, then Lig,](z) > 0 for all z € R and all
p € R. Moreover, it is not difficult to prove the following refinement of this implication.

We use the notation Ht = {z € C|Im(z) > 0}.

THEOREM 1. If f € £L~P and if f is not of the form Cexp(bz), then L[f,](z) > 0
for oll p # 0 and for all z € R.

Proof. From the discussion preceding the statement of the theorem, it is sufficient to show
that for any p # 0, f, has only simple zeros. Since f € £ — P is of the form (1.1), with
zr € R, and f is not of the form C exp(bz),
YR oo

(1.3) Im%gi(—f) =1m71(z) =1Im (—2az+b+ ?4— kz_:l ((z_lzk) + -3;)) <0,
for all z € H', as is readily verified. On the other hand, if z; is a multiple zero of f,, so
that fu (o) = f,(z0) = 0, then f(zo +ip) = —f(2o —ip) and f'(zo —ip) = —f'(zo +in).
Since f is a real entire function, it follows that Im (f(zo — iu)f'(zo +ip)) = 0. This

contradicts (1.3) in the case that u > 0, and since f, = f_, this completes the proof.
The main results in this paper are converses to Theorem I in which various additional
assumptions are made about f. We do not know if the converse to Theorem I is valid in
the absence of additional assumptions. The proofs of our main results involve the study
of the level sets of f, that is, the sets '
(1.4) {ze C|Re(e¥f(2)) =0}, feR
The connections between the Laguerre expression of fu, the level set Re f = 0 and the
zero set of f, are fundamental throughout this paper. The key observation is that for a
real entire function f, f,(z) = 0 if and only if Re f(z+iu) = 0. To make this introduction
easier to read, we only state the special cases of our results that correspond to 6 = 0 in
(1.4). They will be stated and proved in their full generality in later sections.
The next theorem relates the Laguerre expressions associated with fu to the mapping
properties of the logarithmic derivative of f. A corollary is the validity of the converse to
Theorem I provided that f has at least one zero and at most finitely many nonreal zerés.

7
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THEOREM I1. If f is a real entire function and if L{f,)(z) > 0, for all p # 0 and for
all z € R, then either the set
!

A={z€H+[Im7(z)>0}

is empty and f € L — P, or all components of A are unbounded.

COROLLARY 1. Suppose that f € L —P* and [ is not of the form Cexp(bz). Then
f € L—Pif and only if L{f,](x) > 0 for all n # 0 and for allz € R.

Remark. The strict inequality L[f,](z) > 0 in the statement of Corollary I is necessary.
This can be seen by considering the polynomial f(z) = z(2? +1), which belongs to £ —P*
but not to £ — P, since f has nonreal zeros. A computation shows that L[f,](z) =

4(3z* 4+ (3p* —1)}) >0 forall z, p € R.

In our next result, we do not assume that f has only finitely many nonreal zeros.
However, we must make certain assumptions concerning the density of the real zeros of
f. For © C C we define Z(f;§)) to be the number of zeros (counting multiplicities) of
f that are in Q, Zg(f;€) to be the number of zeros of f in R NR and Z¢(f;0) =
Z(f;9) — Zr(f; ). We also define

o Za(fi{0<Re(z) <z})
(15) WD) = R o)

so that d(f; ) measures the density of real zeros of f in {z | 0 < Re(2) < z}.

THEOREM III. Let f € S(A). Suppose that there exists § > 0 such that both

min{d(f(2); z), d(f(-2);2)} 2 6

and
/

min{Z(f; {0 < Re(z) < z}), Z{f;{—z < Re(z) < 0})} > 6z
hold for x sufficiently large. Then f € L —P if and only if L[f,](z) > 0 for all p # 0 and
for allz € R.
The required facts concerning the level sets (1.4) are established in §2, and then more

general versions of Theorem I, Theorem II and Corollary I involving the parameter 8 are
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proved (see Theorem 2.1, Theorem 2.5 and Corollary 2.6, respectively). The proof of
the formulation of Theorem III involving # can be found in §3 (see Theorem 3.5). The
theorems stated above correspond to the choice § = 0.

In §4 we consider applications of our results to the Riemann Hypothesis. Here we obtain
new conditions that are both necessary and sufficient for the Riemann Hypothesis to be

valid.

2. Level sets of real entire functions.

The purpose of this section is to establish some results relating the geometric nature
of the level set structure of a real entire function f to the distribution of its zeros . In

particular, we will establish a relationship between the components of the set

!

A(f) = {z e " [ImT(z) > 0}

when A(f) is not empty and the Laguerre inequalities L[f,}(z) > 0, 1,z € R, hold.

In our preliminary lemmas we will make use of several fundamental, although elemen-
tary, properties of level curves which we briefly review here for the reader’s convenience.
We first recall that if f is a nonconstant real entire function, then, for each fixed § € R, a

component, 7, of the level set
(2.1) {zeC| Re(ewf(z)) =0}

is a piecewise analytic curve. Such a curve v is called a level curve of f. Recall that by
the local mapping properties of an analytic function, every zero of f is on some level curve
of f. If zg is a critical point of f, that is, if f/(2¢) = 0, and if 2y is on the level curve 7,
then 2y is said to be a branch point of 4.

Now, if v has no branch points, then it follows from the local mapping properties of
f that the restriction of f to -y is locally a homeomorphism. Moreover, if y(z, z1) is the
portion of vy between distinct points zg, 21 with f(25) = f(21), then since f is nonconstant,
|f| must achieve on the compact set y(zp,21) @ maximum and a minimum, one of which
is distinct from |f(2)|. It is easy to see that the derivative of f must vanish at the point
that this extreme value is achieved. Thus, if v has no branch points, then f is one-to-one

on 7, and the restriction of f to 7y is a homeomorphism. Hence in this case f can have at
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most one zero on 7. (Simple examples show that f need not have a zero on +y.) Since f is
nonconstant, by the maximum principle 7 cannot be a closed bounded curve. Moreover,
if v has no branch points, then v is an analytic curve which separates the plane.

For a real entire function f and p,8 € R, define
fus(e) = (@ +ip) + e f(z —ip).

It is clear that f, ¢ is a real entire function, and it is well known (see [2, Theorem 8]) that
if f € G(A), then fu o € &(A). Moreover, if 4 > A, then f, ¢ € £ —P. We can now give
our generalization of Theorem I. The proof of this generalization, in contrast to that of

Theorem I, is geometric in nature and is based on the structure of the level set
R ={z€C|Re(e¥f(2)) =0}

The connection between the Laguerre expression of f, ¢, the level set Ry g and the zero
set of f, ¢ is fundamental throughout this paper. The key observation is that for a real

entire function f, f, ¢{(z) = 0if and only if x +ip € Ry p.

THEOREM 2.1. Let§ € R be arbitrary, and suppose that f € G(A). If f is not of the
form C exp(bz), then L{f,¢](z) > 0 for all p >.A and for all z € R. ’

Proof. Since f, ¢ € L~P for 4 > A, we see by the background material in the Introduction
that it is sufficient to prove that, for each p > A, fu ¢ has only simple zeros. Suppose to
the contrary that u > A and zo is a multiple zero of f, 9. Thus, if n > 0 and [X — p| is
sufficiently small, then f5 ¢ has at least two zeros in the interval (zg — 7, zg +7). It follows
that the horizontal line Im (z) = p intersects Rsg N {z € C | |Re(z) — zo| < §} just at the
point xg + iy if § > 0 is sufficiently small, while the line Im (2) = X intersects this same
set in at least two points if 0 < |A — pu| < € and € > 0 is sufficiently small. Thus the set
Ry contains at least two analytic curves that intersect at xo + 7u, which happens if and
only if f'(zg +ip) = 0. Hence, f' has a zero outside of the set S(A), which contradicts
the well known fact that &(4) is closed under differentiation {2].

Remark. A proof of Theorem 2.1 could also be based on the Hermite-Biehler theory (see
[16, Chapter VII]), using an argument which is mutatis mutandis the same as the one used

in the proof of Theorem I in the Introduction.
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The following lemma shows that if a level curve v { in H') of a real entire function
f has either a branch point or a horizontal tangent line, then the Laguerre expression

L{f.6](z) must be nonpositive for some z,u € R, pu # 0.

LEMMA 2.2. Let f be a real entire function, let 6 be any real number, and let v be a
component of the set

{z e H* | Re(e“f(z)) = 0}.

If v has a branch point or if there is a point on 7y where y has a horizontal tangent line,

then
L{fu, 0)(z1) =0,

for some 1,1 € R, p3 > 0.

Proof. Suppose first that v has a branch point, i.e., thereis a point z; = z1+4iu; on 7y where
f'(z1) = 0. Then, f,, o(z1) = 2Re (" f(z1 +ip1)) = 0 and fio(z1) = 2Re (e® f'(z1 +
ipr)) = 0. Consequently, in this case L[f,, g](z1) = 0.

Next suppose that v has a horizontal tangent line at z; = z1 + 4y1. By the preceding
argument, we may assume that z; is not a branch point of . Let z(t) be the analytic
parameterization of -y in a neighborhood of z; such that f(z(t)) = ie~*%¢. Differentiation
of this equation with respect to ¢ yields that f'(z(t))2/(t) = ie~%. Let ¢t; € R be such
that z(¢1) = 21, and observe that 2/(t;) is real and nonzero. Hence Re (€% f'(2(t1))) = 0,
so f. o(z1) = 2Re (e f'(21)) = 0. Since we also have fy, o(z1) = 2Re (e f(21)) = 0, we
get that L[f,, ¢|(z1) = 0 and the proof is complete.

LEMMA 2.3. Let f be a real entire function and let 8 be any real number. Suppose
that

(2.2) A={zecH| ImTI(z)>0}7é(0

and that V is a bounded component of A. Then there is at least one component v of the

level set

(2.3) {z € H' | Re(e* f(2)) = 0}
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which intersects the boundary, OV, of V at a point in HT. A point of intersection in HY
of v and BV 1s either (i) a zero of f, (i) a critical point of f, or (i) a point where v has
a horizontal tangent line. Moreover, if v has no branch points, then there exists at least

one point z; € OV N~y where v has a horizontal tangent line.

Proof. Since A # @, f is nonconstant and whence it follows by the maximum principle
that f has at least one zero z; € V. Clearly, z; is a simple pole of f'/f with positive
residue, and so Im (z) > 0. Indeed, if 2y is a real simple pole of f'/f (with necessarily
positive residue), then

Im-‘?(z) <0

at all points z € H* sufficiently close to z1, and so z; ¢ V. Next, recall (by the remarks
at the beginning of this section) that 2y, being a zero of f, is on at least one level curve
v, where <y is a component of the level set (2.3). Now consider a point z; € 8V N+ that
is neither a critical point nor a zero of f. As in the proof of Lemma 2.2, let z(t) be
the analytic parameterization of 7 in a neighborhood of zy such that f(z(t)) = ie™*%t.

Logarithmic differentiation with respect to ¢ yields that

1

(2.4) Lewe =1,

Let ¢y be such that 2(t2) = 2z, and observe that since zp € 8V N H*, ff/-(zQ) is real and
hence from (2.4) we conclude that Im(2'(t5)) = 0 and Re (2'(t2)) # 0. Consequently, v
has a horizontal tangent line at 2;.

Finally, to prove the last assertion of the lemma, consider a level curve vy which has
no branch points and which intersects 9V N HT at z,. If v has a horizontal tangent at
29, there is nothing more to prove. So assume 7 does not have a horizontal tangent at
29, and observe that, by the part of the lemma already established, zg is a zero of f. As
noted earlier, z; is a simple pole of f’/f with positive residue, and so the horizontal line
Im (2) = Im (%) is tangent to 8V at z. From this it follows that YNV # §. Since V is
bounded and 7y is unbounded, v must intersect 8V at a point 21, 21 # 2. Since 7y has no
branch points, f is one-to-one on -y and so f cannot vanish at z;. Also, if 4 is not an odd
multiple of 7/2, then -y can intersect R only at a zero of f, so Im (21) > 0. Therefore, by

the previously established part of the lemma (cf. (iii)), v has a horizontal tangent line at
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z1. On the other hand, if 8 is an odd multiple of 7/2, then R is contained in the level set
(2.3). Thus the assumption that y has no branch points implies that v can not intersect

R, and the argument is completed as before. This completes the proof of the lemma.

Remark. Lemma 2.3 should be compared to the following result of Sheil-Small [30, Lemma
1]: If a real entire function f has only real zeros, then the components of A (cf. (2.2)) are

all unbounded.

We now present an example to illustrate Lemma 2.2 and Lemma 2.3, and the geometric
ideas that motivate their use in this paper. In this example we just consider the level sets
corresponding to 6 = 0. Consider the function f(z) = 5 + 3z + 52% + 2° + 2%, with zeros
at —.404... +£1.1527... and —.0953... £1.829¢... .

2.5 2.5
2 2
1.5 1.5
1\/\‘/ 1
0.5 0.5
O 1T 2 Oy T 2

FiGURE 1. The level set Re(f) = 0, first alone and then with the level
set Im %' = 0, for the function f(z) =5+ 3z + 522 + 23 + 2%

The level sets Re(f) = 0 and Im {‘—f'- = 0 intersect at the zeros of f as well as at each
point where Re(f) = 0 has a horizontal tangent line. The level set Im ff—l = 0 also has a
horizontal tangent line at each zero of f. Furthermore, since the real zeros of f, occur at
the points of intersection of the line y = pu with Re(f) = 0, we can easily determine the
number of real zeros of f, by studying Figure 1. In particular, using the notation Zg(g)
for the number of real zeros of a function g, we see how Figure 1 reflects that Zg(f5) =0,
Zr(f1) =2, Zr(f11) =4, Zr(f15) = 2 and Zg(f,) =4 for > 1.789... . This should

be compared to the observation made earlier that f, has only real zeros for x4 > 1.829. ..

, since the zeros of f belong to §(1.829...). We also note that this example shows that it

#
5
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is possible to have g, € L — P but g,, ¢ £ — P, for some pz > .
In the proof of the main theorem of this section (Theorem 2.5 below) we will make use
of the following known characterization of functions in the Laguerre-Pélya class (see [30,

Lemma 4] and for special cases [13] and [5, Theorem 2.12]).

LEMMA 2.4. Let f be a real entire function. Then f € L—P if and only if Im%(z) <0
for all z € HY. Moreover, if f € L — P and f is not of the form Cexp(bz), then
Imffi(z) < 0 for all z € HIT.

THEOREM 2.5. Let 6inR. If f is a real entire function and L{f,¢](z) > 0, for all
w >0 and for all © € R, then either the set

7
A={zeH| Imff—(z) > 0}
is empty and f € L — P, or all the components of A are unbounded.

Proof. If A = @, then f € L — P by Lemma 2.4. Suppose A # ) and V is a bounded
component of A. Then by Lemma 2.3 there is at least one component v of the level set
{z € H* | Re(e® f(2)) = 0} which intersects V. Moreover, either  has a branch point
or 7 intersects OV at a point where v has a horizontal tangent line. In either case, by
Lemma 2.2, L{f,, ¢](z1) < 0 for some p1,z1 € R, 1 > 0. Hence, if L[f, ¢](z) > 0, for all
#>0and z € R and A # 0, then all the components of A are unbounded.

We close this section with some applications of Theorem 2.5. Our first application
provides a necessary and sufficient condition for a function f € £ — P* to have only real

Zeros.

/

COROLLARY 2.6. Let 6 be any real number and suppose that f € L — P* and f is
not of the form Cexp(bz). Then f € L—P if and only if L{f, ¢)(x) > 0 for all 4 # 0 and
zeR.

Proof. If f € L — P and f is not of the form C exp(bz), then L[f, o](z) > 0, for all x # 0
and « € R, by Theorem 2.1. Conversely, suppose that f € £L—7P* and that L[f, ¢](z) > 0,
for all 4 # 0 and z € R. By the definition of £ — P*, f = pg, where g€ L — P and p is a
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real polynomial. Also, by Lemma 2.4, Im le—(z) < 0 for all z € H*, and so

1 7
A={zeH| Imff—(z) >0} (2B [ InEz) > 0)
If z;, = ok + typ, 1 < k < n, are the nonreal zeros of p in H*, then a short computation

(see for example [15], [20], [22] or [27]) shows that

(2.5) {z e Ht | Im ——(z) >0} C U D(zk, ¥),
k=1

where D{(a,r) = {z € C| |z — a| < r}. It follows that A is bounded. Theorem 2.5 now
implies that A=Q@ and f€L--P .

COROLLARY 2.7. Let 6 be any real number and let ¢ : [0, R} — R, where 0 < R < co.
Suppose that p € C1[0, R] and that ¢(R) # 0. Define

R
/ (t) cos(zt) dt.
0

Then f € L — P if and only if L{f, 6](x) > 0 for all p # 0 and for all z € R.

Proof. For the reader’s convenience, we first outline the proof of the known fact that
f € L —P* (see [11, p. 100, Theorem 3.4.56]). Note that f is a real entire function of
exponential type. Integration by parts yields

R
z2f(z) = p(R)sin(zR) — /é ¢ (t) sin(zt) dt.

Since o(R) # 0 and ¢’ is continuous, it follows from the Riemann-Lebesgue Lemma, that

f(z) has an infinite number of real zeros. Next, let

o (=1)kk+ bynf (ER)
Tn(z) = 2’;0 (k+ D)m)? — R22%)

e (252

has at most a finite number of sign changes, we conclude that r,(z) has at most M nonreal

Since the sequence

zeros, where M is independent of n. But

f(2)
cos(zR)

ra(z) —
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uniformly on compact subsets of C\{ UC—'{-R%E}OO (see [28, Part III, Problem #166]). Thus,
by Hurwitz’ theorem, f € £ —P*. Since f is not of the form C exp(bz), the conclusion of
this corollary follows from Corollary 2.6.

Remark. If, for example, we assume that ¢ € C?[0, R], ¢(t) > 0, ¢/(t) < 0 and ¢"(t) < 0,
for t € [0, R, then it is known (see [28, Part V, Problem #173]) that f € £ — P. For
additional results of this type see [26].

We will provide some other applications of Theorem 2.5, involving Fourier transforms,

in §4.

3. Functions with zeros satisfying a density condition.

In this section we establish that certain conditions, which do not include the assumption
that f has only finitely many nonreal zeros, are sufficient for a real entire function f to
be in £~ P . For the proofs, however, we need to assume that the real zeros of f satisfy
a density condition involving the function d(f;z) defined in (1.5). We begin with an

elementary lemma.

LEMMA 3.1. If f € 6(A) and M > 0 is any positive number, then
Z(fi{x — < <
lim inf (fi{z — M < Re(z) <z + M})

T 00 z

=0.

Proof. Suppose there exist € > 0 and M > 0 such that
Z(fi{2jM <Re(z) <2(j + 1)M}) > e2jM,  j > jo.

But then

=1 o~ Z(Fi{2iM < Re(z) <2(j + UM = e2jM
k;m[zzz (f;{2M <Re(z) <2(j +1) })EZ M

@20+ 1)M)? 2 (M) = %

J=jo J=Jo

which contradicts the assumption that f € G(4).

The next lemma is the key to the results of this section.

LEMMA 3.2. Let f € G(Ap). Suppose that, for some A > 0,

w:[0,00) — S(A)NHT
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is a parameterization of a simple piecewise analytic curve o such that f(w(t)) # 0, ¢ >0,
and im;_,o Re(w(t)) = oco. Suppose there exist & > 0 and Cy > 0 such that, for all x

sufficiently large, both

(3.1) d(fyz) > 6,
and
(3.2) Z(£;{0 < Re(z) < x}) 2 Coz,

where d(f;x) was defined in (1.5). Then

lim inf I'm / —J}(z) dz = —o0,

o(0,s)

where (0, s) denotes the portion of o corresponding to 0 <t < s.

Proof. Clearly we may assume without loss of generality that a =0, b =0 and m =0 in
(1.1). Choose a curve 7 s0 that the union of the traces 0 U7 is a simple, piecewise analytic
curve contained in S{A) N HT that separates 247 and —2A4¢. Denote the components of
C\ (¢ Un) containing these points by G and G~ respectively.

Let € > 0 be a small number to be specified later, and let
(3.3) M = max{A/e,1/e — Re(w(0))}.
By Lemma 3.1 we can find a sequence of points z,, — oo such that
(3.4) Z(fi{zn — M < Re(z) < zpn+ M}) < exy, n > 1.

Since z,, — 0o we may also assume that z, > 2M + Re (w(0)) and d(f;z,) > 6 for all n,
by (3.1).

For each n, we factor f as f = fifaf3, where

fi(z) = II (1 - z/z)e" %
Re (w(0))+ M<Re(2zx)<xn—M
and
fa(z) = H (1— 2/ z)e** H (1— 2/ zg)e* .

Re (w(0))—~M<Re(zx)<Re(w(0))+M Zn—~M<Re(2x)<zn+M
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For each ¢ > Re(w(0)), we can find t(z) > 0 such that Re(w{t(z))) = z and if
s > t(z), then Re(w(s)) > . Let t,, = t(z,). We consider the integral, over o(0,%,), of
the logarithmic derivative of each f; separately.

Let I';; denote the polygonal path [w(0), Re (w(0)),zn, w(t,)] and let T} denote the
polygonal path [w(0),Re (w(0)) + ¢, + 7, w(tn)]. For n > 1 and k > 1, let

I(zg,n) = Im / (

o(0,t,)

1 1 1 1
-t ——+ — + =) dz.
Z— 2k Z— 2 2k Zk

Consider a zero zi of f satisfying
(3.5) Re(w(0)) + M < Re(z) < ©n — M,
and assume first that z;, € Gt. The choice of t; assures that the winding number
n(I‘J_ —0(0,t5),2) = 0.

Thus, by Cauchy’s theorem,

I(Zk,n)Z/( ! + ! +—1—+i)dzA

Z—2y, Z—Zx 2k 2k

T

By considering branches of the logarithms log(z — z;) and log(z — Z5) on
C\ {z | Re(2) = Re(2x) and |Im (2)| > Im (z)},

as a consequence of (3.3), (3.5) and the assumption that |Im (zx)] < Ag, we see that

I(zg,n)
Re(2x)
|2&/?

~m log(%)l—_rzi:) +1Im log (3;-(—(’50’*)—%"—;%) 4 2Im (w(t) — w(0))

< (7w + €0(1)) + (=7 + €O(1)) + 24

(3.6)

=e0O(1).

Here, and for the remainder of the proof, the positive bound implicit in O(1) is independent
of €, k and n. Moreover, the notation p(z) < O(1) just asserts the existence of an
upper bound for p(a:), while p(z) = O(1) is the statement that p(z) is bounded. Thus,
-z < O(1) and —z? # O(1). If 2y € G~ satisfies (3.5) and Im (z;) ;é 0, then a similar
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argument, using I'} in place of I';; and branches of the logarithms log(z—z) and log(2—%5)

on

C\ {2z | Re(2) = Re(zx) and Im (z) < Im(2x)},
shows that
(3.7) Izg,n) < (=7 +€0(1)) + (—7 + €O(1)) + 24¢ < €O(1)

in this case as well.

Finally, if Im (2) = 0 and 2 satisfies (3.5), set

J(zk,n) = Im / ) dz.
Z — 2k Zk

o{0,ty,)

By considering a suitable branch of the logarithm log(z — z;) on
C\ {z| Re(z) = Re () and Im (z) < 0},

we have that

w(ty)

J(zg,n) = Im log(W:;:> + %};Im (w(ts) —w(0))

< =+ €0(1),

(3.8)

by (3.3) and (3.5).
Combining (3.6), (3.7) and (3.8), it follows that

- ]

o(0,t,)

< ) I(zk,n) + > T(zi,m)
Re (w(O))+M<Re (zp)<xn—M Re{w(0))+M<Re(zx)<zn—M

Imz,#0 Imz,=0

< e0(1)Zo(f; {Re(w(0)) + M < Re(2x) < zn — M})

+ (= + €O(1)) Za(f; {Re (w(0)) + M < Re (24) < 7 ~ M})
= Z(f;{Re(w(0)) + M < Re(zx) <z, — M})

X [€O(1)(1 — d(f;2n)) + (=7 + €0(1))d(f; zn) + o(1)) (n — 00)
< Z(f;{Re (w(O)) + M < Re(z) < 2 — M})[eO(1) — w6 + 0(1)]

_5001'7“
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provided that € was chosen to be sufficiently small compared to ¢ and n is sufficiently
large. In the last two inequalities, (3.1) and (3.2) were used.
We now cousider f;. For the zeros of f satisfying z,, — M < Re (zx) <z, + M, we use

the elementary estimates that
I{z,n) < 4w+ €O(1) < O(1),

and similarly J(zx,n) < O(1). Since there are only finitely many other zeros of f3, and

they do not depend on n, we get that

Im / %(z) dz

a(0,t)
(3.10) <o)+ 3 I(zg,n) + > J(zk,m)
zn,—M<Re(z)<zn+M T, —M<Re(2x)<@cn+M
Imzp#0 Imz=0

< (1+ ex,)O(1),

by (3.4).
For fs, by Cauchy’s theorem and the fact that f3 is real on R,

! /
Im %(z) dz =Im %(z) dz
7(0,tn) s
- f3 f3
(3.11) = Im / 7, (2) +Im / T, (2)
[w(0),Re (w(0))] [wn w(tn)]
’
< O(1) +Im / fi(z) dz.
fs
[on w(tn)]

But if z € S(A) and Re(z) = z,, and either Re (2) > 2, + M or Re(zx) < —M, then it

Re( ! -F—l--)<07
Z = Zk 2k

provided e is sufficiently small (so that M is large). Since this accounts for all but at most

is easy to check that

finitely many of the zeros of fs, we have by (3.11) that

’ Im (w(tn)) I
(3.12) Im / %(z) dz < 0(1) +/ Re %(mn +1is)ds < O(1).
3 0 3
)

o(0,t,
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Combining (3.9), (3.10) and (3.12) gives that

4

Im / f?(z)dz < O(1) + (0(1) — 6Co)zn.
a{0,tn)
Taking € to be sufficiently small compared to § and letting n — oo completes the proof.
We will use Lemma 3.2 to establish a fundamental property of the level sets (2.1) of
a real entire function f € &(A) whose zeros also satisfy certain density conditions (cf.
(3.14) and (3.15)). This property is that every level curve, -y, of f either has a branch

point or “leaves” every horizontal strip S(A), where A > 0.

THEOREM 3.3. Let f € 6(Ag). Suppose that there ewists § > 0 such that

(3.14) min{d(f(2);2), d(f(~2)2)} 2 &
where d(f; x) was defined in (1.5), and
(315)  min{Z(5;{0 < Re(z) < a}), Z(f: {~2 < Re(2) <0} = 6a

for z sufficiently large. Fiz any real number 6 and let vy denote any level curve of f in the
set (2.1) with v C HY. Then either v has a branch point or yN S(A) is a bounded subset
of Ht for every A > 0.

Proof. Fix A > 0 and suppose -y has no branch points. Consider an unbounded simple
curve ¢ such that ¢ C -y and such that f has no zero on o. It suffices to prove that

o N S(A) is bounded. If not, then there is a parameterization of o,
w: [tg,00) — S(A)NHT (to > 0)

for which we may assume without loss of generality that

(3.16) flw®) =e%,  t>t.

(We know that e is real and never 0 on 0. We have assumed in (3.16) that €' f is pos-
itive; the following argument remains valid if * f is negative.) Also, by our assumptions,

limy—oo [Re (w(t))| = oo, and we may assume, by considering f(—z) if necessary, that
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lim; o0 Re (w(t)) = co. Since (3.14) and (3.15) hold, we therefore see that the hypotheses

of Lemma 3.2 are satisfied. Now, a calculation using (3.16) shows that for, T > tg,

7 T b
Im / —}—(z) dz =Im /tg pern dt =0, )
o(to,T)
where, as before, o(ty,T') is the portion of o corresponding to tg < s < 7. But this
contradicts the conclusion of Lemma 3.2, and therefore ¢ cannot be unbounded and the

proof is complete.

As a consequence of Theorem 3.3, we obtain the following corollary.

COROLLARY 3.4. Suppose f satisfies the hypotheses of Theorem 3.8 and let 6 be any

real number. Let zy be a nonreal zero of f with 29 € HT and let v denote the level curve
of f in the set (2.1) with zg € . Then either v has a branch point or there is a point
z1 € v such that v C {z € C | Im(z) > Im(z1)}.

Proof. Suppose v is a level curve of f contained in the set (2.1) that passes through a zero
zp € HI* of f, and v has no branch points. If 4 is not an integral multiple of 7, then since
f is a real entire function, y can only intersect the real axis at a zero of f. But, f can
have at most one zero on 7, so v cannot intersect the real axis. Thus, by Theorem 3.3,
v must leave every horizontal strip S(A), A > 0. Hence, v has a local minimum, z;, as
asserted. Finally, if ¢ is an integral multiple of 7 and - does not intersect the real axis,
then the same argument applies. On the other hand, if v intersects the real axis, the point
of intersection must be a branch point of -y since the real axis belongs to the set (2.1)
when 0 is an integral multiple of 7. This contradicts the assumption that -y has no branch

points, and completes the proof.

Remark. The assumption in Corollary 3.4 that there is a nonreal zero of f on 7 is necessary.
This can be seen by considering any f € £ —P having only simple real zeros and satisfying
(3.15). For then the components of the set of points where Re (f) = 0 have no branch

points or minima, as discussed in §2.

THEOREM 3.5. Suppose [ satisfies the hypotheses of Theorem 8.8, with zeros in the

strip S(Ag) for some Ag > 0, and let 6 be any real number., Then f € L — P if and only
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if L{fu0)(z) > 0 for all z € R and for all p such that 0 < p < Ag.

Proof. The necessity of the condition for f to bein £ —P is just a restatement of Theorem
2.1 with A = 0. To prove the sufficiency, let § € R and assume that f satisfies the
hypotheses of Theorem 3.3, but that f is not in £ — P. This means that f has a nonreal
zero zy € H*. By Corollary 3.4, the level curve «y of f in the set (2.1) with zy € v either
has a branch point or a horizontal tangent line at some point. In either case, by Lemma
2.2 there exist z1, 1 € R, p1 > 0, such that L{f,, ¢](z1) < 0. By Theorem 2.1 (applied
with A = Ag), L[fu](z) > 0if g > Ag. Thus 0 < py < Ay, and the proof is complete.
For the purpose of comparing this result to known theorems, we state two other theo-

rems giving necessary and sufficient conditions for f to be in £ —P.

THEOREM 3.6. (|6, Theorem 3.4 |)Let f be an even real entire function with zeros

in S(A) for some A > 0 and suppose that the Fourier transform of the restriction of f to
R is positive and equal to O(exp(—|z|>T¢)) for some ¢ > 0. Then f € L~ P if and only if
L{fuol(x) + Lifunj2l(x) 2 0 for all0 < p < A and z € R.

In contrast to Theorem 3.5, no density conditions on the number of real zeros of f are
assumed in Theorem 3.6. On the other hand, the condition in Theorem 3.5 sufficient for
f to bein £ — P is perhaps easier to verify, since it involves the Laguerre expression f, ¢
for any single choice of 4, rather than a sum of Laguerre expressions as in Theorem 3.6.
We remark that the proof of Theorem 3.6 in [6] is based on the following theorem, due to

Jensen, which involves a complex form of the Laguerre inequalities.

THEOREM 3.7. ([13], [P, p.17]) Let f(2) = e"“zzg(z), where g 1s a real entire function
of genus 0 or 1 anda > 0. Then f € L —P if and only if

(3.17) /') 2 Re{f(2)f"(2)}. z€C.

The proof of this theorem is based on the geometric interpretation of inequality (3.17),

which is just that |f(z + iy)|? is a convex function of y.

4. Applications to the Riemann Hypothesis.

We conclude this paper with some applications to the Riemann £-function, which has

a well-known Fourier integral representation. While the results of §3 may be applied to
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any real entire function which is the Fourier transform of a suitable kernel, for the sake of
brevity, we will formulate our results only for the Riemann ¢-function.

To begin with, we will first review some of the notations and results which will be
needed. If ((z) denotes the Riemann (-function, then it is well known [31, pp. 13, 30
and 45] that all the nonreal zeros of ¢ lie in the critical strip 0 < Re(z) < 1 and are
symmetrically located about the critical line Re (2) = 1/2. Then the Riemann Hypothesis
is the statement that all the nonreal zeros of ( lie precisely on the critical line Re (z) = 1/2.

Now from Riemann’s definition of his é-function, i.e.,

(41) €)= (2~ DT 4 et g),

it can be seen that the Riemann Hypothesis is equivalent to the statement that all the
zeros of ¢ are real. It is also known that ¢ admits the following integral representation

(see [P, p. 11] or [31, p. 255])

(4.2) H(z) = %g(g) - /Oooq>(t) cos(et)di, z€C,

where

(4.3) ®(t) = Z mn?(2mnle*t — 3) exp(5t — mnlet?), teR.
n=1

In addition, we recall that the even real entire function H is of order 1 and of maximal
type (see [31, pp. 16 and 29] and [4, Appendix A]) and that all the zeros of H lie in the
interior of S(1) ([23], [2]). Thus H € &(1). We also note that @ is an even function [23].

In order to apply the results of §3, we must verify that H satisfies the density conditions
(3.14) and (3.15). This is easily deduced from the following classical results. First, the
Riemann-von Mangoldt formula (see [7, pp. 18, 19. 301], [31, Chapter IX] or [12, Chapter
10]) asserts that

(4.4) NT) = L log (%) - 2% +0(logT) (T — o),

where N(T') denotes the number of zeros of ((z) in 0 < Re(z) < 1, 0 < Im(z) < T.
Therefore, it follows from (4.1), (4.2) and (4.4) that H satisfies condition (3.15).
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Now, let No(T) denote the number of zeros of ({z) on the critical line, of the form
z= % +1t,0 <t <T. In 1942 A. Selberg [29] proved the existence of constants Tp,C > 0

such that
No(T) > CTlogT, T>Typ.
Thus,
e No(T)
(4.5) K —11Tr11+1°réf N(T) > 0.

(For more recent results, see Levinson [17] (x > 1/3) and Conrey [3] (x > 2/5)). Thus it
follows from (4.1), (4.2) and (4.5) that H satisfies condition (3.14). In conclusion, we see
that H satisfies the hypotheses of Theorem 3.5. Therefore, the application of Theorem
3.5 allows us to deduce the following necessary and sufficient condition for the Riemann

Hypothesis to be valid.

THEOREM 4.1. Let H(x) be defined by (4.2) and let 6 be an arbitrary real number.
Then H € £ — P if and only if L[H,)(z) > 0 for all x > 0 and for all p satisfying
0<pu<l.

Proof. As before, the necessity of this condition for H to be in £~ P follows from Theorem
2.1 by taking A to be 0. As for the sufficiency, since the zeros of H are known to belong
to S(1), Hy ¢ € £L—"P. Thus L[Hj p](z) > 0 for all z € R, with equality only at a real zero
of Hyp of multiplicity greater than one. But if z¢ is a multiple zero of Hj g, then either

H'(zy + 1) = 0 or the component « of the level set
{z € H* | Re(e“H(2)) = 0}

that contains zg + 7 has a horizontal tangent at this point (see the proof of Lemma 2.2).
We will show that this leads to a contradiction.

We first show that

!

(4.6) Im %—(:co +i)=0.

This is clear if H'(zg+1) = 0, since H has no zero with imaginary part equal to 1. If 4 has

a horizontal tangent at zo + ¢, then we proceed, as in the proof of Lemma 2.3, by letting



398 CSORDAS ET AL.

z(t) be a parameterization of y with z(tg) = zo + . In this case, a short calculation (see
(2.4)) shows that

!

H .
Im—H—(w0+2) =1

" 507 (to) o
since the horizontal tangent of v at o -+ 4 implies that Im (2'(¢o)) = 0.
Since H is of genus 1, we have that H is the uniform limit on compact subsets of C of

the functions p,, where
n

pa(2) = [L@~ 2/m)e”/

k=1
and {2} is the zero set of H. So p, € £L — P*, and (see (2.5))

! m
Alpa) = {z € B | Im 2(2) 2.0} | Dlajv5),
n j=1

where z; = ;+iy; are the nonreal zeros of p, and as before D(a,r) = {z € C | |z—a[ <7}
Since the zeros of H are in the interior of §(1), we see that, for fixed M > 0, if 29 € A(py,)
and Re(z) < M, then Im(z) < 1 — ¢, for some € > 0 that depends on M but not on n.
By letting n — oo, we conclude that A(H) is a subset of the interior of S(1).

Thus (4.6) is the desired contradiction, and it follows that Hjp has only simple real
zeros, and so L[H; g](z) > 0 for all z € R. Thus the hypothesis that L[H, ¢](z) > 0 for all
z > 0 and for all y satisfying 0 < p < 1, together with the fact that H is an even function,
implies that L[H,, ¢](x) > 0 for all z € R and all y such that 0 < z < 1. Theorem 3.5 now
implies that H € £ — P, and the proof is complete.

Remark. The sufficient condition for the Riemann Hypothesis to hold in Theorem 4.1 only
needs to be verified for z satisfying || > 10°. This is an immediate consequence of the
fact that all of the zeros of H in the set {z | |[Re(z)| < 1.0908--- x 10°} are real [19] and

the following proposition.

PROPOSITION 4.2. Let f € G(A) and suppose that all zeros of f satisfying |Re(2)] <
M are real. If p # 0 and 6 € R, then L[f.e|(z) > 0 for all z such that |z] < M — 24.

Proof. Fix i # 0 and 6 € R. Suppose that f € G(A) and that all zeros of f satisfying
|Re(2)] < M are real. Hence the union of the Jensen disks associated with the nonreal

zeros of f is disjoint from the set {z | |[Re (2)] < M — A}. Since the nonreal zeros of f' are
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in these Jensen disks (cf. the proof of Theorem 4.1), it follows that all the zeros of f' in
the set {z | |[Re(z)] < M — A} are real.

Also, the nonreal zeros of f, ¢ are contained in the union the Jensen disks assogiated
with f (see [2, Theorem 4]), and so the union of the Jensen disks associated with the
nonreal zeros of f, ¢ is disjoint from the set {z | |[Re (z)| < M — 24}.

A calculation similar to that carried out in (1.2) now shows that
Fro\

f,w) (z) <0

Lifuol(x) = —f2,o(x) (

only if  is on the boundary of the set
/

A={zecH" |Im-]l2(z) > 0}.
fu,9

Since A is contained in the union of the Jensen disks associated with the nonreal zeros
of fue (cf. the proof of Corollary 2.6), if |z] < M — 24, then L[f, ¢](x) > 0. As before,
equality is possible only at a multiple zero of f, 9. As in the proof of Theorem 2.1, a
multiple zero, zg, of f, ¢ Wwith |z¢| < M — 2A corresponds to o + iu being a zero of f'.
But we have already seen that all the zeros of f, , in the set {z | [Re (2)] < M 24} are
real, so that L[f,e](z) > 0 if || < M — 24, and the proof is complete.

COROLLARY 4.3. Let H(z) and ®(t) denote the functions defined in ({.2) and (4.3),

let 8 be any real number and let

F(z, p,0,s,t) = (cos(28) cosh(2ut) + cosh(2pus)) cos(xt) + sin(26) sinh(2pt) sin(xzt).
The followiﬁg are equivalent:

(i) HeL-P;

(i) if0 < u <1 andz > 10°, then

/000 /:0 (s — t)®(s +t)s F(z, p,0,5,t) dsdt > 0;
(i) f 0 < p <1 and z > 10°, then
/000 -/000 B(s — t)®(s +t)s*[cosh(2ut) + cosh(2us)] cos(zt) dsdt > 0;
(iv) if 0 < p <1 and = > 10°, then

/00 /oo (s —t)®(s + t)s%[cosh(2us) — cosh(2ut)] cos(xt) dsdt > 0.
o Jo
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Proof. An elementary, although somewhat lengthy, computation using (4.2) and the fact

that ® is an even function shows that

L )

is equal to the expression in (ii). Thus the equivalence of (i) and (ii) follows from Theorem
4.1 and the remark following its proof. The equivalences of (i) with (iii) and of (i) with
(iv) follows by making the choices = 0 and 6 = 7/2 in (ii), respectively.

Observe that statements (iii) and (iv) above assert that certain Fourier transforms are
positive. The theory of which kernels have positive Fourier transforms is well developed.
Such kernels are called positive definite kernels. There are several known characterizations
of nonnegative definite kernels. For example, the celebrated Tauberian theorem of Wiener
(see [8] or [9]) asserts that a kernel K is nonnegative definite if and only if the closure of
the span of translates of K is all of L!(R). For other characterizations see [21], [1], [18]
and [14]. Thus the equivalence of statements (i), (iii) and (iv) of Corollary 4.3 may be

restated as follows:

COROLLARY 4.4. Let H(z) and ®(t) denote the functions defined in (4.2) and (4.3).

The following are equivalent:
(i) He L-P;
(i) 0 < p <1, then

f:o ®(s — t)®(s + t)s?[cosh(2ut) + cosh(2us)] ds

s a positive definite kernel;

(iil) f0 < p <1, then
. ,
/ ®(s —t)®(s +t)s*[cosh(2us) — cosh(2ut)] ds
0
is a positive definite kernel.

Remark. It may be of interest to compare the necessary and sufficient conditions for the
Riemann Hypothesis to hold in Corollary 4.4 with the formulae of Jensen and Pélya [23,
formulae (18), (19) and (20)].
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