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ABSTRACT A new constructive method is given here for determining
lower bounds for the de Bruijn-Newman constant A, which is related to the
Riemann Hypothesis. This method depends on directly tracking real and
nonreal zeros of an entire function Fy(z), where X < 0, instead of finding,
as was previously done, nonreal zeros of associated Jensen polynomials. We

apply this new method to obtain the new lower bound for A,

—0.385 < A,

which improves previous published lower bounds of —50 and —5.

1 Introduction

The purposes of this paper are i) to give a new constructive method for
finding lower bounds for the de Bruijn-Newman constant A, which is related
to the Riemann Hypothesis, and ii) to apply this method to obtain a new
lower bound for A. This new lower bound (to be given below) is the best
constructive lower bound for A known to us at this time.

By way of background, in Csordas, Norfolk, and Varga [4], the entire

function Hj(z) was defined by

o0
Ha(z) = / A (1) cos(zt)dt (AE€R), (1.1)
0
where
o0
$(1) = E(Qn“w?egt — 3n%xe®) exp(—n’re) (0 <t < o0). (1.2)
n=l

It is known (cf. Pélya [12] or Csordas, Norfolk, and Varga [3, Theorem A])
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that & satisfies the following properties:
i) ®(z) is analytic in the strip — x/8 < Im z < x/8;
i) ®(t)=(-t)and B(t)>0 (L€ R); (1.3)
iii) for any € >0, tlim 3™)(t) exp[(x —€)e*] =0 (n=0,1,...).

It was also shown in [4, Appendix A] that, for eack A € R, Hj(z), as
defined in (1.1), is an entire function of order 1 and of maximal type (ie.,

its type, o2, satisfies oa = +09).
For the choice A = 0, the function Hp
¢-function through the following identity:

£ (3) /8= o), (14)

(z) is related to the Riemann

where the Riemann £-function, in turn, is related to the Riemann {-function

through
£(iz) = -;- ( 2. %) x24T (-;- + i-) ¢ (z + %) . (L5)

It is known (cf. Henrici [6, p. 305]) that the Riemann Hypothesis is equiva-
lent to the statement that all the zeros of £(z) are real, which implies from
(1.4) that the Riemann Hypothesis is equivalent o the statement that ali

zeros of Ho(z) are real.
Next, two results of de Bruijn [2] in 1950 established that

i) Hx(z) has only real zeros for A>1/2, and
(1.6)

ii) if H(z) has only real zeros for some real A, then

H(z) also has only real zeros for any XM2>A

In particular, it follows from (1.6ii) that if the Riemann Hypothesis is
true, then Hj(z) must possess only real zeros for any A > 0. In 1976,
C.M. Newman [10] showed that there exists a real number A, satisfying

—00 < A < 1/2, such that

i) Hj(z) has only real zeros when A > A, and (1)

ii) Hx(z) has some nonreal zeros when A < A.

This constant A has been called in [4] the de Bruijn-Newman constant.
Since the Riemann Hypothesis is equjvalent to Ho(z) having all its zeros
real, then from (1.7i), the truth of the Riemann Hypothesis would imply
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that A < 0. (Interestingly, Newman [10] makes the complementary con-
jecture that A > 0.) Because of the connection of this constant A to the
Riemann Hypothesis, there is an obvious interest in determining upper and
lower bounds for A. A constructive lower bound, —50 < A, was first given
in [4] in 1988. Subsequently, te Riele [14] has given strong numerical evi-
dence that —5 < A. Our object here is to report on recent research activity

in finding improved lower bounds for A.
Returning to Ha(z) of (1.1), we see, on expanding cos(zt) and integrating

termwise, that the Maclauren expansion for Hx(z) is given by

Hy(z) = Z ﬁ%%ﬁ (A€ER), (1.8)

m=0

where

00
B (M) = / £2m M (1) dt (m=0,1,...). (1.9)
0
On setting z = —z? in (1.8), the function F)(z) is then defined by

Fa(z) =) —"(-‘%)i,': (A €R), (1.10)

m=0

so that
(1.11)

Fx(—z?) = H\(z) (A ER).

Since Hy(z) is an entire function of order one, it follows from (1.11) that
F(z) is an entire function of order 1/2. Hence, for each real A, F(z) nec-
essarily has (cf. Boas [1, p. 24]) infinitely many zeros. Moreover, it follows

from (1.7) that

i) Fi(z) has only real zeros when A > A, and
) B) Y = (1.12)

ii) Fi(2) has some nonreal zeros when A < A.

The constructive -method used in [4], for finding lower bounds for the de
Bruijn-Newman constant A, can be described as follows. With the moments

of (1.9), define the m-th Jensen polynomialfor F: \(2) by

T (m\ be(\) - k!
m(f;A) == —_— =12,...). 1.13
6= (7)) Gy (m=12.).  (113)
It was shown in Proposition 1 of [4] that if, for some real A and some
positive integer m, Gm(t; 5‘) possessed a nonreal zero, then

X <A (1.14)
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In [4], each of the exact moments {bm(—50)}28_, was approximated by ¢
m=0 y he

Romberg integration method with a relative accuracy of at least 60 signif.
icant digits, thereby producing the approximate moments {ﬁm(—50)}$f-o,

and the associated approximate Jensen polynomial (cf. (1.13)), namely

2, /16 fi(—50)k!
k=0
was shown to possess a nonreal zero. Then, using a perturbation argu-
ment of Ostrowski (cf. [4, Proposition 2]), it was rigorously shown that
G16(t; —50) also possessed a nonreal zero, so that from (1.14), —50 < A.
Further use of this Jensen polynomial method subsequently produced
for us the (unpublished) lower bounds for A of Table 1. (All entries in the

tables which follow are truncated to 3 decimal digits.)

TABLE 1

A degree m | digits required | complex zero of Gn(t;A)
—100 10 12 —453.84Q +19.703
—50 16 12 —220.919 + i 7.092
-20 41 18 —111.065 + ¢ 1.322
—15 56 20 —79.834 +1 0.282
~12 | 75 20 —59.204 + 1 0.536
—-10 97 21 —45.530 + 1 0.156

-8 142 21 —30.993 +10.124

By means of an improved perturbation argument, far fewer total significant
digits (than that suggested in [4]) were actually required, in the computa-
tion of the moments {bm(A)}X_o, to produce guaranteed lower bounds for
A. This is indicated in column 3 of Table 1. The second column of Table
1 gives the smallest degree m for which the Jensen polynomial Gm(t; A),
considered as a function of m, possessed nonreal zeros. The entries in this
second column of Table 1 show an alarming increase in this smallest de-
gree as X increases to 0. To underscore this, te Riele [14], using this Jensen
polynomial method but with a modification involving Sturm sequences, has
recently reported strong numerical evidence for the lower bound:

—5<A, (1.15)
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based on a Jensen polynomial of degree 406, where 250 significant digits
were used in the associated computations! The results of te Riele and Ta-
ble 1 seem to indicate that further improvements in lower bounds for A,
using this Jensen polynomial method, would require lengthy calculations

involving great precision.

2 Tracking Zeros of F)(z)

We propose here a new method for determining lower bounds for A, based
on directly tracking particular pairs of zeros of Fy(z), as a function of A.
We begin by noting that Fy(z) of (1.10) can be expressed, in analogy with

(1.1), in integral form as
Fi(z) = /we’“’d)(t) cosh(t/z )dt (A € R). (2.1)
0

Now suppose, for Ag real, that z(\o) is some simple zero of FAo(z)
that z()\) remains a simple zero of Fj(z) in some small real interval in A
containing Ao in its interior. In this interval, Fa(z(A)) = 0 so that, with the

definition of b,()) of (1.9),
F(()=0 = / " A (1) cosh (t 70 ) dt

0

(2.2)

T (g‘(’)‘? ()™

mz=0

On differentiating (2.2) with respect to A, we obtain

_ = bm ('\)(Z(/\))"' dz(/\) (m + 1)bn1(A)(z(N)™
0=) =y 2 Gmidl

m=0 m=0

Because the final sum above is nonzero (as z(A) is assumed to be a simple
zero), then solving for dz(A)/d) yields

BO) | SreanEO/Cm

Thus, with accurate estimates of {6x(3)}%_, and with asymptotic esti-
mates for {bm(A)}- y41, accurate estimates of dz(A)/dA can be obtained

from,(2.3).
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It is also important to note that replacing e*? by its Maclauren expan-
sion and integrating termwise in (1.9), gives

. & b (0)N
bm(A).-_-Z-—i’;.(T—)— (m=0,1,...; AER).  (24)
=0 .

Hence, for A small and negative, one needs from (2.4) to compute only
one extended table of high-precision moments {62 (0)}Y —o, from which the
moments {bm (A)}N_, can be directly estimated from (2.4), where N' < N.
(We remark that the choice of N’ depends on m,A, N, and the desired

accuracy; cf. [11].)
In our applications described below, our extended table of high-precision

moments was {b,(0)}19%, where each moment was computed (on a SUN
3/80 computer in the Department of Mathematics and Computer Science

at Kent State University) to an accuracy of 360 significant digits, using
basically the trapezoidal rule with a sufficiently fine mesh. (This will be

discussed in detail in §3.)
It is well known that considerable numerical effort has been given to

the problem of studying the (nontrivial) nonreal zeros of the Riemann (-
function in the critical strip 0 < Re z < 1. In 1986, van de Lune, te Riele,
and Winter [8] impressively showed that all 1,500,000,001(=: T') nonreal

zeros of ((z), in the subset of the critical strip defined by

0 < Im z < 545,439,823.215. ..,

lie on Re z = 1/2 and are simple. Expressing these zeros as

T
{pn = -;- + i'y,,} (where 0 <71 < --- < 77), (2.5)
n=1
it follows from (1.4), (1.5), and (1.11) that
za(0) == —472 (n=12,...,7) (2.6)

are then the consecutive T largest gne%ative and simple) zeros of Fo(z) of
(1.10). From the tabulation of {7n 15,000 “accurate to 28 significant digits,
given in te Riele [13], one can easily determine from (2.6) accurate estimates

of {2a(0)}n27""-
In Table 2, we give the values {z,(0 14 along with their differences
n=1

and the derivative dz,(0)/d), determined from (2.3).
It turns out, as is indicated in Table 2, that certain pairs of these known

consecutive real zeros z,(0) and zn41(0) of Fo(z) are quite close and give
promise of producing, as A decreases from 0, nonreal conjugate complex
zeros z,(A) and zn41(X) of Fa(z). (We recall from (1.12) that if a real A is
such that z,(}) and z+1(}) are nonreal zeros, then ) < A.) In Table 3, we
give the associated pairs, 2,(0) and zn+ 1(0), on which we concentrated.
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TABLE 2
n | 2,(0) ;= —492 | dz,(0)/d\ | z,(0) — z,,:.l(O)
1 ~799.161 +32.771 +968.542
2| —1,767.704 +63.486 +734.467
3| —2,502.171 +58.608 +1,200.520
4| -3,702.692 | +116.274 +636.180
5| —4,338.873 +61.317 +1,312.010
6| —5,650.883 | +126.089 +1,046.483
7] —6,697.366 | +140.344 +811.574
8| —7,508.941 +177.875 +1,709.036
9| —9,217.978 | +230.133 +691.759
10 | —9,909.737 +84.666 +1,313.682
11 | —11,223.419 | +138.447 +1,521.295
12 | —12,744.715 | +199.889 +1,343.571
13 | —14,088.286 | +267.284 +713.734
14 | —14,802.021 +35.196 +2, 156.552

In column 3 of Table 3, we again give dz,(0)/d, determined from (2.3).
We note, because of the difference in signs of dz34(0)/d) and dz3s5(0)/dA in
Table 3, that the last pair of zeros, z34(0) and z35(0), are tending foward
one another as ) decreases from 0, i.e., these two zeros are altracled to each
other. In Table 4, we show how z34()), dz34(A)/d}, z35()), and dz3s(A)/dA
change with decreasing values of A. Table 4 suggests that not only are
z34(A) and z35(A) tending toward one another, but also that dzss(A)/dA

and dz3s5())/d\ are respectively tending to +co and —oo.

The actual tracking of the pair of zeros {z34(A) and z3s(A)} generates
interesting geometrical results! In Figure 1, we have graphed the 21 pairs

(2.7)

of zeros

{234 (—[0.04]5) and 235 (-—{0-04]J')}320 :

409
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TABLE 3
n z,(0) dza(0)/d) | za(0) — 2a+1(0)
4| -3,702.692 | +116.274 +636.180
5| -4,338.873 | +61.317 —
9| 9,217.978 | +230.133 +691.759
10 | -9,909.737 | +84.666 —
13 | -14,088.286 | +267.284 +713.734
14 | -14,802.021 | +35.196 a—
19 | -22,924.800 | +414.348 +880.504
20 | -23,805.305 | +140.940 —
24 | -30,572.714 | +392.063 +975.518
25 | -31,548.232 | +44.267 —
27 | -35,835.507 | +465.401 +929.206
28 | -36,764.714 | +26.826 o
34 | -49,310.231 [ +877.835 +753.526
35 | -50,063.757 | -26.626 —

and z35(A) of (2.7) start

We see from Figﬁre 1 that the pair of zeros z34(A)
ther. These zeros then

out as real distinct zeros which move toward one ano

meet, forming a real double zero of F; \(z) when A = _ (.38, and then this

onreal conjugate complex numbers which

follow, as A decreases, a parabolic-like trajectory in the complex plane
when A < —0.40. Because Fj(z) apparently has, from Figure 1, nonreal
zeros when A < —0.40, it would appear from (1.12) that —040 is a lower

bound for A, 1.e.,

pair of zeros bifurcates into two n

040 < A. (2.8)
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TABLE 4
Ay | B | s =5
-0.30 | -49,633.457 | +1,489.525 | -49,997.614 -626.913
-0.31 | -49,648.703 | +1,561.893 | -49,990.996 -698.909 .
-0.32 | -49,664.748 | +1,650.191 | -49,983.583 -786.835
-0.33 | -49,681.783 | +1,761.399 | -49,975.183 | -897.671
-0.34 | -49,700.092 | 4+1,907.715 | -49,965.513 | -1,043.617
-0.35 | -49,720.131 | +2,112.957 | -49,954.117 | -1,248.488

Our task is to rigorously establish in §3 the following slightly improved
form of (2.8), namely

Theorem 1. If A is the de Bruijn-Newman constant, then

~0.385 < A. (2.9)

We remark that each of the pairs of zeros, z,(0) and z,41(0), of Table 3
did similarly give rise, via this new tracking method, to a lower bound for
A, and the best such lower bound (coming from tracking the pair 2z34(})
and z35(A)) is the result of (2.9). These results are summarized in Table 5,
where the final column in Table 5 gives the largest value of A (to three dec-
imal digits) for which z,(}) and z,41()) were nonreal complex conjugate
numbers, and for which {Im z,(A)] > 1.

Our primary interest here has been to introduce a new method for ob-
taining rigorous lower bounds for A, and to show, with a moderate amount
of computing effort, that this method does produce improved lower bounds
for A. We are confident that further improved lower bounds for A can be
similarly numerically obtained for this tracking method applied to partic-
ular pairs of zeros, z,(A) and z,41(A), with n > 34, as A decreases from 0,

but at the expense of more computer time.

3 Proof of Theorem 1

This section consists first of a brief discussion on how high-precision nu-
merical approximations of the moments b,,()) of (1.9) can be determined, -
and this is followed by a perturbation analysis which is used to rigorously
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TABLE
T ] largest value of A for which
w(0) = =472 | z,(3) and za42(2) are nonreal
4 -3,702.692 -3.955
5 -4,338.873
9 . 9,217.987 1878
10 -9,909.737
13 -14,088.286 -1.286
14 -14,802.021
19 -22,924.800 -1.276
20|  -23,805.305
04 -30,572.714 1,144
95 -31,548.232
97 -35,835.507 -0.882
28 -36,764.714
34 -49,310.231 -0.385
35 -50,063.757

show that F(z) has a nonreal zero when A = —0.385. We remark that
the complete details (which are lengthy and rather tedious) for producing
high-precision approximation of the moments bm()) are given in Norfolk,
Ruttan, and Varga [11].

To begin, our first step was to determine high-precision floating-point
numbers {fm (0)}192% which approximate the moments {5, (0)} 1029, where

(cf. (1.9)) e

[e.e]
5, (0) = / 2me@)dt (m=0,1,...). (3.1)
0
Fortunately, because the integrand in (3.1) is from (1.3i) an even function
llows from

which is analytic in the strip |Im z| < «/8 for each m > 0, it fo
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the work of Martensen [9] and Kress [7] that the familiar trapezoidal rule
approximation (on a uniform mesh of size k) of bm(0), defined by

T (h) _h{ [t*™a@)] - o+}:(kh)2mq>(kh)} (m=0,1,...),
k=1 (3.2)

converges ezponentially rapidly to b,(0) as h decreases to 0, i.e., (cf. [7,
Thm. 2.2 with p = 0]),

[T (R) — b (0)] < i:%’-}%%%)- ” [(s + ia)*™®(s + ic)| ds, (3-3)

for any a with 0 < a < 7/8 = 0.39269. .., where the path of integration
in (3.3) is the nonnegative real axis. From (1.2), it directly follows that the

integrand in (3.3) is bounded above by

(s +02)"‘Z (2n*72e* + 3n?xe”) exp (—n’me*’ cosda) (5 2 0), (3.4)

n=1
and on specifically choosing
&:= al—arccos (1332) =0.29855... (< «/8), (3.5)

an easily computed upper bound, I(&;m), for the integral in (3.3) can be

found, so that
exp(—amn/h) (3.6)

‘Tm(h) ~bm(0) , = sinh(&x/h)
is an upper bound for the error in the trapezoidal approximation of bm (0).
(Further details are given in [11]).

Next, we observe that the exact trapezoidal rule approximation, Tin (h),
involves an infinite sum in its definition in (3.2), and, in addition, there is
an infinite sum in the definition of ®(t) in (1.2), which is used in each term
of T, (k). In our actual computations of approximations of bm(0), the sum
in (3.2) was summed only for k£ < 2/h because of the exponential decay
(cf. (1.3iii)) of ®(t) for large t > 0, and only the first sixteen terms of
the infinite sum defining ®(¢) in (1.2) were used to appronmate ®(1). (An
upper bound of the sum of the remaining terms of ®(t) is constructively
given in [3, eq. (4.6)].) These two errors, introduced into the computation
of the trapezoidal rule T, (h), can again be constructively bounded above,

and the details are again given in [11]. In this way, the approximations

{Bm(0)}19% to the moments {bx(0)}1%9 were determined, each with a
1000

computable error. Finally, from the approximate moments {fm(0)}.=0,
the moments (cf. (2.4))

1000
Bm(A) = }: ﬂm-{-;EO)A (m=0,1,...,550) (3.7)
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were determined. All floating-point calculations were performed with 360
significant digits of accuracy, and, based on the error estimate outlined
above, the approximate moments {Bm(—0.385)}232, are each accurate to

314 significant digits (cf. (3.11)).
For the perturbation analysis to show that Fy(z) has a nonreal zero when

A = —0.385, we begin by establishing the following known, but useful,
result. (We remark that Lemma 1 is a special case of a more general result
given in Henrici [5, p. 454].)

Lemma 1. Let p(z) be a complez polynomial of degree n. If p'(z0) # 0,

then the disk
{z: [z — 20| < nlp(z0)l/IP'(20)I} (3.8)
contains at least one zero of p(z).

Proof. As the result of Lemma 1 is obvious if p(z0) = 0, assume p(zo) # 0
and write p(z) = p[[5-,(z—¢x), where the (3 ’s are the zeros of p(z). Taking
the logarithmic derivative of p(z) and evaluating the result at the point zg

gives
P'(z0) _ < 1
p(z0) Z 20— (k.

k=1

On taking absolute values in the above expression, then

P’ (20)

n
1
—0 < E — < — ,
[p(z0)l ~ k=1 [z0 — Gl ~ ml"xgkgnlzo — (il

n

and rewriting this inequality directly gives (3.8).

Our next result is also elementary in nature.

Lemma 2. Given the complez number 2o, assume that f(z) = Z}io a;j 2!
is analytic in the disk |z — zo| < R < oo. For each positive integer N,
set pn(2) = E?:o a;jz?, and write pn(z) =: Z;v_-:o cj(z - z0)’, where
Assume that there ezist a posttive inieger N and positive

¢; := ¢j(N; zo).
(with 0 < 7 < R), such that

real numbers an, § (with0< 8§ <1), and 7
i) an 2 sup Iajll/jy
>N
ii) 0 # c1(:= piv(20)),
i) 7> Nlcol/leil,
N3
iv) }: fejl < '2'10117.

j=0
v) an (Jzo] +7) <6< 1, and
vi) (/1= 8)few (2ol + T <

%’Cl lT,
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where strict inequality holds in iv) or vi). Then, f(z) also has at least one
zero in |z — zo| < T.

Proof. To begin, assumption iii) implies, from Lemma 1, that py(z) has
at least one zero in the disk |z — zp| < 7. On the circle |z — 20| = 7, we have
from i), v) and vi) that

©o o0

U@ -pn@l = | 2 a#1< 3 fawlzol+ )P

[an(lzo] + 7))V H! - [an(Izo] + )N+
1 —an(lzo] +7) ~ 1—-6

< lalr
- 2

Since (3/2)|ey|m — Zﬁ_—o lcj|™F > 0 from iv), the above inequality implies
that

N N
1f(2) —pr(z) < ol 3t N b =lelr =) ol

y =0 j=0

J#1

N
< ]Z ci(z — zo) | =t [pn ()],

and, since strict inequality by assumption holds in either iv) or vi), then
[f(z) = pn(2)] < Ipn(2)]-

But this inequality implies, on applying Rouche’s theorem on
|z — 20| = 7, that f(z) and pn(z) have the same number of zeros in
|z — zo| < 7. Consequently, f(z) has at least one zero in |z — 29| < T.

The next result, which reduces to the result of Lemma 2 (when pn(2)
pn(2)), is an easy consequence of the proof of Lemma 2.

Lemma 3. Given the complez number 2o, assume that f(z) := Z;io a; 2’
is analytic in the disk |z — z9| < R < o0o. For each positive inleger N, sel

rn(z) = Z;'i:o ajzj, and write py(z) =: EJIX;O cj(z — z0), where ¢j :=
¢j(N; zq). Assume that there ezxist a posilive integer N, an approzimation

polynomial pn(z) = El-vzo éi(z — 2y to pn(z), positive real numbers
an, €, § (with 0< 6 < 13, and T (with 0 < < R) such that
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i)  an>sup o[
i>N

i) g-gl<e (i=0,1,...,N),

i’ léll > &,
T
!CII—E

N
. 3
1 C: 7 < —(lég] —
S CERLES (Il

v) an (|zo| +7) <6< 1, and
vi) 2 lan(zol + NV < 3 (1@l -6,

with strict inequality holding in iv) or vi). Then, f(z) has at least one zero

in |z — zo| < 1.

Proof. With the hypothesis above, it is elementary to verify (by the tri-
angle inequality) that py(z) and f (z) satisfy all the hypotheses of Lemma
2; hence, f(z) has at least one zero in |z — 2z0] < 7. L

With Lemma 3, we come to the

Proof of Theorem 1. Let f(z) be the entire function

Fy(2) = Y bm(3)/(2m)! 27,
m=0
where ) is defined by X
X := —0.385, (3.9)

and define the complex number zo by

Re zp = —4.985226399929367054457428908808825137
17835429943591222950674598866282510463
398370182827604591192414841702633722 £4

(3.10)

1.323062852274493439584297961431473867

Im zp =
46981439309032787945567788558243812285

140059530997087566968399990919977650 £'1
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Now, with N := 550, the numbers ﬁm(i), which approximate the moments
bm(A), were determined so that
1B (X) = b (X)] < 5 - 107315 (m=0,1,...,550). (3.11)

From this, the polynomials psso(2) := Efnsio bm(A)z™ /(2m)! and psso(2) :=
S350 5 Bm(R)z™ /(2m)!, re-expanded as psso(z) = 3380 em(z — z0)™ and

Psso(2) = 300 & (z — 20)™, can be verified to satisfy

lem — ém] <e=1-107%"7 (m=0,1,...,550). (3.12)

Then, with § := 9/10, and with 7 := 1.10~5, an application of Lemma 3
to F;(z) shows that F5(z) has at least one zero in |z — 29| < 7. But since
(cf. (3.10)) Im zo = 13.2306... and since 7 = 1-107%, it is geometrically
evident that this zero of F(z) in the disk |z—zo| < 7 is necessarily nonreal.

Thus, from (1.7), A = 0.385 < A, the desired result of (2.9). |
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