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ABSTRACT

The successive-overrelaxation (SOR) iterative method for linear systems is well
understood if the associated Jacobi matrix B is consistently ordered and weakly cyclic
of index 2. If, in addition, B> has only nonnegative eigenvalues and if p(B), the
spectral radius of B, is strictly less than unity, then by D. M. Young’s classical
theorem, the optimal relaxation parameter for the SOR method is given by

B 2
C1+y/1-p%(B)

Wy, ¢

Young derived this result assuming that

o(B*) c[0,8*] (with B=p(B)) (*)

is the only information available about the spectrum o(B2) of B2 It is also well
known that no polynomial acceleration can improve the asymptotic rate of conver-
gence of the SOR scheme if the optimal relaxation parameter has been selected. The
recent claim by J. Dancis “that a smaller average spectral radius can be achieved by
using a polynomial acceleration together with a suboptimal relaxation factor (@ < @;,)”
therefore comes as a surprise. A closer look however reveals that this improvement
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can only be achieved if more profound information on o (B?), of the form

o(B) c[0,y*]U{B®}  (with y<B), (**)

is at hand. We show that no polynomial acceleration of the SOR method (for any real
) is asymptotically faster than the SOR scheme with @ = ,, under the assumption
(), thereby answering the question in the title of this paper in the affirmative, as well
as solving an old related conjecture of D. M. Young. We also carefully investigate the
question of what can be gained from the additional information (*x).

1. INTRODUCTION

In J. Dancis’s recent paper [1] with the surprising title “The optimal  is
not best for the SOR iteration method,” the author considers the conver-
gence of the SOR iterative method in the well-known case where the Jacobi
matrix B is a consistently ordered weakly cyclic of index 2 matrix, with B>
possessing only nonnegative real eigenvalues which are less than unity. The
associated SOR iteration matrix %, defined in (2.5), is known to be
convergent only for any w satisfying 0 < w < 2. Fixing an » with 0 < o < 2
and regarding the SOR iteration (cf. (2.4))

Xpe1 =Zx, + ¢, (1.1)
as the basic iterative method, Dancis [1] applies three different semiiterative
methods (also known as polynomial acceleration techniques) to the basic iter-
ative method of (1.1), in the hopes of obtaining a more rapidly convergent
iterative method. This would seem to fly in the face of conventional wisdom
in this area, since it is well known (cf. [6]) that semiiterative methods cannot
improve the convergence rate of the basic iterative method (1.1) in the
particular case when @ = w;, (where w, is defined in (2.6)). Nevertheless,
Dancis shows in [1] that an improvement is indeed possible, but curiously,
neither the title nor the abstract of [1] mentions that this improvement
strongly depends on the explicit knowledge of the two largest real eigenvalues
of B2

The results of Dancis [1] have certainly served to stimulate our investiga-
tion in this paper, largely because of questions left unanswered in [1]. For
example, if a particular semiiterative method applied to (1.1) gives a faster
convergence rate than that of (1.1), then what is the best asymptotic rate of
convergence which one can obtain from any semiiterative method applied to
(1.1)? It turns out that known techniques from complex approximation theory
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and conformal mapping theory can be neatly applied to answer this question,
but we must distinguish between two cases, according to what is assumed to
be known about the spectrum of B2, Thus, the two issues we address in this
paper are:

(1) What is the fastest asymptotic rate of convergence, for a semiiterative
method based on (1.1) when 0 < @ < 2, under the assumption that only the
largest real eigenvalue of B? is known?

(2) What is the fastest asymptotic rate of convergence, for a semiiterative
method based on (1.1) when 0 < @ < 2, under the additional hypothesis that
the k (k > 2) largest real eigenvalues of B? are known?

Both of these questions are fully answered (in fact, for all real w) in the
subsequent sections of this paper. In a later paper, we also show that our
analysis of the questions above is general enough to consider particular
extensions, such as to the case when the spectrum of B2 is assumed to
contain nonnegative and nonpositive real eigenvalues.

2. BACKGROUND AND TERMINOLOGY

Consider the linear system
Ax = b, where A € RV*Y beRY, (2.1)
with the standard splitting of the coefficient matrix A,
A=D—-L-1U,

where D is a nonsingular block diagonal matrix, and where L and U denote
respectively strictly lower and strictly upper triangular matrices. We further
assume that the corresponding block Jacobi matrix

B=D"'(L+U) (2.2)

is consistently ordered and weakly cyclic of index 2 (cf. [7, Definition 4.2)),
and that the eigenvalues of B? are all nonnegative real numbers less than 1,
i.e., the spectrum o (B?) of B? satisfies

o(B*) c[0,82] with B=p(B) <Ll (2.3)
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These assumptions imply that there is a unique solution x to the matrix
equation (2.1).
We next review classical results for the SOR iterative method:

X, =Zx,_ | +ec, (m=12,...), (2.4)
where .#, (the SOR matrix) and ¢, are defined by

Z,==(D - wL) '[(1 - ©)D + »U] and
(2.5)

c,=w(D—wL) b (weR).

Here,  is the associated relaxation parameter. Under the given assumptions
on B and o, the SOR iterative method of (2.4) converges (for any initial
vector x,) to the solution of (2.1) if and only if 0 < @ < 2 holds (cf. Young [9,
Theorem 6-2.2]). The optimal relaxation parameter w, which minimizes
p(Z) as a function of w is given by (cf. [9, Theorem 6-2.3])

2

w, = 0,(B) = T

and there also holds

B

2
=14+ |—F—m—|, (26
! 1+ 1—32) (26)

1>p(Z) >p(Z,) =0, -1 forall 0 <w<2 with w+# w,.
(2.7)
As Dancis did in [1] for 0 < w < 2, we now apply, for any fixed real w, a
semiiterative method to the iterates {x,,} _, which are generated from the

SOR iterations of (2.4), i.e., we consider vector sequences {y,J_, of the
form

Vo= L W%, (m=0,1,...), (2:8)

where the coefficients M, are (complex) constants which satisfy the con-
straint Z;n:O’TTm’ ;=1 (m =0,1,...). For ease of notation, we collect the
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coefficients ,, ; of (2.8) into the infinite lower triangular matrix

0,0
Mo 711
P=1 : " , (2.9)
m,0 Trm,l .”TrTn,m

and we call P the generating matrix of the semiiterative method 2.8). If
1 ¢ 0(Z), it is well known (cf. [7, p. 134]) that the associated error vectors
e, =(—-%)'c, —y,, for this semiiterative method based on the basic
iterative method of (2.4), satisfy

e, =pa(Z)eg  (m=0.1,...),

where p,(z) == X" m, 2/ €II,, so that p,(1) = 1. (Here, II,, denotes
the collection of alf compiex polynomials of degree at most m.)
For a given P and for 1 & o(%,), the quantity

, le,,l1) ™
k(Z,, P) = limsup sup | — ,

m—oo e #0 ”e()“

(which depends only on the structure of the Jordan canonical form of the
matrix .#,, and is independent of the vector norm |- || chosen on cY)
measures the asymptotic decay of the norms of the error vectors e,
associated with (2.8). In theory, one can always select a semiiterative scheme
such that k(Z,, P) = 0 (e.g., from the Cayley-Hamilton theorem, this holds
true if p,, is a multiple of the characteristic polynomial of %, for all m > N)
but this selection requires the knowledge of all eigenvalues of <Z,,. Here, we
merely assume we have a priori information of the form o (%)) € Q, where
Q c Cis a compact set with 1 & ), and we call such a set a covering domain
for 0(Z). In this setting, we measure the performance of (2.8) by the

quantity
k(Q, P) = max{k(Z,, P): %, € R¥*¥, N arbitrary, with ¢ (%) < Q}.

The best, i.e., smallest, convergence factor we can hope to achieve by any
semiiterative method in this worst-case philosophy is the asymptotic conver-
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gence factor of Q, defined by
k(Q) = inf{ (€, P) : P generates a semiiterative method}. (2.10)

The 1nf1mum in (2.10) is actually a minimum, i.e., there is always a generating
matrix P with k(Q) = k(Q, P) (cf. [2, §5]); alternatively, k() could have
been equivalently defined (cf [2, 85D by

1/m
€(@) = lim [min {max | p.(2)]: p, € M, po() = ] (201)

which couples this asymptotic convergence factor k(Q) with complex approx-
imation theory. Note that (2.11) can also be used to extend the definition of
the asymptotic convergence factor k(£2) to all compact sets  C C. This
leads to k() = 1 for every compact set ) € C with 1 € Q.

With respect to the information o(Z,) C Q, the rate of convergence of
the SOR iterative method (2.4) can therefore be improved by the application
of a semiiterative scheme of the form (2.8) only if

«(Q) < min{l, p(.%,)).

(As we shall see (cf. (2.16)), there are indeed cases where k(Q) < 1 while
p(Z,) > 1)

Next, we list some properties of the convergence factor k(Q) [cf. (2.10)]
which we will use in the subsequent sections. If belongs to the class M
(defined to consist of any compact subset of C which consists of more than
one point, which does not contain the point z = 1, and whose complement
(with respect to the extended complex plane C,) is simply connected), then

k(Q) = (2.12)

1
|@(1)]

(cf. [2, Theorem 11]), where ® is a conformal map from C, \ Q onto the
exterior of the unit circle with ®(») = . (We note, by the Riemann
mapping theorem, that ® exists and is unique, up to a constant factor of
modulus 1.) Thus, if Q € M, the problem of determining its asymptotic
convergence factor «({1) is reduced to a problem in conformal-mapping
theory.

I:yturns out from the classical SOR theory, for a fixed B = p(B) with
o(B?) c [0, B*] (cf. (2.3)) and with 0 < B <1 (the case B =0 being
uninteresting) and for any real @ # 0, that there are only three different
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types of covering domains ) =, 4, which need to be considered, and
these will be described in detail in Section 3. But, with the new quantity w,,

defined by

= > (— 2 ) (2.13)
TV T G '

so that @, > 2, we have the necessary notation to state the first of our main
results.

THEOREM 1.  Assume that the Jacobi matrix B of (2.2) is a consistently
ordered weakly cyclic of index 2 matrix, and that the eigenvalues of B? are
all nonnegative and lie in [0, B2?], where 0 < B = p(B) < 1. Then the
asymptotic convergence factor k(Q,, z) satisfies the following properties:

(@) For —»<w<1and o# 0, k(Q, g) is a strictly monotonically
decreasing function of @ which satisfies

p(Z) >1>k(Q, ) >0, —1 (—» < w<0),
(2.14)
1>p(Z) >k(Q, 5)> w0, — 1 (0<w<1),

with lim o k(Q, g) =lim, , «(Q, ) = o, — 1.
(i) For 1< w<w,, k(Q, ) is a constant function of w which
satisfies
1>p(Z) >k(Q, ) =0, -1 (1< w<w),
(2.15)
1> p(2) = k(@) =a, -1 (0= a,).

(iii) For w, < @ < w,, k(Q,, g) is a strictly monotonically increasing
function of w which satisfies

1>p(Z) > k(Q,p5)>0,—-1 (0, <0<2),
1=p(Z) > k(Q, ) > o, — 1 (0=2), (2.16)

p(Z)>1>k(Q, 5)> w0, -1 2<w<w,).
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Fic. 1. p(Z,) and k(Q,, ») as functions of the real variable w [for 8 = p(B) =
0.99, w, = 1.75274. .., and o, = 2.32847 .. .].

(iv) For = 0 and for o, < w < o,
p(Z,)21=x(Q, ;) >, -1, (2.17)

where w), and w, are defined, respectively, in (2.6) and (2.13).

In particular, for any real w,
k(Q, ) <1 ifandonlyif we(-= 0)\{0}. (2.18)

The results of Theorem 1 can be seen in Figure 1. The first new and
startling result of Theorem 1 for us was that x(Q,, z) = p(Z,) for all
1 < @ < w;, in (2.15). On reflection, we can say that this result was antici-
pated by the old result of [6, Theorem 2], which showed that the semiiterative
method obtained by applying Chebyshev polynomials to the Gauss-Seidel
method (i.e., SOR with @ = 1) gives the same asymptotic rate of conver-
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gence as that of ,‘Zub, ie.,
K(Q) 5) =, — L. (2.19)

On the other hand, a well-known consequence of the same paper [6,
Theorem 4] is that no semiiterative method, applied to %,,> can improve the
asymptotic rate of convergence of <, ie,

k(Q,, ) =w, — 1, (2.20)

and intuitively, it would be difficult to imagine that semiiteration, applied to
Z, (where 1 < o < w,), could improve on both (2.19) and (2.20)!

A further surprise for us was the appearance of the constant w, of (2.13),
which also plays a role in the theory of Markov chains (cf. Kontovasilis,
Plemmons, and Stewart [3]), and that the SOR iterative method can actually
be forced to converge by suitable semiiteration, precisely for any real w €
(=, w,) \ {0}.

As a final comment in this section, we note from Theorem 1 that

()50 -1=p(2,) (0<R). (221

which affirmatively solves a conjecture of Young [9, p. 379] that (2.21) holds
for the interval (0, 2).

3. THE COVERING DOMAINS (, ; AND THEIR ASYMPTOTIC
CONVERGENCE FACTORS

Using Young’s fundamental relationship
(A + o —1)° = Ao¥? (3.1)

between the eigenvalues A of &, and the eigenvalues w of B (cf. [9,
Theorem 5-2.2]), sharp covering domains 8 for the eigenvalues of 2
can be derived. To this end, we examine the following three different cases,
which are also treated in [9, pp. 203—-206].

() —o<w<1and w#0. In this case, all eigenvalues of .Z, are
real. More precisely, the covering domains (), , are real intervals which
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exclude z = 1, ie.,

[A, 4] c(l,0) (-2 <w<0),

o(Z,)<cQ, 4 [A.2]c[01) (0<w<1), (3.2)
where
[ 12
— 202 _ —
M =M, B) = P \/wﬁz 4(w—1) ,
| ' (3.3)
[ 12
222 _ —
Ay = (w, B) = wB+\/w32 Ao—1) ,

‘We note that the inclusions of (3.2) are sharp, i.e., A, A, € 0(Z,). More-
over, we see that 1 & Q B and that Q w.p EM. For w=1, the SOR
scheme reduces to the Gauss Seidel method and Q Lp = [0, B2] holds.

(i) 1 < @ < w, or @ > w,. In these cases, o(Z,) is contained, in the
terminology of Dancis [1], in a banjo-shaped set (cf. Figure 2(a))

(%) cQ,z=dD0;0—-1) U [AL AL (3.4)

where dD(c; r) denotes the circle with center ¢ and radius r, and where the
end points of the interval [A;, A,] in (3.4), namely A, and A,, are in 0(%Z)
and are again given by (3.3). Here, 1 & Q,, , (for 1 < ® < w,, there holds
A < Ay <1, whereas 1 <A} < A, for @ > w,) but Q, 5 & M, since the
complement of Q, p is not 51mply connected; more prec1sely, C.\Q, s
consists of two connected components. The main distinction between these
two subcases is that the critical point z = 1 lies in the unbounded component
of C,\ Q, 5 if 1 < ® < w,, and in the bounded component of C, \ {,, g
if o> o, As we shall see (cf. the proof of Theorem 1), this implies that, for
> ®,, no semiiterative method converges when applied to the SOR
iteration with relaxation parameter w. For w = w;, and w = w,, there holds
A =X, and Q, ; degenerates to circles with radii w, — 1 and w, — 1,
respectively, which are centered at the origin.

(i) w, < w < w,. In this case, all eigenvalues of &, are located on a
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circular arc (cf. Figure 2(b))
0(Z)cQ, 5= {(0—1)e":arg Ay < 6 < arg A, (mod 27)}, (3.5)

where the branch of the square root in (3.3) has to be selected such that
Im A, > 0. Note that A, = A,, and Q, 5 is therefore symmetric with
respect to the real axis. In this case, 1 & (1, ; and Q, , € M.

With our given information, namely, that o(B?) C [0, B*] for the spec-
trum of the Jacobi matrix B (cf. (2.2)), the above covering domains €, 5 of
0 (Z,) are optimal in the following sense: For each A € Q B> there exists a
]acobl matrix B, which is a consistently ordered weakly cychc of index 2
matrix, with p(B ) = B and a(B?) c [0, B?], such that A is an eigenvalue of
the corresponding SOR iteration matrix &,

We next compute the asymptotic convergence factors of the covering
domains Q,, 5 for 0(Z). First, for —» < w <1 and @ # 0, 0(Z) is
contained in an interval (cf. (3.2)) whose asymptotic convergence factor is

well known (cf. [2, §6]).

PROPOSITION 2. The asymptotic convergence factor of the real interval
[Z, n]is given by

n—4
(VI=C¢+VI-7)
n-=14¢

(V=1 +yn-1)

if {<n<l1,

if 1<{<n.

Next, for 1 < w < w,, and for w > w,, 0(%) is contained in a banjo-
shaped set of the form (3.4). It can be seen from (2.11), using the maximum
modulus principle, that the asymptotic convergence factor of (1, =
dD(0; ) U [y, Al (cf. (3.4)) equals the asymptotic convergence factor of

B A;:ﬁ(O;r)U[T,A] with —7< y< 7<) (3.6)

i.e., the eigenvalues of ., interior to the circle 9D(0; 7), as shown in Figure
2(a), have no effect on the resulting asymptotic convergence factor. The
complement of the set B, , is simply connected, so that B, , € M, provided
that 1 & B_ ,, which is equ1valent to A < 1. Then (B, ,) can be calculated
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from (2.12). On the other hand, if 1 € B_, (i.e,, if A > 1), then (2.11) and
the maximum modulus principle imply that k(B, ) =1

PROPOSITION 3. The asymptotic convergence factor of the set B, , (cf.
(3.6)) is given by

k(B,,) =t—Vt* -1, where t = 2Ar+ ) - (2)\— il (>1),
’ (A+ 1)

provided that 0 < T < A < L.

Proof. We explicitly construct a conformal mapping function ® which
maps C.\ B, , onto C,\ D(0; 1), where ® is normalized by ®(c0) = oo,
The mapping '® can be expressed as the composition of three elementary
mappings. The Joukowski-like transformation

z T
= ®y(z) =~ +

maps C,, \ B, , conformally onto C, \ [—2, ®,())], the linear transformation

2u+2- @)
= ®o(u) = —57 @,(A)

maps C, \ [—2, ®,(M)] conformally onto C, \ [—1,1], and, finally, the in-

verse Joukowski transformation

w=P(v) =v+ Vo2 -1

maps C, \ [—1, 1] conformally onto C,,\ D(0; 1), where the branch of the
square root has to be chosen so that [®,(v)| > 1 forall v & [—1, 1] (cf. Krzyz
[4, Exercise 2.5.9]).

Putting these pieces together, the composition of these mappings, namely
® = $,oPoP |, then conformally maps C,, \ B, , onto C,, \ D(0; 1), and as
B. , € M, it follows from (2.12) that

1
k(B ,) = [®(1)] - [(DeDyo®,)(1)]

has the form given in the statement of Proposition 3. [ |
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Note that Proposition 3 remains valid in the limiting cases A | 7 and 7 | 0,
ie.,

}\iian(BT”\) = K(ﬁ(O;T)) and }_iiI(I)K(BT’)‘) = k([0, A]).

Finally, for w, < @ < 2, we have to investigate the “snap-ring”-shaped
circular arcs (cf. (3.5)) of the form

C,a:= {Tew:a<0<27'_a}> (3‘7)

T

where 7> 0 and 0 < a < 7, and thus C, , € M.

PROPOSITION 4. The asymptotic convergence factor of the set C, , (cf.
(3.7)) is given by

sin « T

sin(a/2) 1+ 7+ \/1—-27'cosa+7'2

K(Cr,a) =

Proof. Again, we explicitly construct, in three steps, a conformal map-
ping ® of C.\ C, , onto C_ \ D(0; 1), with ®() = . First,

a

2 — TCOS &
u=®(z) = ji—————

Tsin «

maps C,, \ C, , conformally onto C,,\ ', where I' € dD(—i cot a; 1/sin &)
is the circular arc joining +1 with —1 in the counterclockwise direction.
Next,

v=®,(u) =u+ Vu: -1

maps C, \ T' conformally onto C, \ D(—i cot(a/2); [1 —
cos(a/2)]/sin(a/2)), provided that we chose the branch of the square root
which guarantees [v|>> 1+ 2tan @ Im v (cf. Magnus [5, §6]). Finally, the
linear transformation

w = Oy(v) = sin(g)v+icos(g)
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maps _C, \ D(—icot(a/2); [1 — cos(a/2)]/sin(a/2)) conformally onto
C. \ D(0; 1).

From (2.12), we conclude again that

1 1
(G = T ~ T@rore) (D]

sin « T

sin(e/2) \ 1+ 7+ \/1—27'cosa+1'2

>

which has the desired form given in the statement of Proposition 4. [ |
We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let us first assume that — < w0 < 0or0 < o < 1.
Then (1, ; is a real interval whose end points A, and A, are given by (3.3).
From Proposition 2, we obtain

BB+ 4(1 - )
C2-wpt+2/1- B2

k(Q, 5)

and consequently,

lim k(Q, 5) = lirrBK(Qw g) = =y, — 1.
: o :

B
w10 1+4y1- B2
Moreover, differentiating the above expression for x(Q,, B) with respect to

o € (=%, 1)\ {0} shows that «(Q,, B) is a strictly monotonically decreasing
function of w, so that for each w # 0 with —» < w < 1,

B

2
K(Qw,ﬁ) > K(Ql,ﬁ) = m) = w, — 1,

the last equality following from (2.6). This establishes the last inequalities of
(2.14) of Theorem 1. The remaining inequalities of (2.14) follow from (2.7).

We next consider the omitted value w = 0. In this case, &, = I, (so the
iterative method (2.4) is not consistent with the linear system (2.1)) and the
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associated covering domain is €, ;= {1} & M. We use (2.11) to define
k(Qg g) to be unity. Hence, k(Q, ) =1 = p(F).

Next, we suppose that 1 < o < wb (cf. (2.6)). From the discussion prior
to Proposition 3, we can choose Q,, 4 to be the banjo-shaped set B, , of
(3.6) with 7= w — 1 and A = A,, where A, is given in (3.3). For the
extreme cases @ = 1 (i.e., 7= 0) and w = w, (i.e., 7 = A), B, , degenerates
to an interval and a disk respectively. Inserting 7= @ — 1 into the expres-
sion for ¢ of Proposition 3 leads to

IMw? =20 +2) — (A — o+ 1)° 2/\w—()t+w—1)
(A + o — 1) (A + o —1)°

t =

Since (A + @ — 1)* = Aw?B? from (3.1), it follows that

2 0® — AwB2 2 — B2

T e B
and thus, by Proposition 3,
sy
k(Q, 5) —t-Vi2-1-= l—-l-—_l\/——:Bz) =w, — 1,

for all 1 < w < w,,, which establishes, from (2.6), the result of (2.15) of
Theorem 1.

Next, we consider the case w, < o < w,. With A, = [wB +
11/4( o — 1) — wB* /4 from (3.3), it follows that Q, pis the circular arc
C € M. We conclude from Proposition 4 that

w—1,arg Ay

_ _Be-1 — -
k(Qy ) = 1+ /1-p° = (v, - D(w~-1)

from which all relations (2.16) of Theorem 1 directly follow.
To complete the proof of Theorem 1, it remains to consider the case
w, < o < . In this case, the eigenvalues of %, lie in the banjo-shaped set

and p(&) =w-—1,

Q, 5= 9D(0; 0 = 1) U[A, 4]
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with @ —1 > 1. But z = 1 is then an interior point of this set, and the
maximum modulus principle, together with (2.11), therefore implies that
k(Q, g) =1 (]

4. ADDITIONAL HYPOTHESIS
So far, we have assumed (cf. (2.3)) that
o(B%) cf0,82] with 0<pB=p(B)

is the only information available to us for the spectrum of the Jacobi matrix B
(cf. (2.2)). Following Dancis [1], we now assume that we have additional
information of the form

o(B?) c[0,y2] U {B?  with
(4.1)

0 < y:=max{|ul: u € o(B)and|ul < B}.

This corresponds to the case k = 2 of question (2) in Section 1, where we
assume now that the two largest eigenvalues, B2 and y?, of B? are explicitly
known.

Using Young’s fundamental relationship (3.1), this leads to sharper inclu-
sions for o (Z):

a(Z,) CA where A, 5, =Q, ,U{A A}, (42)

w, B,y

where Q. _ is defined in (3.2)~(3.5) by simply replacing B with y through-

@,y
out in these equations, and where A, and A, are given by (3.3), without

replacing B with y. More precisely, with

- 12
wy — Joy® - 4o — 1)
A= M(w,7) = D) ,
' (4.3)
- 12
wy+ yoy® —4(w—1)
/\4 = /\e(w’ ‘y) = 2 ’
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and with the “suboptimal” relaxation parameters (cf. (2.6) and (2.13))

2 2
0= —————m < w, and ;= —F——— > w,, (44)
1+/1-42 7 U D S

we obtain
{2} U [A, A] (—»<w<0),
{AL A} U [y, 0] (0<w<l,
{AL A} U dD(0; w — 1) U[/\S,)t4] (1< w<w),
o(Z) < {A A} U {(“’ —1)e':
arg A, < 0 < arg A; (mod 27)} (v, <w< wf),
{A1L, A} U aD(0; @ — 1) U [ Ay, A,] (0 <0< ),

where, for o, < o < wr, the branch of the square root in (4.3) has to be
selected such than ITm A, > 0.

Since A,, 4, of (4.2) differs from Q, . only by a discrete set, it follows
from (2.11) that (A, g ) = (L, ). The following result is therefore an
immediate consequence of Theorem 1.

THEOREM 5.  Assume that the Jacobi matrix B of (2.2) is a consistently
ordered and weakly cyclic of index 2 matrix, and that the eigenvalues of B®
are all nonnegative and lie in [0, B%], where 0 < B = p(B) < 1. Assume
further (cf. (4.1)) that the two largest eigenvalues B* and y® of B® are
known, where 0 <y < B. Then the asymptotic convergence factor k(A,, 4 ),
considered as a function of the real parameter w, satisfies the following
properties:

(i) For —» < w<1and w # 0, k(A
decreasing function of w which satisfies

. B.y) 18 a strictly monotonically

p(Z)>1>k(Q, ) >k(A, 5,)>0, -1 (—»<w<0),

1> p(Z,) > k(Q, 5) > k(A )>w, -1 (0<w<1).

(4.5)

w, B,y
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k(A

Gi) For 1< o< w
satisfies

s . p.y) is a constant function of w which

1> p(Z,) > k(Q, 5) > k(A p,) =0, — 1 (4.6)

(iii) For o, <w < wy, k(A
function of w which satisfies

w. p.y) is @ strictly monotonically increasing

1>p(Z) > k(Qy5) > k(A 5,) >0, -1 (0 <o<2),
p(Z)=21>k(Q,5)>k(A, 5,) >0, -1 (2<o<wo), (47)
p(Z) > k(Q, ) =1>k(A, 5,)> 0, — (o, <o<op).
(iv) For w =0 and for w; < @ <,
p(Z)>1=xk(Q, ) =k(A,z,) >0, -1, (4.8)

where w, and w; are defined in (4.4).

In particular, for any real w,

k(Ay p,) <1 ifandonlyif o€ (==, o)\ {0}. (4.9)

The results of Theorem 5 are illustrated in Figure 3.

Assuming o (B?) C [0, v21 U { B2} (cf. (4.1)), the question remains as to
how one constructs semiiterative methods which achieve the best asymptotic
rate of convergence w, — 1. Dancis [1] suggests three different sequences
{p,J_, of polynomials, each generating a semiiterative method, which he
then applies to SOR iterations (2.4) with © = o,

—~

2

() = T

— )\2

Sk )J;

2~ . »m—k - :
pr(n)(/‘) =z" 1 — /\I; ’

:—)\sz—(ws—l)kl—(ws—l)
1-4 1— (o, -1 2= (o, - 1)

p(z) ==

where k is chosen such that [(w, — 1)/(w@, — DI < 0.1. If P denotes the
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098 p(Le)
0.96 : k
0.94
0.92
0.9
088k Nl Yy
0.86

0.84
””(Aw,ﬂ;r)

0.82

. . . L Wsiiop ol fwy
-1 0.5 0 0.5 1 1.5 Wp 2 We

Fic. 3. p(Z,), k(Q,, p), and (A, 4 ) as functions of w for the two-dimen-
sional model problem with 2500 unknowns (B p(B) = cos(r/51) = 0.99810. .
w, =188401..., and w, = 2.13119...; 7y = [cos(7/51) + cos(27r/51]/2
0.99526. .., w, = 1.82277..., and o= 2.21540 co)

generating matrix (cf. (2.9)) associated with the above { p’); _,, then
K(Z, PP)=w, -1 (j=123).

While the asymptotic behavior of these three methods is the same, their
performance for a finite number of iteration steps may differ considerably (cf.
[1, §9D. In addition, certain orderings of the unknowns, even if they do not
affect the asymptotic convergence factor, can lead to quite different conver-
gence histories for the above schemes. We intend to investigate these and
related questions in a forthcoming paper.

It is clear from the example considered in Figure 3 that a significant
improvement can be achieved, as Dancis indicated in [1], in the asymptotic
convergence rates of asymptotically optimal semiiterative methods applied to
the SOR iterations (2.4), if one has additional explicit information concerning
the largest eigenvalues of the matrix B2 Moreover, while Theorem 5
specifically treats the case of k = 2 explicitly known largest eigenvalues of



SOR ITERATION METHOD 277

B2, it is clear that the techniques that we have developed here extend without
change to the case when k > 2.

We would like to thank Professor L. Reichel for many stimulating and
helpful discussions. The first author also thanks Professor R. K. Brown, Kent
State University, for bringing Reference [4] to his attention.
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