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Summary. We present here a new hybrid method for the iterative solution of large
sparse nonsymmetric systems of linear equations, say of the form Ax = b, where
AeRMN, with A nonsingular, and beR¥ are given. This hybrid method begins
with a limited number of steps of the Arnoldi method to obtain some information
on the location of the spectrum of 4, and then switches to a Richardson iterative
method based on Faber polynomials. For a polygonal domain, the Faber poly-
nomials can be constructed recursively from the parameters in the Schwarz-
Christoffel mapping function. In four specific numerical examples of non-normal
matrices, we show that this hybrid algorithm converges quite well and is approxi-
mately as fast or faster than the hybrid GMRES or restarted versions of the
GMRES algorithm. It is, however, sensitive (as other hybrid methods also are) to
the amount of information on the spectrum of 4 acquired during the first (Arnoldi)
phase of this procedure.

Mathematics Subject Classification (1991): 65F10

1. Introduction

In recent years, a number of hybrid algorithms for the iterative solution of a large
sparse real nonsymmetric and nonsingular system of linear equations,

Ax=b,

have been proposed. The underlying principle of all these algorithms is to start with
an iterative method that requires no a priori information about the coefficient
matrix, and then to switch to a parameter-dependent method, after some informa-
tion (usually about the spectrum of the matrix) is obtained (see [26] for a survey of
hybrid algorithms). The information about the location of the eigenvalues is
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obtained either by a modified power iteration (cf. e.g. Manteuffel [25]) or by the
Arnoldi method (cf. e.g. Elman, Saad and Saylor [10]). In the second phase of the
algorithm, Manteuffel as well as Elman, Saad and Saylor use Chebyshev iteration,
but there are also other approaches, such as the one proposed by Saad [32] which
applies a second-order Richardson iteration based on a polynomial that is optimal
in the L*-sense on some polygon constructed from the eigenvalue estimates. (A
similar approach is used by Saylor and Smolarski [34].) The hybrid GMRES
algorithm by Nachtigal et al. [26] avoids estimating eigenvalues and instead uses
the polynomial implicitly constructed by GMRES for further iterations. Their
philosophy in [26] for this approach is that *. . . if a matrix is nonsymmetric (more
precisely, non-normal), any attempt to make use of its eigenvalues should be
viewed with caution”.

In this paper we present, in contrast, a new hybrid method which is directly
based on eigenvalue estimates. It starts with a few steps of the Arnoldi method
(producing GMRES iterates as a by-product), then constructs a polygon £ in the
complex plane which contains all eigenvalue estimates either as boundary points or
as interior points, and then computes the Faber polynomials for this polygonal
domain Q from the Schwarz-Christoffel formula (produced by SCPACK; see [37])
for the conformal map from the exterior of the unit circle in the w-plane onto
the exterior of this polygon € in the z-plane. The normalized Faber polynomial
of some degree m is then applied to the last GMRES iterate, in the form of
a Richardson iteration. Thus, in the terminology of [26], our hybrid method has
the form

Arnoldi/GMRES — eigenvalue estimates — polygon
— Faber polynomials — Richardson iteration .

It can often be observed that the convergence behavior of a polynomial iterative
method, when applied to a non-normal matrix 4, does not only depend on the size
of this polynomial on the spectrum, o(4) (which describes its asymptotic con-
vergence rate) but on larger sets containing o(4). Two examples of such sets, which
were investigated recently, are the e-pseudo-spectra introduced by Trefethen in
[39] and the field of values (cf. [4]). In this sense, it is important for the perfor-
mance of our hybrid Arnoldi-Faber algorithm for non-normal matrices that the
Faber polynomials are not only “nearly optimal” (in a very strong sense, as we shall
see below) on the considered domain € itself, but also in neighborhoods of
Q determined from level sets of the conformal map, described above. In other
words, the use of normalized Faber polynomials as residual polynomials implies
that we take the eigenvalue estimates produced by the Arnoldi method for what
they actually are: a very rough prediction of the location of the spectrum.

The idea to use hybrid algorithms arose naturally to overcome problems which
were encountered for Krylov subspace methods: Since it is too expensive, in terms
of vector operations and vector storage, to run the GMRES algorithm to comple-
tion, one has to restart after a certain number of steps (cf. [33]), and this can result
in very slow convergence. Thus, it is desirable to acquire as much information
about the linear system as possible using a small number of GMRES steps, and
then to change to a parameter-dependent method based on this information.

It should be noted that our restriction here to matrices with real entries is
basically for purposes of exposition. We could, in principle, also consider complex
linear systems, although some of the constructive considerations in Sects. 2 and
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4 would necessarily have to be modified. (We will comment on this in later sections
and we plan to investigate this in detail in a forthcoming paper.) However,
a necessary condition for our method to work is that the origin, z = 0, is not
contained in the above polygon Q. For real matrices, this implies the condition that
the matrix A is not allowed to have both positive and negative real eigenvalues.

Historically, the notion of semi-iterative methods (and, in particular, the
Chebyshev semi-iterative method) first appeared in [40] in 1957. Then, the popular
cyclic Chebyshev semi-iterative method of Golub and Varga [17] appeared in
1961. The use of complex variable techniques in a semi-iterative setting was given
in Kublanovskaja [23] in 1959, and later also in Niethammer and Varga [28] in
1983. The first specific use of Faber polynomials in a semi-iterative setting was
studied in Eiermann et al. [7] in 1985. (For a more detailed discussion in 1989, see
Fiermann [3].) An approach via minimal norm Nevanlinna-Pick interpolation
lead Gutknecht [18] to the use of Faber polynomials as residual polynomials for
semi-iterative methods in 1986. Faber polynomials were also used in 1988 by
Farkova [13] (in Russian) for the construction of iterative methods (the English
translation of this paper appeared in 1990). We note that since the Faber poly-
nomials associated with an interval — and, more generally, ellipses — coincide with
the classical Chebyshev polynomials, these polynomial iterations can be viewed as
generalizations of the Chebyshev method. In this sense, our hybrid Arnoldi-Faber
method can be viewed as a generalization of the hybrid Arnoldi-Chebyshev method
by Elman et al. [10].

We start in Sect. 2 with an outline of the basic steps of our method. In Sect. 3, we
present norm estimates for the Faber polynomials (normalized at the origin)
associated with a Jordan domain £, of bounded boundary rotation, which does not
contain the origin. These bounds, for the maximum norm of Faber polynomials on
2 and on corresponding level sets of the conformal mapping, imply that Faber
polynomials are well suited for use as residual polynomials for non-normal matrix
iterations. After that, we show in Sect. 4 how to explicitly construct the Faber
polynomials for domains bounded by a polygon. Throughout this paper,
the steps of the algorithm and the discussion of its effectiveness will be illustrated
by the example of solving a linear system with the specific banded Toeplitz
matrix
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which was also considered in the numerical experiments in [26]. For this and other
examples (taken from [26] and from the discretization of convection-diffusion
equations), the last section contains comparisons of the hybrid Arnoldi-Faber
method with other hybrid methods (the hybrid GMRES method by Nachtigal et al.
[26] and the hybrid Arnoldi-Chebyshev method by Elman et al. [10]), as well as
variants of conjugate-gradient-like methods for nonsymmetric systems (restarted
GMRES [33], CGS [36] and CGNR, the last method being the CG method
applied to the normal equations).
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2. Outline of the hybrid Arnoldi-Faber method

We begin this section with a short review of Arnoldi’s method for computing
estimates for the eigenvalues of a nonsymmetric matrix 4 R™¥ (cf. [1] and [31]).
Starting with a vector v; e R¥ with | v, |, = 1 (usually, this is the normalized initial
residual vy = ry/|roll, Where rq:= b — Ax,, if considered in conjunction with
solving the linear system Ax = b), an orthonormal basis for the Krylov subspace
K,,:= span{vy, Avy, ..., A" 'v;} is constructed using the Gram-Schmidt pro-
cess: Forj=1,2,...,m,

— T + .
hyj=vAv;, i=1,...,j,

J
(2.1) ﬁj+1 = Avj - Z hi’jvi )

i=1
hj+1,j5= HﬁjHHz: Vi = ﬁj+1/hj+1,j :

In practical implementations, it is usually more suitable to use a modified Gram-
Schmidt process (cf. [33]). With V,,:= [vy, ..., v,] (so that V,,e R¥™) and with
H, =1[h;;]i<i j<m (50 that H, e R™™), (2.1) implies that

(22) AV = VoHy + lA)m+1‘2; and V;AVm =H,,

(where e,,:= (0, . . ., 0, )" e R™). The eigenvalues {/;}7-; of the Hessenberg matrix
H,, are then used as estlmates for the eigenvalues of A. Recalling (cf. [21, p. 5]) that
the field of values, W(B), of a matrix Be C¥'" is defined by

W(B):= {x"Bx:xe C" and x"x = 1},

we conclude from the second part of (2. 2) that W(H,,) < W(A), and also that
{4 }1 1 € W(A). For a normal matrix B, it is well-known that the field of values of
Bis the convex hull of its spectrum o (B), i.e. (cf. [21, p. 11]),

W(B) = Co(a(B)) .

In particular, if 4 is normal, then the Arnoldi process produces the eigenvalues
{A:}7, of H,, which necessarily lie in Co(d(4)). In this case, the numbers {4;}7-,
may be viewed as eigenvalue estimates of 4. For non-normal matrices, W(A) can
be significantly larger than Co(o(A)), which means that the numbers {4;}/~; may
lie far outside of Co(g(4)), as can be observed, for example, in Fig. 9.

Using the extended Hessenberg matrix H,,:= [h; ;1€ R"" "™, the first equation
in (2.2) can be written as AV,, = V,,+1 H,,. This gives rise to the GMRES algorithm
by Saad and Schultz [33], where the least squares problem, namely,

min [|b — A(xo + v)[ = min |[ro — Av[l, = min [[fv; — AV, p|,
ve Km veKm yeRm

=min |fVu+1e1 — Vs 1 Huyl, = min ||fe; — H,y |,
yeR™ ye Rm

with f:= ||ro|,, is solved by a QR decomposition of the Hessenberg matrix ﬁm
which is updated from step to step.
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We next describe a technique for constructing a polygon Q in €, symmetric
with respect to the real axis, arising from the Arnoldi eigenvalue estimates
A= {J;}j=1. For this, we assume that all the real eigenvalue estimates in A are
positive. (If not, ie., AR < {xeR:x < 0}, then, of course, one has to consider
the corresponding linear system with the matrix — A.) Define Q * to be the convex
hull of the set A™ given by

AT = {l;eA:Im); 2 0} U max{Rei;: ;e A},

and then define the polygon Q as the union of 2% and its reflection in the real
axis, 1.e.,

Q= {zeC:zeQ" orzeQ"} .
The construction of Q% begins with
{y:=max{Reld; l;ed} >0,

and this is defined to be the first vertex of Q*, with arg{; = 0. Inductively, having
the i-th vertex (;, the next vertex of Q% is the point {;,; of A, for which the
turning angle arg((;+; — ;) —arg({; — {;—1) =2 0 is smallest (where we define
arg(ly — Co):= n/2). In this way, Q* is constructed. (If {; is the only real number
contained in A7, then {, is also the only real vertex of QF, and we obtain
a “butterfly-shaped” polygon @ as in Fig. 9 for Example 6.3. One could also add the
real number min {Red;: 4;€ A} to I' if it is positive. Other possibilities are clearly
possible, such as connecting conjugate complex pairs of A, having a small imagin-
ary part in modulus, by a vertical line segment to define Q%))

For the example matrix (1.1), the eigenvalue estimates of A4 after 16 Arnoldi
steps and the resulting polygon are shown in Fig. 1. Note that the exact eigenvalue
1 of the matrix in (1.1) (marked by a dot) lies outside the polygon Q.

If A is such that it contains real numbers A, and A, with }; < 0 < 1,, then
2 necessarily contains the origin, z = 0, and in this case, our hybrid Arnoldi-Faber
method cannot be used (as is similarly the case with many other known iterative
methods). We henceforth assume, in what is to follow, that

0¢Q.

<

Fig. 1. Eigenvalue estimates after 16 Arnoldi steps
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Note that this assumption does not rule out the possibility that min{ReA;:
1 <£j<m} <0<max{Rel;: 1 < j<mj(see eg., Fig. 9 in Sect. 6).

For the general case where A4 is a nonsingular complex matrix, recall that we
have to be able to find a polygon €, containing all the Arnoldi eigenvalue estimates
{4} but excluding the origin. This is possible, e.g., if there exist r > 0 and 0 real
such that the strip-like set S(r, 8), defined by

S(r,0):={zeC: |z —1e"| < rforall t 2 0},

does not contain any of the eigenvalue estimates {4;}7~ ;. We plan to consider such
complex extensions in a subsequent paper.

In the second phase of our hybrid algorithm, we will use an iterative method
based on Faber polynomials. How the Faber polynomials for polygonal domains
can be constructively determined and why they are very useful for polynomial
matrix iterations, will be explained in detail in Sects. 3 and 4.

A large number of the well-known iterative methods, e.g., GMRES, Bi-CG,
CGS, Chebyshev and Richardson iteration, etc., for the solution of a linear system
Ax = b (where AeR™¥ is assumed to be nonsingular) can be written as

(23) Xm = Xo + (Im~1(A)Vo s

where ¢,,—;, a polynomial of degree m — 1 (written ¢, -, €,_,), is called the
iteration polynomial. If we define the associated error vectors and residuals by
ey, =A b — x, and r, = b — Ax,, respectively, we obtain

Fn="b— A(xo + Gu-1(A)ro) = (I — Agp-1(4))1o ,
and
em=A""rp=A"YI = Agu-1(A))ro = (I — Agp-1(4))e, .

With the residual polynomial p,(z):=1 — zq,—,(z), so that p,(0) = 1, these two
equations above can be written as

(24) P = Pm(A)”o and em = pm(A)eO .
From (2.4), we immediately obtain (for any vector norm on C¥)

[rmll S I pm( D1 7ol and  flenl £ [pu(A)l leoll (m21),

and thus, our aim is to choose, for any m = 1, the polynomial p,, in IT,, such that
| pm(A)] is as small as possible among all residual polynomials, i.e., polynomials of
degree m with p,,(0) = 1.

In an asymptotic sense as m — oo, the norm of the error reduction is connected
only to the modulus of p,, on the spectrum, g(4), of 4, in that

(25 lim || p,,(4) "™ = Tim (max Ipm(/l)>l/m

m—> oo m—o \Aea(d)

for any matrix norm (cf. [6]). For special norms (e.g., the spectral norm), rigorous
bounds for ||p,.(4)| can be established in terms of the maximum of p, on the
e-pseudo-spectrum (cf. [39]) or on the field of values (cf. [4]) of 4. Since the
polygonal domain € is considered as an approximation of the spectrum of 4, our
aim is to find a polynomial p,, in IT,, with p,,(0) = 1 such that |p,(z)| is small on £.
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We will see below that Faber polynomials (suitably normalized) possess this
property. Moreover, Faber polynomials are also small on neighborhoods of
Q determined by the conformal map from the exterior of the unit circle onto the
exterior of this polygon Q. This is the reason why we expect the hybrid Arnoldi-
Faber method to perform well for non-normal matrices. In addition, these Faber
polynomials can be constructed quite easily for polygonal domains, provided that
the number of vertices of Q is moderate.

3. Seme properties of Faber polynomials

In this paper, we have previously claimed that Faber polynomials have many
desirable properties. In this section, we justify these claims.

In what is to follow, 2 will denote a compact set in € with 0¢ 2, where it is
assumed that  is bounded by a Jordan curve. (Specifically, any polygonal Q with
0¢Q, which is created from eigenvalue estimates of the matrix A, is a concrete
example of such a compact set!) Then €\, the complement of Q with respect to
the extended complex plane, is simply connected. This implies, by the Riemann
Mapping Theorem, that there is a unique conformal mapping ®(z) = w from C\Q
in the z-plane onto the exterior of the unit disk in the w-plane, with ®(c0) =0 and
with @'(0) > 0. In a neighborhood of oo, the Laurent expansion of @(z) is

di d,

(3.1) D(z) =dz + dy + +Z_2+...,

z
where ¢:= 1/d > 0is the logarithmic capacity of Q. We remark that as 0¢ Q and as
@ maps C\Q onto {weC: [w| > 1}, then

(3.2) |20)] > 1,

which is of importance to us below. The Faber polynomial of degree m, with respect

to £, is then defined as the polynomial part of the Laurent expansion for (®(z))", i.e.,
Fo(z):=1 and if

@@ = Y e,

then j=-m

(3.3) (PE)" =Fp2) + ). djmz™? (m2z1)

ji=1
(cf. [12] or [15, Ch. 1, Sect. 6]). The (unique) inverse mapping of @ will be denoted
by ¥,ie., ¥ maps {we C: |w| > 1} conformally onto C\ 2. The Laurent expansion
of ¥(w),

(3.4) W) = e + Co + 2+ 2
woow
is then valid for all |w| > 1. With the coefficients ¢, cq, ¢y, . . . in (3.4), the Faber
polynomials can then be directly computed recursively from
(3.5) Fod)=1, Fi()=(z—colec,
Fui1(2) = [2Fn(2) = (coF(2) + -+ - + cuFo(2)) — mey /e (m2 1),
(cf. [20, p. 512]).
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Since the boundary of Q is assumed to be a Jordan curve, it is known that
¥(w) has a continuous extension from {weC: |w| > 1} to {we C: |w| 2 1}. If, in
addition, the boundary curve of Q is rectifiable, the total boundary rotation of Q is
defined by

27

(3.6) V(Q):= | |d arg (P(e") — P(E)I,

where 6¢e[0, 2r). We will only consider domains Q for which V(Q) is finite, and
such domains are said to be of bounded boundary rotation. If Q is convex, then
V(Q) = 2n. For a domain bounded by a polygon, V(Q) is just the sum of the
absolute values of the turning angles (as defined in Sect. 2), so that any polygonal
Q is necessarily of bounded boundary rotation. (For a detailed discussion of the
above concepts, we recommend Gaier [15, Ch. I, Sect. 6].)

Our aim is to find a polynomial p,, in I1,, with p,,(0) = 1 which is uniformly
small on Q, i.e., we wish to solve the minimization problem

(3.7) V(2) = inf {max!pm(z)I: pm€ I, with p,,(0) = 1} m=0).
ze 2

It is known (cf. [30, Theorem 3]) that there always exists a p,(z)ell, with

Pn(0) = 1 for which

(3:8) Ym(Q) = max|pn(z)| (mz0).

ze

While the existence of these polynomials { p,,(z) }s= 0, which satisfy (3.8), is guaran-
teed for general , the exact solution p,, for each m = 0 of (3.8) is only known in
rather special cases of & (such as circles, ellipses, etc.). However, it is sufficient for
our purposes to find polynomials which are “nearly optimal” for (3.7). The result of
the following theorem is that, at least for convex €, the suitably normalized Faber
polynomials possess this property. '

Theorem 3.1. Let Q be convex with 0¢ Q. Then, the normalized Faber polynomials
F,.(z):= F,(z2)/F,(0), associated with Q, satisfy

~ 2 2
(3.9) Tm(2) = max |Fu(2)] < SO 1 < ) T m@)s

o)

forallm = 1.

Proof. From Pommerenke [29, Lemma 1], the Faber polynomials F,,(z), with
respect to 2, can be represented as

2n

mwwm=%£wmmuwﬂ-wwm_

Since ¥ (e'?)e 00 for each 0 < 0 < 2m, we see, on using the maximum principle for
analytic functions, that

610 maxlF@IS T ldare e - vy = Lo,
0

1
zef n
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the last inequality following from the hypothesis that Q is convex. Moreover, it is
known from Koévari and Pommerenke [22, Theorem 2] that

(3.11) [Fp(Y(w) —w" <1 for|lwjzlandm=0,

provided that the convex set Q is not an interval. In the case that Q is an interval, it
is known (cf. [35, Sect. 2.1.17) that F,(¥(w)) = w" + w™ ™ for all m = 1; whence,

(3.12) |Fn(P (W) — w"| = [(W" +w™™) —w"| = |w| ™™ < 1
for w>landm=1,

which is similar to the tesult of (3.11). The reverse triangle inequality applied to
(3.11) and (3.12), respectively, gives
|[Fu(Pw)| >w™—1 for|w|/>landm=0,
and
[Fou(PW)| > w|™ —|w|™ for|w|>1landmz=1.

On choosing W= @(0), so that (cf. (3.2)) |W|> 1, and on using the fact that
Y(@(z)) = z for all ze C\Q, the above inequalities reduce to

(3.13) [FnO) > [20)" -1 (mz=0),
and
1
(3.14) |Fn(0)] > [@(0)]" — GO >20)" -1 (m=1),

which also shows (since F(z) = 1) that F,,(0) =+ 0 for any m = 0. Since by definition
Fou(z):= F,(2)/F,(0), it directly follows from (3.7) and (3.10)—(3.14) that the first and
second inequalities of (3.9) of Theorem 3.1 are thus valid.

For the final inequality of (3.9), it suffices to show that

(3.15) Im(2) 2

aor "=

This is a direct consequence of Bernstein’s Lemma (cf. [41, Sect. 4.6]) as pointed
out in Eiermann et al. [5, p. 160] in a different normalization (i.e., p,,(1) = 1 instead
of p,,(0) = 1), in fact for more general domains ©Q from the class .#, where

(3.16) M= {Q = C: Q is compact, 0¢ Q2 ,
Q has no isolated points, and €\ is of finite connectivity} .

A different proof of (3.15) was given by Gutknecht [18] who considered our
minimization problem (3.7) in the larger space 2,,(Q2), consisting of all functions
which are analytic and bounded on compact subsets of (C\Q)u Q2 and which
have a pole of order at most m at the point at infinity. Obviously, I7,, is a subspace
of 2,(Q2), and we have

(B17)  ,(@) = min {max |P(2)|: Pre?,(Q), P,(0) = 1} = ym Q).

z €082
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The solution of the above minimax problem is given by
In(Q) = max |P(2)] ,

ze R
where

P,(2):= (®()/20)" (mz1).
Since |@(z)| = 1 for any z e 0%, this yields
1
|2 (0)™

which establishes the first inequality of (3.9). We remark that the statement that
P,(z) = (®(z)/P(0))" is a solution of the minimax problem (3.17) can be shown by
reducing the minimization problem in #,,(Q) to a Carathéodory-Fejér problem [2]
(see also [8]). In principle, this could also be shown directly by adapting
Trefethen’s proof of the near-circularity criterion [38, Theorem 17, which is based
on Rouché’s Theorem. [

(3.18) Tm(2) Z §n(Q) = (mz1),

Theorem 3.1 states, since |®(0)] > 1 from (3.2), that the uniform norms on Q2 of
the normalized Faber polynomials F,, are, as m — 0, only about twice as large as
the exact solutions of the minimax problem of (3.7) on Q when Q is convex.
However, 2 is only an estimate for the spectrum, g(A), of the matrix 4, and the
convergence behavior of polynomial iterations for non-normal matrices does not
depend only on the size of the polynomial on the spectrum itself but also on its size
in neighborhoods of a(4), i.e., the e-pseudo-spectrum (cf. [39]) or the field of values
(cf. [4]) of A. Therefore, it is important that the polynomials F,, are also nearly
optimal (in the same sense as above) in neighborhoods of @, i.e., on the sets Q,
bounded by the level curves

(3.19) Iy={z=%Ww:|wl=p} (p=1)

of the conformal map ¥. The (compact) set Q,, defined as the set of all ze € which
lie interior or on I, is called the level set for p, where p = 1.

The following lemma, concerning convexity of the level sets Q,, is useful for our
subsequent considerations.

Lemma 3.2. For each Q, there is a unique real number p, with 1 £ p < oo, such that
Q, is convex for all p = p, and Q, is not convex for any p < p.

Proof. For a fixed p = 1, we first show that £, is convex if and only if

(3.20) Re(l—i—w—w)go for all |[wl=p .
¥'(w)
This is very similar to the condition for a univalent function to map the unit disk
onto a convex set (cf. [27, p. 224]).
For the proof of (3.20), we note that @, is convex if and only if the tangent
direction

d . g
arg (E ¥(pe') > = arg (ipe'®¥'(pe'®))

9=

Q

= arg (¢ (pe**)) + 7 = Im (In(c* ¥ (p®)) +

o a
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is non-decreasing as a function of ®, for 0 £ ® < 2xn. This is equivalent to

iei@():p/(pei@) + pei@?ﬂl(pei@)
ei@q}/(pei@)

d . .
0= Im—o InE ¥ (pe'®)) = Im

;}1” 19
_ Re<1 +p T,((p @))> forall 0 < O < 211,
which is (3.20). Next, it follows from (3.4) that
P (w) 1
(3.21) 1+w—m=1+0<m> as |w| — oo,

so that £2, is necessarily convex for every p = 1 sufficiently large. It thus suffices to
show that if € is convex for some p = 1, then so is Q, for any p = p. Assuming that
€, is conves, (3.20) implies that

min Re (l +w (W)> =0
wl=5 ¥'(w)
From (3.21), it follows from the minimum principle for harmonic functions that

T!/
min Re(l +w ,(W))go
wlzp ' (w)

Then, for any p = p, it follows that €\Q, < €\Q;, and the minimum principle for
harmonic functions again gives

0 < min Re(l #w—gi-@)g min Re(l +ww>

Wiz 5 W)/ wizp ¥ (w)
= lfﬁi:;Rf:(l +w v ((::))) R

so that €, is also convex. [J

Theorem 3.3. For some p with1 < p < |9(0)], let Q; be convex. Then, the normalized
Faber polynomials F,(z), associated with Q, satisfy

~ 2p™ 2
3.22 Ym(Q,) < max|F,(z)] < — —
R o N O

I\

)m Tm(€2,)

- (@(on
Jor all p < p < |®(0)] and all m = 1.

Proof. The proof is very similar to that of Theorem 3.1. Fix a p in the interval
[5,92(0)}). The conformal map @, from €\Q, onto {we C: |w| > 1}, with ¢,(c0) =
and @,(o0) >0, is given by @,(z) = ®(z)/p. Thus, the Faber polynomials F,, ,,
assoc1ated with Q,, are given by F,. ,(z) = F,(z)/p™. Since Q; is convex, Lemma 3.2
tells us that Q, also is and we obtain, in analogy to (3.10) and (3 13),

(3.23) max | F,(z)| = 2p™

zef,
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and
(3.24) |Fn(0)] > [2(0)]" — p™ .
Using the same idea as in the proof of Theorem 3.1, it follows that
(3:29) (@) 2 (L)m ,
|2(0)]

which implies the second part of (3.22). O

Example 3.1. Consider the special case where the compact set £ (with more than
one point) is given by an ellipse (or an interval). It is well-known that, under these
circumstances, the conformal mapping ¥ from {weC: |w| > 1} onto C\Q has the
form

(3.26) Y(w) = cw + ¢ +%1 (cocy +0),
where the foci of the ellipse are given by ¢o + 2\/5 . Thus, the recursive definition
(3.5) for the Faber polynomials gives
Fo(2) = 1, Fi(z) = (z — co)/c,
Fy(z) = (z — ¢co)*/c* — 2¢4 /c
Fpi1(2) = [z — co)Fu(z) = 1 Fn-1(2)]/c (m22).

Comparing this to the well-known recurrence relation for the Chebyshev poly-
nomials, namely

To(z) =1, Tz =1z,
Tm+l(z) = 2ZTm(Z) - Tm—l(z)7 (m g 1) )

we obtain

(3.27) Fo(z) =2 <fcl>m/2 T, (22 - C“) m=1).

ccy

This means that the Faber polynomials for ellipses coincide with (properly scaled)
Chebyshev polynomials and, consequently, matrix iterations based on Faber
polynomials can be viewed as generalizations of the Chebyshev method. In this
sense, our hybrid Arnoldi-Faber method can be viewed as a generalization of the
hybrid Arnoldi-Chebyshev method by Elman et al. [10].

It is known for ellipses that the associated Faber polynomials are not only
nearly optimal but that they actually solve the minimization problem (3.7) in many
cases. In particular, when @ is a real interval, the solutions for (3.7) are given by
scaled Chebyshev polynomials. The same is true if, roughly speaking, the origin is
not too close to the ellipse (cf. [14]).

One of the big advantages of using Faber polynomials is that, for the corre-
sponding polynomial iterative method to converge, it is not necessary for the origin
to be outside the convex hull of the spectrum (as is necessary, for example, for the
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Chebyshev method). It is therefore useful to extend the results of Theorems 3.1 and
3.3 to non-convex regions.

Theorem 3.4. Let Q be of bounded boundary rotation with 0 ¢ Q, and let V(Q) denote
the total boundary rotation (cf. (3.6)) of Q. Then, the normalized Faber polynomials,
associated with Q, satisfy

~ V(Q)/n
)L
= e
[®(0)"

Tm($2)

for allm > In (1 + l/—(11'_£)>/(ln[(15(0)|). Moreover, if 1 < p < |®(0)], then

V(€,)
~ T
(3.29) Tm(2,) < Zr:a::lFm(Z)l < . (1 A V(Q,))( p >m Tm(€2,)
T |D(0)]

is valid for all m > In (1 + @)/(lnl@(())l — Inp).

Proof. The proof of Theorem 3.1 can be adapted to prove (3.28) if we replace (3.10)
and (3.13) by
Q
max | Fy(2)] < L)

zef2 T

and @)
[Fn(0)] 2 |2(0)|" — (1 + T) ,

the second of these inequalities following from the (relatively crude) estimate

max |F,(z) — (®(2))"] = max|F,(z) — (9(2))"|

ze C\Q zedf
V(Q
< max((F,@)| + 1o@m < X0 4 1
ze00 n

In the same manner, the proof of Theorem 3.3 using

max | F,(z)| < Q) p"

ze 2, T

and
|Fn(0)] 2 |0(0)]" — (1 N @)
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in place of (3.23) and (3.24), implies (3.29). The restriction in m in the statement of
Theorem 3.4 is necessary to ensure that the denominator of the fraction in (3.28) is
positive. [

The inequalities of Theorem 3.4 are not as sharp as those of Theorems 3.1 and
3.3. For example, (3.28) gives

Tn(@) < max|Fu(2)| < )
ze o
2"
for convex Q, while (3.9) gives
Y(Q) < max|F(z)| < (@)
zef -
20"

However, both bounds state, for large m, that the normalized Faber polynomials
for Q are only off by a factor of about V(Q)/n from the minimum, y,(£2), in (3.7).
Recalling our technique from Sect. 2 for constructing a polygon £ which is
symmetric with respect to the real axis, one can show by geometric considerations
that
V(Q) < 4n

in all cases. Moreover, since V((2) is the sum of the absolute values of the turning
angles (as defined in Sect. 2), we note that V(@) can be explicitly calculated in the
course of determining the polygon €.

The theoretical significance of Theorems 3.1, 3.3 and 3.4 can be utilized as
follows. Suppose that the compact set Q, having bounded boundary rotation with
0¢ Q, is such that there is a p, with 1 < p < |@(0)| such that the level set Q, contains
the spectrum, o(4), of the given matrix A. Then, the normalized Faber polynomials
F,(z), when used as residual polynomials (cf. (2.4)), are necessarily convergent from
(2.5). This will be used in the numerical results of Sect. 6.

4. The construction of Faber polynomials for polygons

Our main motivation for using Faber polynomials as residual polynomials in the
second phase of our iteration procedure is that they can be constructively com-
puted easily from the geometrical parameters of £, i.e, from the location of the
edges and turning angles of the polygon Q. To be precise, we compute the
parameters in the Schwarz-Christoffel representation of the conformal map ¥ from
the exterior of the unit circle in the w-plane onto C\Q in the z-plane, using
Trefethen’s SCPACK [37], and then we compute the Faber polynomials
recursively from these parameters.

Since we essentially consider real matrices A here, the polygonal domain € is
symmetric with respect to the real line. Let {;, {5, . . . , {, denote the vertices of the
polygon in the upper half-plane (in counter-clockwise order, where we assume that
{y and {, are real), and let f;m, f,m, ..., f,m denote the corresponding exterior
turning angles (see the polygon on the right in Fig. 2).
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w-plane

Fig. 2. ¥ maps the exterior of the unit circle onto @\Q

The conformal map ¥, mapping the exterior of the unit circle onto €C\Q and
satisfying ¥(c0) = oo and ¥'(o0) > 0, is given by the Schwarz-Christoffel formula

Pw) = Pwg) + }' Y {w)dw ,

with

(41) \ 'P,(W) —¢c <1 _ l)ﬁx Pﬁl <1 5 Rea)j 4 _13)131 (1 N l)ﬂp
w w w w

i=2

(cf. [19, Sect. 5.12]), where the points {a)J }2Z3 on the upper half of the unit circle are
the pre-images of the vertices of £ in the upper half-plane, ie., ¥Y(w;) = {;,
j=2,...,p—1and Y1) ={;, Y(—1) = {,. The parameters w,, ..., w,-; and
¢ (where c is the capacity of Q from (3.4)) are unknown and have to be computed
numerically. Usually, SCPACK can only handle interior mapping functions, i.e.,
the Schwarz-Christoffel transformation is from the open unit disk onto the interior
of a (possibly unbounded) polygon. The package can be modified so that it
computes exterior mapping functions as indicated in Trefethen [37, p. 101] and
also Ellacott [9, Sect. 3.2], but for polygons symmetric with respect to the real axis,
we prefer to use the following “trick” used by Li ([24, Sect. 4.2]) to obtain ¥ from
an interior mapping function.

Let ¥ denote the (“interior”) conformal map from the open unit disk onto the
unbounded region in the upper_half-plane bounded by the polygon with vertices
¢y, o, oov, (poo _such that W(0) =, with an arbitrarily chosen (ye{zeC:
Imz > 01\Q and ¥’(0) > 0. This function is given by

gx

FOW) = o + | ¥'(w)do

<

with

. B:1-1)/2 /- W \&
4.2) ‘P’(W)=5<1 —~—> <ﬂ (1 —T> )
W1 j=2 @;
%\ (Bp—1)/2 s oN-2
(-5)" eam)
P, Wp+1

&
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where SCPACK numerically determines the parameters @, ..., ®,+; and ¢.
Note that ¥Y(®;)={; for j=1,...,p and ¥(d,+,)= co. The rational
transformation

D1 (Dysy — D)W + 1> + Dy(B1 — Dpa )W — 1)°

@3 == ) T 1 + (@ — By ) — 1

maps {weC: Imw > 0, |w| > 1} conformally onto {WeC: |W| < 1} in such a way
that g(1) = @, g(—1) = @, and g(cc) = @, ;. This can be shown in the following
way. First, v = —1/w maps {weC: Imw > 0, |w| > 1} conformally onto {veC:
Imv > 0, |v] <1}, then this domain is mapped onto the first quadrant by
o= (1 + v)/(1 — v). By # = ¢%, we have a conformal mapping from the first quad-
rant onto the upper half-plane, and, finally, the upper half-plane is mapped onto
the unit circle by w = (i — 9)/(i + ©). Thus, the composition of these four conformal
transformations,

w12 —(w—1)
Tiw 4+ 12+ (w—1)2°

W= g(w)

maps {we C: Imw > 0, |w| > 1} conformally onto weC: [W| < 1} (see also [24,
Proof of Theorem 12]). However, we have (1) = 1, §(—1) = —1 and §(o0) =i, so
we have to apply a mapping from the open unit disk onto itself such that the points
1, —1 and i are mapped onto @;, &, and @, , respectively. This leads to the
mapping function g of (4.3). _

By the reflection principle (cf. [19, pp. 389]), ¥(g(w)) conformally maps the
exterior of the unit circle onto €\Q. Thus, ¥(w) = ¥(g(w)). Solving (4.3) with
respect to w leads to

o L @1+ By =20y )0 + B Byes + DYy s — 20,8,
w (@1 — DD — By 1)

5

so that we finally obtain w,, . . ., w,-; as the points on the upper half of the unit
circle satisfying

@d)  Rew; = 1T Pp = 2000 )0+ Bi i+ Dy ey = 201
! (@1 — Dp)(Dj — Dp+1)

From ¥'(w) = ﬁ’( g(w))g'(w), we obtain the capacity of £, on using (4.2) and (4.3)
and on letting w — o0, as

e, — &y) L i
45) Cc = — ~p — — . !a) _w‘ﬁj
( 4 Bps1 — D) (Dt 1 — By) jljz P i

(cf. [24. Theorem 12]).
At this point, we recall that the Faber polynomials satisfy the recurrence
relations of (3.5):

FO(Z)zla FI(Z):(Z_CO)/CJ

Fns1(2) = [2Fu(2) = (coFul2) + -+ 4 Cu-1 Fi(2)) = (m + Dey /e (m2 1),
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where ¢, ¢o, C1, . . . are the coefficients in the Laurent series representation (3.4)
of ¥(w):

c c
(4.6) W =cw+co+—+—=....

woow

If we differentiate (4.6) with respect to w, we obtain
4.7 T'(W)=C_W__3_...

The coefficients of this series can be computed from the formula (4.1). We have

1\ & (B . <1>1
(-5 ()i
Rew; 1\ & (L (B B; kel 1 - (1)1
(1—2 w +WVF> _k§0<l=0<l><k_l>wja)j >—1 —k g

forj=2,...,p—1,and

Note that, forj=2,...,p—1,

o'y (ﬁj)< . )Re[w 1k odd;
<o \ I/ \k—1

2(k/;§):;1 (l?) <kli l) Re[w! 2] + (}5;)2, k even ,

so that we can compute these numbers using only real arithmetic.
Comparing (4.1) with (4.7) leads to

48) 1— iﬁ_ﬂ(ui m) (V-V;-ﬁ) a8 W— 00 |

The product of the Laurent polynomials on the right hand side in (4.8) can be
expressed as a product of lower triangular Toeplitz matrices. Hence, on comparing
corresponding powers of w in (4.8), we obtain, in matrix form, the following
computable expression for the unknowns {c; }7=1':

" =

1
0 1 1
—Cy r (il) 0
4, .
49 —2¢, I:I . :
. ))(J) 'V(1j) 1 0
—(Wl - 1)cm—l

With (4.5) and (4.9), only ¢, the constant term in (4.6), is yet to be determined. We
could compute ¢, by one evaluation of the Schwarz-Christoffel integral, but for our
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purposes, it is sufficient to use the following simple procedure. We can express ¢,
from (4.6) as

¢ C
(4.10) c0=sv(w)—(cw+wl+~-+ m§+-~>.
Now, our polygon Q con51sts in our construction, of 2 real vertices {; and ( v and
p — 2 vertices {Ck}k , in Imz > 0 and p — 2 reflected vertices in Imz < 0, giving
a total of 2p — 2 vertices in all for Q. Since ¥Y(w;) ={;,j=1,..., 2p — 2, where
|w;] = 1for all 1 £ j < 2p — 2, then evaluating (4.10) at the point w; leads to

(4.11) c0=c,.—<cwj+ﬂ+~-+;'” 1+-~> (1gjs2p-2).

i A
On neglecting the terms involving w; ™, @;™ %, ..., in (4.11) and on adding the
2p — 2 equations of (4.11), we have
1 2p—2 2p—2 2p—2 1
4.12) Coi= [ - ( w;+ ¢ —
0 2p 2 Z J :—;1 ! ! jgl w’
)
+ PR + cm— p— )
1 = (H 1

which gives our approximation, &y, to ¢ {(which is dependent on m). Roughly
speaking, this amounts, for a fixed m, to moving the image of the unit circle in the
w-plane, under the mapping

Cm—1

Wm~1

Cq
W+ ——+---
w

so that it approximately fits the given polygon Q in the z-plane. Note that, since
Q is symmetric with respect to the real axis, (4.12) can be rewritten as

« L+6, oL (1)
(413) Co = p[ 3 + Z Re Z:j kgl #ck

- m—1
- Z (cRewj+ Y ckRew’}):l
j=2 K=1

which can be evaluated using only real arithmetic. To derive (4.13) from (4.12), we
only used the fact that {,,.;={; and w,,.;=d;forj=2,...,p— L

5. Implementational details

In our computations, it will always be assumed that m (the degree of some iteration
polynomial, number of GMRES steps, etc.) is small compared to N (the dimension
of the system, ie, AeR™Y). We will therefore count the number of vector
operations, i.e., N scalar multiplications and N additions, as a measure for the
complexity of the algorithm, as in Nachtigal et al. [26]. Let [ denote the average
number of elements per row in the matrix A4, so that a matrix-vector multiplication
costs [ vector operations.
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According to estimates in [33], the number of vector operations for m steps of
the GMRES method requires

YU+ + D) +m=m(l+m+3)
j=1
vector operations. The fact that the computing time grows like m?, rather than m, is
one of the reasons why the GMRES algorithm is generally restarted, in cases of
slow convergence.
There are several possibilities for the practical computation of (cf. (2.3))

(51) Xnew = Xold + dm~ 1(A)rold .

It might seem that the natural way to implement a polynomial iterative method
based on Faber polynomials is to make use of its recurrence relations (3.5) during
the iteration, rather than to compute the coefficients of the polynomial F,(z) itself.
This leads to

(5.2) X1=—Foa T Xoud
Co
cl LFLO e F@
T TR0 YT TR
Cj— 2 F1(0) (Ci—1 1

c FOT T T Fopte

forj=2,..., mwith x,., = x, (cf. [3, Lemma 1]). Note that, since the recurrence
relations for the Faber polynomials do not have a finite length, the number of
vector operations is given by

Z (I+j)y=m +—@2—+2

In other words, the work grows quadratically with the size of the polynomial
(which is basically the same as in GMRES). There is also the fact that up to
m preceding vectors must be stored during the iteration process. However, since the
same must be done during the Arnoldi process, this is not really a drawback. Here,
we choose to compute the coefficients of the polynomial F,(z), and then to apply
the iteration polynomial ¢,-.(z):=(1 — F(2))/z =dgm+ 1 mz+ "+
Om—1.m2" ' in a Horner-type iteration (cf. [11]):

Wo :‘xm—l,mrold 5
w]:ij~1+(xm—1—j,mrold> j=1,...,m“‘1,
Xnew = Xold + Wi—1 -

This reduces the number of vector operations to m(l + 1). Although this approach
could cause instabilities, due to large residuals in intermediate steps of the Horner
scheme, no significant difference between these two 1mplementatlons in our com-
putations were observed in our numerical experlments /

Since we assumed that N, the dimension of the given matrix A4, is much larger
than m, the number of Arnoldi steps (which is also an upper bound for the number



232 G. Starke and R.S. Varga

of vertices in the polygon), then the work in specifically computing the parameters
in the Schwarz-Christoffel formula (4.1) and in constructing the Faber polynomials
using (3.5) is small compared to one iteration step and this will not be included in
the number of operations in the examples of Sect. 6.

6. Numerical experiments

In this section, we compare our hybrid Arnoldi-Faber algorithm with other hybrid
methods (the hybrid GMRES method by Nachtigal et al. [26] and the hybrid
Arnoldi-Chebyshev method by Elman et al. [10]), as well as with variants of
CG-like methods for nonsymmetric systems (restarted GMRES [33], CGS [36]
and CGNR, where CGNR is the CG method applied to the normal equations).
Examples 6.1 and 6.3 are taken from [26]; these matrices were artificially con-
structed to illustrate specific properties of the algorithms, such as, for example, the
effect of non-normality on their performance. Example 6.2 is a discretized non-self-
adjoint elliptic boundary value problem which can be viewed as a model problem
for convection-diffusion equations.

Example 6.1. Let us consider again the banded Toeplitz matrix (1.1). In Fig. 1, we
plotted the polygon that was constructed from the eigenvalue estimates after 16
Arnoldi steps, by the procedure described in Sect. 2. Here, the right hand side b and
the initial guess x, were chosen as random vectors. The convergence behavior
(more specifically, the norm of the residual in terms of the amount of work as
described in Sect. 5) for the different methods is shown in Fig. 3. We compared
Arnoldi-Faber (16), i.e., the hybrid method that results from using the Faber
polynomials with respect to the polygon described above, to Hybrid GMRES(16),
the hybrid GMRES algorithm by Nachtigal et al, GMRES(16), the restarted
version of GMRES of order 16, CGS and CGNR.

logyg |[rmll2

Hysrip GMRES(16) .
ARNOLDI-FABER(16)

[ I . | I O l I T ¢ [ L1 & ] I }
o] 500 1000 1500 vector operations

Fig. 3. Example 6.1: convergence behavior
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We see that Arnoldi-Faber (16) and Hybrid GMRES(16), which are virtually
indistinguishable, converge rapidly and smoothly, as CGNR also does. CGS shows
a typical erratic convergence behavior, and restarted GMRES is much more slowly
convergent.

Example 6.2. Consider the boundary value problem
(61) —Au—{-‘cux =f(x,y), (X, y)ES,

u(x,y)=gx,y), (x,y)edS

on the unit squares S:= (0,1)x(0,1) with the boundary 6S. Here, the functions
£ SudS— Randg: S — R are assumed to be continuous. Discretizing (6.1) using

central differences with meshsize h = leads to a linear system of equations for
n

+1
n* unknowns with a special block structure. If we set u; ;== u(x;, y;) with x;:= jh,
j=1,...,ny;=ihi=1,...,n we obtain a linear system of equations for
X=(Up a5 Uil U ts e S Ue)

where the coefficient matrix 4e R"Y is given by the Kronecker sum

21, + C —I,
-1 21 C
62) BRIL+1®C= n cht »
—-I, 2I,+C
with
2 4
B = -1 _q and
i -1 2
[ 2 —1+pn
co| 1w T
—14+u
i —1—pu 2

where p:= t(h/2). In all our numerical experiments for the boundary value problem
(6.1), we choose n = 32, so that N = n? = 1024.

Starting with a random right hand side 4 and a random initial guess xo, we
carried out 16 steps of the Arnoldi process and obtained the eigenvalue estimates
on the left halves of Figs. 4 (for u = 2) and 5 (for u = 4). The dots (filling a rectangle)
are the exact eigenvalues of 4. The right halves of Figs. 4 and 5 show the
convergence behavior of Arnoldi-Faber(16), Arnoldi-Chebyshev (16), Hybrid
GMRES (16) and GMRES(16). Again, the Arnoldi-Faber and the hybrid GMRES
method both perform much better than restarted GMRES. Note that neither
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4 — logyg [frmll2
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4000 vector operations
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Fig. 4. Example 6.2 (u = 2): eigenvalue estimates (left) and convergence behavior (right)

togyg l|rmllz
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Fig. 5. Example 6.2 (u = 4): eigenvalue estimates (left) and convergence behavior (right)

CGNR nor CGS showed any sign of convergence here, and, for this reason, these
methods are not included in Figs. 4 and 5. In this example, the hybrid Arnoldi-
Chebyshev method also converges quite rapidly. That the asymptotic rate of
convergence for the Arnoldi-Chebyshev method is smaller than the one for
Arnoldi-Faber is a direct consequence of the comparison theorem in Niethammer
and Varga [28, Theorem 3] (cf. also [5, Proposition 37]) and the fact that any ellipse
enclosing the eigenvalue estimates has to be larger than the corresponding poly-
gon.

At this point, it should be noted that, in many applications, a priori information
on the location of the spectrum of 4 might be available from the physical or
engineering origins of the problem. This information can then be used directly to
construct the Faber polynomials without appealing to the Arnoldi process. For
example, if we use the Faber polynomial of degree 16 with respect to the rectangle
defined by the convex hull of the spectrum for the above example (denoted by
Faber (16) in Figs. 4 and 5), the convergence is much faster than any of the other
Krylov subspace methods!
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In Figs. 3-5, the error curves for the hybrid GMRES and the Arnoldi-Faber
method look very similar. This is a phenomenon that we encountered in many
different examples: Whenever we start out with random vectors (which can be
considered as being equally rich in all the eigenvector components of the given
matrix 4), the Arnoldi-Faber and the hybrid GMRES method showed very similar
convergence behavior. However, there are situations, where the right hand side and
also the starting guess, cannot be considered as being random and, instead, have
a very regular structure. For linear systems arising from discretized elliptic bound-
ary value problems, for example, the right hand side consists of the discrete values
of a (possibly smooth) function and, as a starting guess, one might want to use
a simple function matching the boundary values. We therefore ran Example 6.2
again with the right hand side vectors b= (—1,1,..., —1, )T (Fig. 6) and
b=(1,1,...,1,1)" (Figs 7, 8). As our starting guess, we choose xo = (0, ..., 0)T
in both examples.

On the right in Fig. 6, we see that the hybrid GMRES algorithm has become
much slower than our Arnoldi-Faber method. A more interesting situation occurs
for the polygonal domains in Fig. 7: Starting the Arnoldi process with
vy=(1,1,...,1,1)T/32 does not give satisfactory estimates for the spectrum of
A any more. In fact, after 16 steps, the information about 4 is still so poor that both
methods, Arnoldi-Faber(16) and Hybrid GMRES(16) do not converge. After 32
Arnoldi steps, the eigenvalue estimates are sufficient for Arnoldi-Faber to converge,
while the hybrid GMRES algorithm still diverges (see Fig. 8). Finally, Hybrid
GMRES(40) converges but needs about twice as many iterations as Arnoldi-
Faber(40). Again, neither CGNR nor CGS converged at all, and are therefore also
excluded from Figs. 6 and 7.

We made the same observation in the other examples of this section: When we
start with a vector having a regular structure, Arnoldi-Faber usually converges
faster than Hybrid GMRES. Our explanation for this phenomenon is that, since
the vector v, is rich in only some of the eigenvector components (and possibly does
not even contain some of the others), the GMRES polynomial overemphasizes part
of the spectrum. The Faber polynomial, however, which is based on eigenvalue

logyg lirm iz

[ L ] T T I T

T

!

T T7T

J o I R I r i | T .
8] 2 4 6 8 0 2000 J”"é[}[j[] vector operations
Fig. 6. Example 6.2 (u=2, b={(—1,1,..., —1, 1)T): cigenvalue estimates (left) and conver-

gence behavior (right)
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0 — X
X
..2 —
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Fig. 7. Example 6.2 (u=2,b= (1,1, ..., 1, 1)T): eigenvalue estimates after 16 (left) and 32 (right)

Arnoldi steps

logyg lrm 2
Hysrip GMRES(32)

0 5000 vector operations 10000

Fig. 8. Example 62 (u=2,b=(1,1,..., 1, 1)T): convergence behavior

estimates, is small on the entire spectrum (as long as it is approximated by the
Arnoldi estimates).

Example 6.3. We include this final example to show that the Arnoldi-Faber
method can also work well for matrices where some of the eigenvalues have
negative real parts. On the other hand, the same example points out the limitation
of our method, i.e., unstable behavior or even divergence if the information on the
location of the spectrum obtained from the Arnoldi process is not sufficient. We
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consider the matrix

& 1 1 1
14 0% 1 1 1
(6.3) A= -1 & 1 1 1 gR1024:1024
-1 % 1 1 1

which is the “Grear matrix” from Example 2 in [26], shifted to the left by 0.1. As it
can be seen in Fig. 9, there is a small part of the spectrum, ¢(4), of 4 in (6.3) that is
contained in the left half-plane (the smallest real part in ¢(4) is about —0.03). We
note that this means that the hybrid Arnoldi-Chebyshev method, applied to this
problem, cannot be convergent! In this example, the right hand side and the
starting guess are again random vectors.

Figure 10 shows that the hybrid GMRES algorithm and Arnoldi-Faber(48)
outperform the restarted GMRES versions. However, since Arnoldi-Faber(24)
diverges, the same graph also shows the dependence of the hybrid Arnoldi-Faber
method on the accuracy of the Arnoldi eigenvalue estimates. On the other hand, it
is surprising that the Arnoldi-Faber method converges at all, since, in this example,
part of the spectrum of 4 is not even contained in the polygon (cf. Fig. 9). We
remark that the matrix of (6.3) has a relatively small condition number, so that
CGNR outperforms all the methods included in Fig. 10 (cf. [26, Fig. 8.2b]).

It should be noted that the good performance of the hybrid schemes depend
heavily on the sparsity of the matrix, i.e., the fact that matrix-vector multiplications
are cheap. One might look at this from the point of view that the hybrid methods
actually do not converge faster than restarted GMRES (in terms of the number of
iterations), but that they are much cheaper.

Fig. 9. Example 6.3: eigenvalue estimates after 24 (left) and 48 (right) Arnoldi steps
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logg [[vmll2

ARNOLDI-FABER(24)

-

0 5000 10000  vector operations

Fig. 10. Example 6.3; convergence behavior

7. Conclusions

Our limited numerical experiments indicate that our new hybrid Arnoldi-Faber
method, although based on eigenvalue estimates, performs quite well for non-
normal matrices. If the Krylov subspace is based on a random vector, i.c., a vector
presumably rich in all the eigenvector components of the matrix A, then usually,
both the Arnoldi-Faber method and the hybrid GMRES algorithm by Nachtigal,
Reichel and Trefethen converge much faster than restarted versions of GMRES.
However, if the right hand side of the linear system and the initial guess possess
som’e regular structure, we observed that Arnoldi-Faber can also outperform
hybrid GMRES. The performance of our method does not seem to depend directly
on the non-normality of the matrix. However, it is quite sensitive to the amount of
information obtained about the location of the spectrum obtained during the
Arnoldi phase which is, on the other hand, dependent on the distance from
normality of A. Of course, more experimentation (including more realistic prob-
lems) should be carried out on all these competing methods so that more informa-
tion is gained as to which of these competing methods is most reliable under
general circumstances. We plan to report on more extensive numerical experi-
mentation of our hybrid Arnoldi-Faber method.
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