Optimal semi-iterative methods applied
to SOR in the mixed case
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Abstract. The application of optimal semi-iterative methods to the standard succes-
sive over-relaxation (SOR) iterative method, with any real relaxation parameter w, is
completely analyzed here, under the assumptions that the associated Jacobi matrix B is
consistently ordered and weakly cyclic of index 2 and that the spectrum, o(B?), of B?
satisfies 0(B?) C [~a?, %] with 0 < a < co and 0 < # < 1. The spectrum of B? is then
a mixture of positive and negative eigenvalues, the so-called “mixed case”. If £(Quw,q,8)
denotes the optimal asymptotic convergence factor for semi-iteration applied to L., (the
associated SOR iteration matrix), we deduce that

1> I)nelg p(Ly) > Lnél}l% K{Qu,0,8) = [(\/1 +a?— \/1 D )2]/[042 N ﬁZ] '
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1 Introduction

Recently in [5], the application of optimal semi-iteration to the standard successive
overrelaxation (SOR) iterative method, with any real relaxation factor w, was
analyzed under the assumptions that the associated Jacobi matrix B is consistently
ordered and weakly cyclic of index 2 and that the spectrum, o(B?), of B? satisfies
o(B?) C [0,3%, where 0 < 8 = p(B) < 1. (This is the so-called “nonnegative
case”.) It was shown in [5, Theorem 1] that no semi-iterative method applied to
the SOR method (for any real relaxation parameter w) is asymptotically faster than
the SOR method with optimal relaxation parameter w = wy. The same statement
is valid in the “nonpositive case” where o(B?) C [—a?,0] with 0 < oo = p(B) (cf.
Theorem 1 in Section 2.

Here, we extend the results of [5], using similar techniques, to analyze the case
where the Jacobi matrix B is consistently ordered and weakly cyclic of index 2

*Institut fiir Praktische Mathematik, Universitat Karlsruhe, D-7500 Karlsruhe 1, F.R.G.
TInstitute for Computational Mathematics, Kent State University, Kent, OH 44242, USA.
fResearch supported in part by the National Science Foundation.

Numerical Linear Algebra
© by Walter de Gruyter & Co., Berlin - New York



48 Michael Eiermann and R. S. Varga

with ¢(B?) C [-a?,8% with 0 < o < 0o and 0 < B < 1 (the so-called “mixed
case”). In contrast to the nonpositive and to the nonnegative case, there always
exist semi-iterative methods which improve the asymptotic rate of convergence of
the SOR method (with optimal relaxation parameter w).

The outline of this paper is as follows: In Section 2, we review classical results
on SOR and semi-iterative methods applied to SOR. The main theorem of this
paper will be stated in Section 3 and proven in Section 5. The tools necessary for
this proof will be developed in Section 4. Finally, in Section 6, we briefly comment
on the question as to what extent our results carry over to the p-cyclic case.

2 A review of classical results on SOR,

Consider the system of linear equations
Ax = b, where A € R"*Y and b € RV are given, (1)
with the standard splitting of the coefficient matrix A,
A=D-L-UT,

where D is a nonsingular block diagonal matrix, and where L and U denote re-
spectively strictly lower and strictly upper triangular matrices. We further assume
that the corresponding block Jacobi matrix B, defined by

B:=D YL +U), 2)

is consistently ordered and weakly cyclic of index 2 (cf. [9, Definition 4.2]), and
that the spectrum, o(B?), of the matrix B? consists of real numbers satisfying

o(B?) C [-a?, /] with0 < o< oo and 0< 8 < 1. (3)

We further assume that the interval [—a?, %] is a sharp enclosure of o(B?), i.e.,
that
~a?, 8% € 0(B?).

The assumption (3) implies that there is a unique solution x to the matrix equation
(1). Since the case o = 8 = 0 is essentially trivial and since the case of o = 0 and
0 < B <1 was treated in [5, Theorem 1]} we assume that

o(B?) C [~a?, 8% with —a? 3% € o(B?),0<a<ooand0<fB<1. (4)
We next review classical results for the SOR iterative method
Xm = LyXm-1+cy, (Mm=12..), (5)
where L, the SOR matrix, and c,, are defined by
Ly:=(D—-wL)™[(1-w)D +wU], and ¢, := w(D —wL)"'b (weR). (6)

*The case of 0 < a < oo and 3 = 0 can be analogously analyzed, and we shall briefly discuss
this at the end of this section.
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Here, w is the associated relazation parameter. Under the given assumptions on B
and w, the SOR method of (5) converges (for any initial vector x¢) to the solution
of (1) if and only if )

O<w< T (7
holds (cf. Young [11, p. 193]). The optimal relaxation parameter w, which mini-
mizes p(L,,), the spectral radius of L., as a function of w, is given by (cf. [11, p.
195)) ,

wp = ,
R prp

(8)
and there also holds

2
w Ly,) = ath )
1> p(Ly) > p(Lwy) <l+m> 9)
for all 0 < w < 2/(1 + ) with w # wy.

As in [5], we now apply, for any fixed real w, a semi-iterative method to the
iterates {Xm }3°_, which are generated from the SOR iterations of (5), i.e., we
consider vector sequences {ym }5v_o of the form

m
Ym 1= Z TmjXj, (m=0,1,...), (10)
j=0

where the coefficients m, ; are (complex) constants which satisfy the constraint
Yo Tmg =1 (m=0,1,...).

If 1 € 0(L,,), it is well-known (cf. [9, p. 134]) that the associated error vectors
en = (I — L,) !¢y, — ¥m, for this semi-iterative method based on the basic
iterative method of (5), satisfy

em = pm(Lu)eo (m=0,1,...),
where pm(z) := 312y Tm,j2’ € Iy, so that pp(1) = 1. (Here, II,, denotes the
collection of all complex polynomials of degree at most m.)

For a given polynomial sequence {pm }5o_, with py, € I, and pp,(1) = 1 for
each m > 0, and for 1 ¢ a(L,,), the quantity

nemn]“m
leoll

(which depends on the structure of the Jordan canonical form of the matrix Ly,
but is independent of the vector norm || -|| chosen on R") measures the asymptotic
decay of the norms of the error vectors e,, associated with (10).

As we shall see in Section 4 the eigenvalue assumption (4) leads to sharp
inclusions ¢(L,) € Q = Q q,g for the spectrum of the SOR matrix L., where
Q) C C is a compact set, and we call such a set Q a covering domain for o(L,,). In
this setting, the best, i.e., smallest, asymptotic convergence factor for {2 which we
can hope to achieve by any semi-iterative method is given by

(Lo {Pm} o) = limsup sup [
m-——00 eo?éo

@ 1= i [min {ma b petmp=1)]



50 Michael Eiermann and R. S. Varga

The quantity x(Q) is called the asymptotic convergence factor of the covering
domain (2, and this has been extensively studied in [4]. Note also that the definition
of £(Q2) in (11) couples complex approzimation theory to the study of such semi-
iterative methods.

With respect to the information o(L£,) C (, the rate of convergence of the
SOR iterative method (5) can therefore be improved, by the application of a semi-
iterative method of the form (10), only if

min{1, p(L,)} > k()

holds. The exact (nonempty) set of real w’s, for which the above inequality holds,
will be precisely determined in Theorem 2 below.

How does one actually determine x(£2)? We first note that x(2) = 1 holds for
every compact set (2 C C with 1 € Q. (For, if 1 € £, then max,cq [p(z)| > 1 for
any polynomial p € II,,, with p(1) = 1.) The same conclusion can also be drawn for
another type of compact set 2: Suppose that the complement Coo\2 of Q (with:
respect to the extended complex plane C,) is not connected, and that the points
z = 1 and oo belong to different components of Coo\Q; then £(Q) = 1. (In this
case, there is a component of Co,\§) containing z = 1, whose closure is compact
and contains points of . Then by the maximum principle, max,cq |p(z)| > 1 for
any p € I, with p(1) =1.)

Finally, on defining the class M by

M:= {Q C C:Q is compact and consists of more than one point,
does not contain the point z = 1, (12)
and its complement Co,\( is simply connected},

then for Q € M,
1

)= B

(cf. [4, Theorem 11]), where ® is a conformal map from C\(2 onto the exterior
of the unit circle with ®(co) = co. (We note, by the Riemann Mapping Theorem,
that ® exists and is unique, up to a constant factor of modulus 1.) Thus, if Q € M,
the problem of determining its asymptotic convergence factor, £(£2), is reduced,
from (13), to a problem in conformal mapping theory.

We mention that sharp covering domains € for the spectrum o(L,) will be
determined and analyzed in Section4 for all real w. It turns out, for fixed o and J5]
with 0 < a < oo and 0 < 8 < 1 and for any real w, that there are essentially only
three different types of covering domains ) = Q4u,a,p Which need to be analyzed.

To conclude this section, we briefly describe the nonpositive case, where B8=0,
i.e., B of (2) is consistently ordered and weakly cyclic of index 2 with

o(B?%) C [-a?,0] and 0 < a = p(B).
Matrices of this type arise for example in connection with a discretization of

Theodorsen’s integral equation (cf. Niethammer [8]). The optimal relaxation pa-
rameter wp, which minimizes p(L,) as a function of w, is then given by (cf. (8))

2 (<1),

Wp = ——=———x=
’ 141+ a?

K(Q (13)
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and (cf. (9))

2

a
Lo)=1-wp=|—mee—x] .
p(Lun) “ (1+ 1+a2>

In the nonpositive case it turns out, similar to the nonnegative case, that no semi-
iterative method applied to the SOR method (for any real relaxation parameter w)
is asymptotically faster than the SOR method with optimal relaxation parameter
w = wy, (see Figure 1).

Theorem 1. Assume that the Jacobi matriz B of (2) is a consistently ordered
weakly cyclic of index 2 matriz, and that the eigenvalues of B? are all nonpositive
and lie in [—a?,0], where 0 < oo = p(B). Then, there holds

2
. . 3 3 o
%ﬁp(ﬁw)—u’}gﬁ’i(ﬂw,a»ﬂ)—l_wb—<1+ma—2> .

More precisely, the asymptotic convergence factor k (S,,0,0) has the following prop-
erties:

(i) For —oo <w <wy :=2/(1-vV1+0a?), (Qu,a0) =1, i.e., for these values of
w, no semi-iterative method applied to L, converges.

(il) For wy < w < wp and w # 0, k(S a,0) 15 a strictly decreasing function of w
which satisfies
min{1,p (L)} > £ (Qu,a,0) > 1 —wp.
(iii) For wp <w <1, £(S,a,0) 35 a constant function of w which satisfies
min {1, p(L,)} 2 £ (Qu,a0) =1—ws
(where equality holds in the first inequality if and only if w = wp),
(iv) For 1 <w, k(Qy,a,0) is a strictly increasing function of w which satisfies

min{l, p(Ly)} > £ (Qu,a0) > 1 —ws.

3 Statement of the main result

To state our main result, Theorem 2 below, we define the following four specific
real values of the relaxation factor w (which are functions of a and f):

2 2
W (== e Wy 1= ————,
! 2 14++v1+a?

1-vV1+a2’
2

2
1+ V1 RV ey

We note that the assumptions 0 < @ < oo and 0 < 8 < 1 imply that

(14)

w3z

—00 < W <0 <wy <l <wy <2<wy <0,

With the notation of (14), we come to the statement of our main result.
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Theorem 2. Assume that the Jacobi matriz B of (2) is a consistently ordered
weakly cyclic of index 2 matriz, and that the eigenvalues of B? are (cf. (3)) all real
and lie in [—a?, 3%, where 0 < a < 00, 0 < B8 < 1 and —a?,3% € o(B). Then,
there holds

min{l,p(ﬁw)} > K (Qw,a,ﬁ) (w €R) (15)

if and only if w € (w1,wq) \ {0}. More precisely, the asymptotic convergence factor
& (Qu,a,8) has the following properties:

(i) For wy < w <wp and w # 0, & (Qu,ap) is a strictly decreasing function of w
which satisfies

2
(ViTa?-yi-p)
a? + (32 ’
with limy,1o & (Qu,0,8) = limy, o & (Qu 0,5) = (\/1 +a? —/1-p32 ) /a2 + 32,
(il) For wy <w < ws, k(Qu,qa,8) is a constant function of w which satisfies
2
(\/1-4—012 -1 —ﬂz)
a? + 2 '

(ili) For ws < w < wy, K(Qu,a,8) 5 a strictly increasing function of w which
satisfies

min{l,p(ﬁw)} > K(Qw,a,ﬂ) > (16)

min {1, p (Lw)} > & (Qw,a,8) = (17)

(\/1+a2 —\/1»~ﬂ2)2
a? + 32 '

(iv) In all remaining cases, i.e., for —oo < w < wy, for wg < w < 00, and for
w=20

min {1, p (£.,)} > & (Va0 pg) > (18)

min{1,p(Ly)} = £ (Qu,a,6) =1, (19)

i.e., neither the SOR method (5) nor any semi-iterative method applied to this
SOR method can converge for these values of w.

As a consequence of the above,

(\/1+a2 —\/1—ﬁ2)2
a? + 32

1>min p(Lo) > min & (Qu,ap) = (20)

The results of Theorem 2 can be seen in Figure 2 for « = 1 and 8 = 0.9. For
these choices of o and f, the relevant quantities of (8) and (9) are
wp = 0.95653. .. and p(L,,) = 0.82575.. .,
the relevant quantities of (14) are
wy = —4.82842..., wy =0.82842..., w3 =1.39286..., and wy = 3.54540.. .,
while from (17), we have

K (Qu,a,p) =0.52879... for all w € [we,ws).
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We again emphasize that the main result of Theorem 2 (cf. (20)),
min p(L,) > min 5 (Q,a6) (21)

crucially depends on the above assumptions that « > 0 and 8 > 0. In [5, Theorem
1], we have shown that equality holds in (21) for the nonnegative case, i.e., fora = 0
or, equivalently, o(B?) C [0,4%]. In Theorem 1, we saw that equality also holds
in (21) for the nonpositive case, i.e., for 3 = 0 or, equivalently, o(B?) C [-a?,0].

We add another remark. Instead of applying a semi-iterative method to the
SOR iteration as we did in (10), we could have applied a semi-iterative method
directly to the Jacobi method

Xm = BXpm_1+ Db (m=1,2,..). (22)
From o(B) C [~a?, %], we conclude that
o(B) C [-B, B U [~ia, ic] ,
and one might ask what is the smallest asymptotic convergence factor x([—03, 5] U

[~ic, ial]) of any semi-iterative method applied to (22) with respect to this infor-
mation. It turns out (cf. [2, eq. (4.6)]) that

Vita? —/1-p2
/a2 + ﬂZ )
and consequently (cf. (17)), the optimal semi-iterative method applied to the SOR

iterative method with w = 1 is exactly twice as fast as the optimal semi-iterative
method applied to the Jacobi iteration!

K ([=8, Bl U [-ia,ia]) = (23)

4 Covering domains (2, , s and their
asymptotic convergence factors

From our initial assumption that the Jacobi matrix B of (2) is consistently ordered
and weakly cyclic of index 2, then Young’s fundamental relationship

A+ w—1)% = Aw?p? (24)
holds between the eigenvalues A of £, and the eigenvalues of y of B (cf. [10] or
[11, Theorem 5-2.2]). The relation (24) will be used to determine sharp covering
domains €, 5 for the eigenvalues of £,,. In analogy with [11, pp. 203-206], it is
necessary to distinguish between several cases. To this end, we first define certain
“extremal” eigenvalues of £, namely

Moo= Mwf) = wh — /22 — 4w —1)

2 b

12

-wﬂ + Vw?(? — 4w — 1)-
2

(25)

>\2 = )‘2((-‘)7/8)
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(for given real w and p? = B2, \; and ), are just the two roots of (24)), and

12
SRR T Mo =1
N = dg(wa) = - wa — /w?a? + 4(w — 1)

2 b
] ] (26)
" Tl
Moo= Mwa) = - wo + y/w a2 +4(w-1)
(for given real w and p? = —a?, A3 and A4 are again just the two roots of (24)).

For these extremal eigenvalues of L, it can be verified that

A1 and Ay are both nonreal if and only if w € (w3,wy), and
Az and A4 are both nonreal if and only if w € (wy,ws) \ {0} .

For any real w, it follows from (14) that w necessarily lies in one of the five disjoint
real intervals: —oo < w < wy, w1 < w < wy, wy < w < w3, W3 < w < wy, and
wyg S w < oo.

Our immediate goal below is to determine sharp covering domains Qu,a,p for
the spectrum, o (£,), of the SOR iterative matrix £, as a function of w in these
five intervals.

Case 1: w € (—o0,w;]. Fixing any w in (—o0o,w;], the image of the two roots
A of (24), for this fixed w and for a variable u? satisfying 0 < p? < 2, can be
verified to be the real interval [Ag, A1}, where \; and A, are given in (25). In the
same fashion, the image of the two roots X of (24), for a fixed w and a variable p?
satisfying —a? < p? < 0, can be verified, with (26), to be the union of the real
interval [Aq, A3] and the circle 9D(0; 1—w), where 8D(a;b) := {z € C : |z—a| = b}.
More geometrically, for u? = 3? these images are just A\; and Ay from (25), and
decreasing p? from 3% moves these A’s toward one another until these images
meet in the common point 1 — w when p? = 0. On decreasing p? further for
—a? < p? < 0, these images move, as conjugate complex pairs, along the circle
0D(0;1 —w) until they meet in the point w — 1, where they separate and trace out
the real interval [A3, \4], where A3 and A4 are defined in (26). (This movement of
the X’s, as pu? decreases from 3?2 to —a?, is indicated by the arrows in Figure 3a.)
Thus, from Young’s fundamental relationship (24), the spectrum o (£,,), for any
w in (—o0,w ], satisfies

d(ﬁw) C Qw,a,ﬁ = [/\3,/\4] UaD(O;l —~w)U [Az,Al]
with A Sw —-1< A <l< A<l —w<A,

and this Q, q,p (cf. Figure 3a) is the associated covering domain for o(L,,).

We note in this case that 1 ¢ Quqpg since w —1 <Ay <1 <Xy <1—w.
However (cf. (12)), Qa5 € M because the complement of Qu,a,8 is clearly not
connected. Moreover, since 1 and oo are contained in different components of
Coo \ .8, we conclude from the discussion following (11) that

K(Quap) =1 (—00o<w <wy). (27)
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Consequently, no semi-iterative method applied to the SOR iterative method con-
verges for any w in this interval (—oo, w].

We further remark that the above covering domain €, o g is also the limiting
case of the covering domain of Case 2 when w | wy. (This continuity of the cov-
ering domains, in passing from one interval in w to the next, is valid in all cases
considered below.)

Case 2: w € (wy,wp) and w # 0. Fixing any w # 0 in (w;,ws), the use
of (24), as in Case 1, similarly determines a covering domain €2, o5 for o (L,).
Specifically, it can be verified that if w € (w1, ws) with w < 0, then

0(Ly) CQuap:={z:|2| =1—wand |argz| <argAs} U [Ag, \]

with 1 < A2 <1 —-w< Ay, (28)
while if w € (w1, ws) with w > 0, then
0(Ly) CQuap:={z:|2|=1—wand |argz| <arg A3} U[A1, Ag] (20)

with M <1 —-w <A <1.
For either w < 0 or w > 0 of this case, £, o 3 has the form
Drggmi={re" : =0 < <0} U[( 1), (30)

with 7 > 0and 0 < 6 < 7, and with either ( <7 <np<lorl<({<7<n In
either situation, we see that 1 & D, g ¢, and that (cf. Figure 3b) C \ Dr g,y is
simply connected. Consequently,

DT:")C)TI € M’

(Its asymptotic convergence factor & (D g,¢,n) Will be obtained later in closed form
in Proposition 5.)

Case 3: w € |wy,ws]. For any w € [wy,ws], it can be similarly verified that

o (Ew) C Qw,a,ﬁ = [)\4, /\3] U BD(O; ]1 — w|) U [)\1, )\2]

31
with Mg € —lw—1] <A <0<\ < |w—1]<Ag <1, (31)

where the associated covering domain €, o 3 is shown in Figure 3c.

Since |1 —w| < Az < 1 from (31), the critical point z = 1 is now not in , o g
In addition (cf. Figure 3c), the intervals (—|1 — w|, A3] and [, |1 — w|), which
are interior to the closed disk D(0;|1 — w|), have no effect on the determination
of the asymptotic convergence factor of €, o 3, as can be seen from applying the
maximum principle to the expression in (11). Hence, the new covering domain in
this case, with the identical asymptotic convergence factor, is of the form

B¢ i=D(0;7) U[(,n], where ( < —7 <7 <n<1, (32)

with the choices 7 = |1 —w|,{ = Ay and n = X3 (cf. Figure 3d). Now, B¢, € M
so that

k(Qu,a,8) =k (Brcn) , where 7:=|1 —w|,{:=Agand n:=Xa.  (33)
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(The asymptotic convergence factor  (Br,¢,,) will be obtained later in closed form
in Proposition 3.)
We remark that if w = 1 (i.e., SOR is the Gauss-Seidel method), then from
(25) and (26),
)\1:)\3=0, )\42—02, and )\22,@2,

so that ) o p reduces in this case to the interval [~a?,3%]. For the extremal
values of w for Case 3 (i.e., wy and w3), we also remark that a similar reduction
takes place, in that it can be verified that

W = Wy implies )\3 == )\4 =wy — 1 and sz,a,ﬂ = BD(O;l - w2) U [)\1,)\2] 5
and

w = w3 implies A\; = Ay = w3z — 1 and Qy;,0,8 = [Ag, A3] UOD(0;wz — 1).

Case 4: w3 < w < wy4. Fixing any w in (w3, ws), it can be verified that
0(Ly) CQyap:={z: |z =w—1and argly < argz < argA;} U [Ag, A3
with ImA; >0 and My <1 —w < A3 <0.

With the choice 7 = |w — 1], 8 = arg Xy, { = A4, and 1 = A3, the associated
covering domain has the form

Crocmi={1e¥ : 0 <p<2r—0}U[(,n], (34)
where 7 > 0,0 < § < w and ( < —7 < n < 1. This is shown in Figure 3e. Again,
1 ¢ Cr.¢m, and Cx \ Crg ¢ is simply connected, so that

CT»":CJI € M'

(Its convergence factor k(Cr,g,¢,) will be obtained later in closed form in Propo-
sition 4.)
Case 5: wy < w < 00. Fixing any w in [wy, 00), it can be verified that

0 (Lw) C Qua,p = [A4, A3] UOD(0;w — 1) U [Aq, Ag)
with M <l—-w<A3<1l< A <w—1< ),
which is shown in Figure 3f. Now, 1 &€ €, 4 3, but as in Case 1, since the comple-

ment of {1, o g is not connected with 1 and oo in different components, we again
have, from the discussion following (11), that

E(Quap) =1 (ws<w<o0), (35)

i.e., no semi-iterative method applied to the SOR iterative method converges for
any w in [wyq, 00).

With the above five cases for the determination of the associated covering do-
mains {2y, o 8, only Cases 2-4 have any interest for us since the remaining two (cf.
(27) and (35)) result in no convergence via semi-iterative methods for the SOR
iterative method. But in Cases 2-4 (i.e., Dy g ¢ for Case 2, B, ¢, for Case 3, and
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Cr0,¢n for Case 4), each has an associated covering domain in M from which, us-
ing (13), its asymptotic convergence factor can be determined. We now explicitly
determine the asymptotic convergence factors for the three cases. We begin with
the simplest case of

Proposition 3. The asymptotic convergence factor k(B¢ ) of the set By ¢, of
(32) is given by
K (Bren) =t —Vit* -1,
where
_ () +¢n) — 2n(r* +1)
(n = ¢)(* = Cn)

provided that { < —T <7 <n<1.

t: (>1), (36)

Proof. Since, as noted above, B; ¢, € M, then (13) can be applied to determine
% (Br¢,n)- To this end, we explicitly construct a conformal mapping function ®
which maps Ceo \ Br,¢,n onto Coo \ D(0; 1), where ® is normalized by ®(o0) = oo.
The mapping ® can be expressed as the composition of three elementary mappings.
The Joukowski-like transformation
z T
=& = - —
u 1(2) - + >
maps Coo \ Br¢,, in the z-plane conformally onto Coo \ [®1(¢), 1(n)] in the u-plane,
the linear transformation

oo 20O i)
V=)= T TR0

maps C \ [®1(¢), ®1(n)] in the u-plane conformally onto Cs \ [—1,1] in the v-
plane, and, finally, the inverse Joukowski transformation

w=®3(v) :=v++v2 -1,

maps Cq \ [~1,1] in the v-plane conformally onto Cq \ D(0;1) in the w-plane,
where the branch of the square root is chosen so that ®3(v) > 1 for all v > 1.
(This choice guarantees that |®3(v)| > 1 for all v ¢ [-1, +1].)

The composition of these mappings, namely & = ®3 o &3 o ®;, then maps
Coo \ Br,¢,n conformally onto Ceo \D(0;1) with ®(c0) = 00, and as B¢, € M, it
follows fram (13) that

1 1 '
K/(BT,C)T]) = |®(1)] = [(®3 0 &g 0 ®1)(1)]

has the desired form given in Proposition 3. O

Next, we determine the asymptotic convergence factor & (Crg,¢,,) for the set
Cr0,¢c,n of (34), which is also an element of M. This determination again makes
use of (13), as well as Proposition 3.
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Proposition 4. The asymptotic convergence factor k (Cy g ) of the set Crg ¢ n
of (34) with T > 0,0 < 0 < and { < —1 < n < 1, satisfies

K (CT701<7"7) = H( ?,é,ﬁ) ) (37)
where B; ; . is defined from (32) with

.
7:=2cos | = )
<2> 1+7++/1—27cos(8) + 72

s C+T— /(=27 cos(§) + 72 and = n+ 7+ /0% — 207 cos(6) + 72
© 1474 +/1=27cos(8) + 72 1474 +/1—27cos() + 72

Proof. We explicitly construct a conformal map T of Cy \C".0,¢c,n onto Cx\B. )
with T(co) = 0o and T(1) = 1. In view of (13), this will give the assertion of
Proposition 4.

As similarly in [5, Proposition 4], we consider the three elementary conformal
mappings

_ |z~ T7cos(6)
u = Tl(Z) = 1 [W:l )
v = To(u) := u++u?2-1, and

w = Ts(v) = cos (g) ~isin (g) v,

A straight-forward computation shows that the composition of these three
maps can be expressed as

z+ 7T+ /22 =272 cos(d) + 12
27 cos(6/2)

In [5, Proposition 4], we showed that T maps Co \ {re" : 6 <o <2r — 0} con-
formally onto Cq, \ D(0;1) with T(qo) = 00, provided that we choose the branch
of the square root in (38) for which T(1) > 0. Now, with 7 := 1/T(1) > 0 (which,
from(38), agrees with the definition of # in Proposition 4),
T(2) := 77(2)

is then the conformal map from Co, \ {7€¢% : § < ¢ < 27 — 0} onto Co, \ D(0;7)
with T(co0) = 0o and Y(1) = 1. Moreover, [¢,~7) U (7, 7] is mapped by Y onto
£, —#)U(#, 7] (whose definitions are given in Proposition 4), and it can be verified,
from the assumptions on 7, 6, ¢, and 7 in Proposition 4, that ¢ < —% < # < 7 < 1.
Consequently, T is a conformal map of Coo\Cy,g,¢ , ONtO Ce\B, Ga With (1) = 1.
Appealing again to (13), we conclude that x(Crg,¢,) = F”(Br,c,n)’ which is the
desired result (37) of Proposition 4. O

T(2) := (T30 Ty 07;) (2) =

(38)

Next, the sets Cr9¢, and D, g ¢, from Figures 3b and 3e, appear to be sim-
ply “reflections” of one another. This simplifies the proof of a
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Proposition 5. The asymptotic convergence factor k(Dy.¢n) of the set Dy g ¢ n
of (30), with > 0,0<f<mand (<7 <n<1lorl<{<T<n, satisfies

& (Dro,cn) = “(Bf,f,ﬁ) ) (39)

where By ¢ . is defined from (32) with

’ﬁ

.
T:=2sin| = )
(2> 1—7+4+/1—27cos(f) + 72

;=1 —+/¢%—2(cos(f) + 12 and =74 +/n? =297 cos(f) + 72

1—7++/1—27cos(f) + 72 © 1—7++/1-27cos(d) + 72
provided that ( < T <n <1, and with

r
T:=2sin| = |- )
(2) —1+ 7+ 4/1 —27cos(6) + 72
¢ o= —n+7 — /0% — 2n7 cos(f) + 72 wnd e ST /€% — 2{7 cos(f) + T2
T —1474+/1-27cos(§) + 72 " ~14+7++/1—27cos(d) + 72’

provided that 1 < ( < T <.

Proof. This is a direct consequence of Proposition 4 because z — —z maps

Coo \ Dro,¢,p onto Coo \ C; 57 =, where 7 := 17, 0 := 7 —0, ( := —n, and 7] := —(.
O

As mentioned at the end of Section 2, there are essentially only three different
types of covering domain €, o3 which needed to be analyzed. The asymptotic
convergence factors of these three different covering domains now have been de-
termined in the three Propositions 3-5.

Also mentioned in Section 2 is that sharp covering domains will be derived in
this section. To demonstrate this point, fix any a and § with 0 < a < oo and
0 < B < 1, and fix any real w with w # 0. Next, let A be any real or complex
number such that if (cf. (24))

A +w—1)2 = w?u?, then p? satisfies — a? < p? < g2 (40)

By definition, A is then an arbitrary point of the covering domain €, o g. Next,
with a value of i (possibly complex), determined by (40) from the given values of
A and w, we define the matrix B by

0 g
g 0 O 0]
B 0 u
B = 0] L0 o , (41)
0 «
0} O —a 0

whose eigenvalues are +(, +4, and +ia. It can be verified, from the case p = 2 of
[9, Definition 4.2 and Theorem 4.1] that B is a consistently ordered weakly cyclic
of index 2 matrix. Moreover, since the diagonal entries of B of (41) are all zero,
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then on setting B := L + U, where L and U are respectively the strictly lower
and strictly upper triangular matrix determined from B, an associated 6 x 6 SOR
matrix £, for B can be defined by

L, =1 -wlh) 1 —w)I + wl).

But as 4 is an eigenvalue of B and as (24) is satisfied, it follows (cf. [9, Theorem
4.3]) that X is an eigenvalue of £,. In other words, for any w # 0 and for any «
and § with 0 < a < 0o and 0 < # < 1, each point of the covering domain Qw08
is an eigenvalue of some SOR matrix derived from a consistently ordered weakly
cyclic of index 2 Jacobi matrix B whose spectrum satisfies 0(B2%) C [—a?, 82]. It
is in this sense that the covering domains Q,, 4 g, for w # 0, are sharp.

5 Proofof Theorem 2

With the results of Propositions 3-5, we are in position to establish Theorem 2.
Proof. As seen from the discussion in Section 3, there were five real intervals in
w to be separately considered, namely Cases 1-5. As we have seen (cf. (27) and
(35)), Cases 1 and 5 both give an asymptotic convergence factor (4 q,5) = 1, s0
that no semi-iterative method applied to the SOR iterative method is convergent
when —o00 <w < w; (Case 1) and wg < w < oo (Case 5).

For Case 2 (i.e., w € (wy,wq) and w # 0), we distinguish between the two
subcases w; < w < 0 and 0 < w < wy. Since the treatment of each of these
subcases is similar, we consider only the subcase w; < w < 0. Then (cf. (28) and
the following inequalities),

1 <Xz < Ag, Im(Ag) >0,

and o (L) C Dyg¢pwith7:=1-w, 0 := alig()u;), ¢ := A and  := \;. Inserting
these definitions into the expression for 7, ¢, and 7 of Proposition 5, we obtain
(after some algebraic manipulations and simplifications) that

7i=1/(1 —w2)(l —w),

s Bt er+p _ B+l +p?
C= = e Y and = e Vs

Now, these values 7, ¢, 7 determine an associated £ from (36) of Proposition 3,
which, after simplifications, can be expressed in terms of w, a, and 8 as

(C+ME+ ) — 202 +1) _ (1-2—VI+ P w+2V/T+a?

(1 = ¢)(72 = (i) Va? + §2/f%w? —4(w - 1)
Hence, from Propositions 3 and 5, it follows that the asymptotic convergence factor
% (€, a,p) for the covering domain €, 4,5 when w; < w < 0 is given by

{:= (42)

K& (Qu,a,8) = £ (Drocn) =K (Bi-,é,ﬁ> =t— Vi -1, (43)
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where £ > 1 is explicitly given, as a function of w, @, and £, in the final expression
of (42). With o and J fixed with & > 0 and 0 < § < 1, differentiation of { = {(w)
with respect to w yields, after some manipulations, that

di _ 20— p)(ViFa® ~1) (W —wi) >0 (w1<w<0), (44)

dw 83/a? + 32 (w3 — w)(ws — w)]3/2

so that for w; < w <0 (K w3 < wy),t is a strictly increasing function of w in the
interval (wy,0). On the other hand, as

d (/5 (#—-1)V2 ¢ .
d{{t : 1}_ =<0 (fralli>1), (45)
then £ — V2 — 1 is a strictly decreasing function of £ in the interval [1, 00). Hence
(cf. (43)), it follows from (44) and (45) that k(Qu,a,p) is a strictly decreasing
function of w in the interval (w1, 0), as claimed in (i) of Theorem 2. (This can also
be seen in Figure 2.) As mentioned above, the treatment of the remaining subcase
of (i) of Theorem 2, namely, 0 < w < wa, is similar and is omitted.

We now turn to case (ii) of Theorem 2, i.e., w € [wy,ws]. From our discussion
of Case 3 in Section 4, we know from (33) and (13) that

K (Qu,a,8) = K (Br¢y) With 7:= |1 —w|, (= Aq, and n:= Az, (46)

where Ao and )4, defined in (25) and (26), are both real and nonzero from (31).
We specifically treat now the subcase when 1 < w < ws, so that 7 =w—1 > 0 and
Ao and )4 are both real and nonzero. From (36) of Proposition 3, the associated
value for t in (36) (for the values 7 = w — 1, { = A4 and 1 = )2) is given by

2( rtw—1) - (Gt + A+

1 -1
e = Sl

(47)

Since ¢ = A4 and n = ) are particular roots of (24), then

n w—-1 w?p? ¢ w-1 w?a?
= —2 and =— -2
w—1+ n w—1 an w—1+ ¢ w-—1 ’
and substituting these expressions in (47) yields
_2-(p-a?
T a2+

Thus by Proposition 3,
_ (Wl+a?—+/1-
5 () =t = VE—1 = —VL- A (48)
a? +f
for all 1 < w < ws. The case wy < w < 1 is similar, and gives the same result

in (48). For w = 1, the covering domain €, g reduces to the interval [-o?, 2]
whose asymptotic convergence factor is known to be

(V1+aZ—4/1-p?)?
a? + 2

K([~o?, 6%) =
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(cf. 2, §6]). This, together with (9), establishes the assertion (17) of Theorem 2.
Next, let w satisfy w3 < w < wq (cf. (14)), which corresponds to Case 4 of
Section 4. Note that in this case,

A4 < A3 <0 and Il’Il(/\g) >0
(cf. (25) and (26)). Thus, o (£,,) C Crg,¢.y (cf. (34)) with 7 := w— 1, 0 := arg()s),

¢ = A4, and n := 3. Inserting into the expressions for 7, é, and % which are
defined in Proposition 4, we obtain similarly

7i=/(1-w3)(l—-w),
X a++/o? + 32 . at\a2r 3R
=/ dni=—>——
T e e
A further calculation shows that
foo CHDE+E) — 2602 +1) (@2 +1-T- Plw+2/T-f2
(7 = &)(#2 — (i) Va2 + /% + 4w 1)

Hence, from Propositions 3 and 4, we have

—A3.

(49)

K (Qu,a,8) = 6(Creme) = K (Bﬁéyﬁ) ={—Vi{2-1 (wheref> 1).  (50)
Then, using (49), we deduce that

di 20e*+1)(1-/1-5?) (w — wy) o
@~ v Meoe@ompr <0 (e <), 6

so that f is a strictly decreasing function of w € (wq,ws). But as f — \/ 2 -1is
also a strictly decreasing function of £ > 1 from (45), it follows that & (Quw,a,8) of
(50) is a then strictly increasing function of w in (ws,wy), as claimed in (iii) of
Theorem 2. (This can also be seen in Figure 2.)

To complete the proof of Theorem 2, consider the omitted value w = 0. In this
case (cf. (6)), Lo = I, and its associated covering domain is Qoo ={1} € M.
We use (11) to deduce that & (Qu,a,8) = 1. Hence, & (Qu,a,8) = 1 = p(Lo), and
neither the SOR method for w = 0, nor any semi-iterative method applied to Lo,
converges in this case. O

6 Remarks and conclusions

Theorem 2, the main result of this paper, has a lengthy statement and an even
lengthier proof, since this proof depends on treating, via conformal mapping the-
ory, five disjoint real intervals in which the real parameter w (the relaxation pa-
rameter of the SOR iteration method) can traverse. While the proof is somewhat
condensed, we hope that the reader has a complete picture of the arguments in-
volved in this proof.

For remarks and conclusions related to Theorem 2, we give the following:
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. In Theorem 2, it is assumed that the eigenvalues of B? (where B is the
associated Jacobi matrix of (2)) are all real and lie in [—a?, 3%] with a > 0
and 0 < B < 1. On letting @ | 0, it can be verified that the results of Theorem
1 reduce exactly to the results of Theorem 1 of [5]. As such, Theorem 2 of
this paper is obviously a generalization of Theorem 1 of [5]. We remark
however again, that, on letting | 0, equality then holds in (20).

. Similarly, one can let 8 | 0 (i.e., the eigenvalues of B? are all real and lie in
[—a?,0]), so that the result of Theorem 2 can be used to deduce Theorem 1.
We further remark that letting 3 | 0 also gives equality in (20).

. In essence, Theorem 2 of this paper assumes knowledge of the extreme eigen-
values, namely —a? and 32, of B%, whose eigenvalues are assumed to lie in
the interval [—a?,3?] with @ > 0 and with 0 < 8 < 1. It is natural to
ask here, as in [5, Theorem 5| (see also Dancis [1]), if improvements of the
asymptotic convergent rates, for optimal semi-iteration applied to the SOR
iteration method, are possible if one assumes further ezplicit knowledge of
the spectrum of B?, i.e., say, that the k largest eigenvalues and the £ smallest
eigenvalues of B? are assumed known (with k + £ > 2), and the spectrum of
B? is contained in

£-1 k-1
U (a3} U {8 U t-ab s

with —a? < —a3 <+ < —a2 <0and 0 < 8% < 7, <--- <P} <1 The
answer is yes; one need only apply Theorem 2 of this paper with o? and 32
replaced, respectively, by a2 and (2. (The details of this are easy, and are
left to the reader.)

. We wish to reiterative what is in (20) and what is also clear from Figure 2.
Under the assumptions of Theorem 2, the best (for any real w) asymptotic
rate of convergence for semi-iterative methods applied to the SOR iterative
method is actually strictly better than the best (for any real w) asymptotic
rate of convergence for the associated SOR iterative method.

. We note that the covering domains (U, g studied in Section 4 were composed
only from the “building blocks” of circles (with centers at the origin), their
circular arcs (which are symmetric with respect to the real axis), and real
intervals. It is worth mentioning that this is a consequence of the fact that
Young’s relationship (24) is a quadratic in )\, with w and p? real.

. It is natural to ask how much of this analysis, of optimal semi-iterative
methods applied to the SOR matrix, can be extended to the case where B
is a consistently ordered weakly cyclic of index p (p > 2) matrix. In analogy
to (4), we assume that

o (B?) C [-a?, 8] witha>0,0<8<1and —o®,f? € o(B?).
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There is, of course, the known p-cyclic analogue (cf. [9, p. 106]) of (24),
namely

A +w—1)P = AP 1yPyP, (52)
Since (52) is now a polynomial equation of degree p (> 2) in ), it is more
difficult to find an explicit description of the associated covering domains for

o (L),
QT 5 ={2€C: (\+w=1)P =X3"1w? for some 4P € [~aP, 57} .

For the special case w = 1, we have

(VI¥aP +yT=pp)°
aP + 3P
(cf. [2, (4.2)]). This is actually sufficient to show that

(VIT P +/T=pP)°

oP 4 pP
holds true in the p-cyclic case for any value of o and 3. We briefly sketch the
proof of (53): It is well-known that, under the given assumptions, one SOR
step is equivalent to p steps of a certain semi-iterative method, the so-called
p-step relaxation method, applied to the Jacobi method (see Gutknecht,
Niethammer and Varga [6]). Consequently, any semi-iterative method ap-
plied to SOR is asymptotically at most p-times faster than an optimal semi-
iterative method applied to the Jacobi method. Since the requirement that
the eigenvalues of BP, the pth power of the Jacobi matrix B, are contained
in [—aP, BP] is equivalent to

0(B) CYpap = {u €C: u=te?*"/P (0<t<f)or

Q) 5 = [~o?,47] and & () ;) =

min p (£,) > mink (Q(”) EL k(9 5) = (53)

M___se(2k+1)7"i/1’ (0<s<a) fork=0,1,.--,p—1} )

we conclude that

(»)
min s (20, 5) > [k (Spas)]” -

But
[k (Zrap)l =k ([-a?, 7)) = (2, 5)

(cf. [2, Theorem 6]) which proves the last two relations of (53). Using the
expressions for p (L,,) given in [3, §3], an easy calculation finally shows that
the first inequality in (53) is also valid.

An interesting open question, which appears to be quite difficult, is whether
there exists — as in the two-cyclic case — a whole interval [wa,ws], wy <
1 < ws, of relaxation parameters w with

() (p)
K (Qw’a,ﬂ> = ur)rggn (Qw ) for all w € [wq,ws].
These problems are of recent interest since they have applications to Markov
chains (cf. Kontovasilis, Plemmons, and Stewart [7]).
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Figure 3a: €, g for Case 1.
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Figure 3b: D, ¢ .
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Figure 3d: B, ¢ .



72

Michael Eiermann and R. S. Varga

0.5
-0.5F

L.5

0.5

-0.5

-1.5

Figure 3e: Crg.¢ 9.
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