On Symmetric Ultrametric Matrices

Richard S. Varga*and Reinhard Nabben!

Abstract. In a recent paper by S. Martinez, G. Michon, and J. San Martin [1], it was
shown that if A := [a;,;] in R**" is a symmetric strictly ultrametric matrix, then its
inverse A~! := [ay,;] in R™*" is a strictly diagonally dominant Stieltjes matrix, with the
additional property that

ai,; = 0 if and only if a;; = 0.

Here, a generalization of this result to symmetric ultrametric matrices is given.
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1 Introduction

In a recent paper, S. Martinez, G. Michon, and J.San Martin [1] gave the following
definition. For notation, let N := {1,2,---,n} for any positive integer n.

Definition 1.1. 4 matriz A = [a; ;] in R™™" is a symmetric strictly ultrametric
matric if
i) A is symmetric with nonnegative entries;
it) a;; > min{a;k;ak;} for all i,k,j in N; 1)
1) a;; > max{aix : k € N\{i}} forall i€ N,

where, if n =1, then (1) is interpreted as a1,1 > 0.

The result of [1, Theorem 1] is
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Theorem 1.1. ([1]). If A =[a;] in R™*™ is a symmetric strictly ultrametric ma-
triz, then A is nonsingular and its inverse, A™! 1= [ ;] in R™ ™, is a strictly di-
™

agonally dominant Stieltjes matriz (i.e., a;; <0 for alli # j and a;; > Z o k|
b
for all 1 <i,5 < n), with the additional property that
a;; =0 if and only if oy; =0. )

For a shorter linear algebra proof of Theorem 1.1, see Nabben and Varga [2].

The result from Theorem 1, that the inverse of a symmetric strictly ultrametric
matrix is a strictly diagonally dominant Stieltjes matrix, suggested that a possible
weakening of the hypotheses of Definition 1.1 might be possible. Our modest goal
here is to specifically weaken (1.4%) of Definition 1.1 to obtain a generalization,
Theorem 2.2 below, of Theorem 1.1.

2 Main Result

To begin, we first state the following results of Nabben and Varga [2], which will
be used in our constructions below. For additional notation, set

&= (1,1,---,1)Tin R™

Proposition 2.1. ([2]). Let A = [a;;] in R™*™ be symmetric with all its entries
nonnegative, and set
7(A) :=min{a; ; : 1,5 € N}. 3)

If n > 1, then A is a symmetric strictly ultrametric matriz if and only if A —
T(A)éntT is completely reducible, i.e., there exist a positive integer r with 1 <r <
n and a permutation matriz P in R™*"™ such that
Cc 0
P[A_T(A)fngz;]PT:[O D}’ (4)
where C € R™" and D € R"X("=") gre each a symmetric strictly ultrametric

matrix.

Theorem 2.1. ([2]). Given any symmetric strictly ultrametric matriz A in R™™"
(n > 1), there is an associated rooted tree for N = {1,2,---,n}, consisting of

2n — 1, vertices, such that
2n—1

A= " mugug, (5)
=1
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where the vectors ug in (5), determined from the vertices of the tree, are nonzero
vectors in R™ having only 0 and 1 components, and where the 7¢’s in (5) are
nonnegative and, with the notation that

x(ug) := sum of the components of uy, (6)

satisfy the property that 7, > 0 when x(ug) = 1. Conversely, given any rooted
2n—1

tree for N = {1,2,---,n} with 7 > 0 when x(u;) = 1, then Z Ty Uy ug s a
=1

symmetric strictly ultrametric matriz in R™*".

To generalize Theorem 1.1, (14¢ii) of Theorem 1.1 is weakened to allow for the
case of equality.

Definition 2.1. A matriz A = [a;;] in R™*" is a symmetric pre-ultrametric
matric if
i) A is symmetric with nonnegative entries;
it) a;; > min{a;x;ar;} for all i,k,j € N, (7N
i11)  ai; > max{a;r : k € N\{i}} forall ie N.

It is evident that a symmetric pre-ultrametric matrix can be singular, as choos-
ing A = O shows. Now, it easily follows from Theorem 2.1 that A is a symmetric
pre-ultrametric matrix if and only if the representation of (5) is valid where the
7¢’s in (5) are just nonnegative numbers (i.e., no further restrictions on the 7’s
are necessary). But this shows that if A is a symmetric pre-ultrametric matrix,
then for each € > 0,

Ale) := A+ eI, (where I, is the identity matrix in IR"*") (8)
is a symmetric strictly ultrametric matrix which, from Theorem 1.1, is necessarily
nonsingular. Then on applying (5) of Theorem 2.1, A(e) can be represented as

2n—1

Ale) = Z () ugus (e > 0), 9)

=1
where it is important to note that the vectors {ug}s";" in (9) are independent
of . (This is a consequence of the fact that the complete reduction steps of (4)
of Proposition 2.1, which are applied to principal submatrices of A(e) to obtain
the representation of (5), yield vectors u, which depend only on the vertices of
the associated tree and are independent of €. This will also be illustrated in the
example in Section 2.)

This brings us to our next

Definition 2.2. 4 matriz A = [a; ;] in R™*" is a symmetric ultrametric matriz
if A is a symmetric pre-ultrametric matriz and if, from the representation (9) the
vectors {u,}2" 7! satisfy ,

(iv) span {ug : 7(0) > 0} =C", (10)
where 7,(0) := lin(l) Te(€).
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To couple Definition 2.1 with Definition 1.1, let {e;}7?_; denote the set of
unit basis vectors in R" (i.e., e; = (1,0,---,0)T, ey = (0,1,0,---,0)7, etc.). If
A is a symmetric strictly ultrametric matrix in R™*", then from Theorem 2.1,
each e; (1 < j < n) is some u; in {ug}% ! and its associated multiplier, 7,
in (5), is necessarily positive. Consequently, as (10) is then obviously satisfied,
each symmetric strictly ultrametric matrix in R™*" is necessarily a symmetric
ultrametric matrix.

We next establish

Lemma 2.1. Assume that A = [a;;] in R™" is a symmetric pre-ultrametric
matriz. Then, A is positive definite if and only if (10) is valid, i.e, if and only if
A is a symmetric ultrametric matriz.

Proof. Since A is by hypothesis a symmetric pre-ultrametric matrix, then on
letting € — 0, it follows from (9) and (10) that

m .
A= Z 7¢(0) ug u where 74(0) > 0 for all 1 < £ < 'm, (11)
£=1
where m < 2n — 1. (This amounts to throwing out those 7,(0) in (9) which are
zero, and then renumbering the remaining terms in (9)). Then for any x € R,
m
xTAx = Zn (xuy) (ufx) =Y m(0)Jux|* >0, (12)
£=1
so that A is at least positive semi-definite. Equality holds in (12) (since 7¢(0) > 0
for all 1 < £ < m) only if u{x =0 for all 1 £ ¢ < m. Thus, x is orthogonal to
every linear combination of the u,’s, i.e.,

x L span {ug : 7¢(0) > 0}.

If (10) is valid, then equality in (12) implies x = 0 and y# Ay > 0 forall y # 0
inC", i.e., A is positive definite. Conversely, if (10) is not true, there is an x # 0
with x# Ax = 0, so that A is singular. O

This brings us to our main result.

Theorem 2.2. Let A = [a; ;] in R™™"™ be a symmetric ultrametric matriz, in the
sense of Definition 2.1. Then, A is positive definite and its inverse, A=1 := [ ;]
in R™™", is a diagonally dominant Stieltjes matriz, i.e., a;; < 0 for all i # j and

n
Qg 2 Z | j| for all i€ N, (13)
j=1
J#L
with strict inequality holding in (13) for at least one i in N. Moreover,

a;; =0 implies a;; =0  (but not necessarily conversely).  (14)
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Proof. For each € > 0, A(€) := A+e¢l, is a symmetric strictly ultrametric matrix.
Hence from Theorem 1.1, (A +€l,,)~! = [y ;(€)] in R™™ is a strictly diagonally
dominant Stieltjes matrix, so that

a;,;(e) <0 foralli# jin N and for each € > 0, (15)
n

o 5(€) > Z |as,j(€)| for all ¢ € N and for each ¢ > 0, and (16)
i

a;,;(e) = 0 if and only if oy j(€) = 0 for each € > 0. 17)

On letting € | 0, A = A(0) is positive definite from Lemma 2.1, and its inverse,
A71(0) = [@;,;(0)] in R™™, is then well-defined. Again, letting € | 0 in (15) and
(16) gives

@ ;(0) <0 forallis#jin N, and (15)
ai,i(o) Z Z law(O)l for all 1€ N. (161)
=1
i

That strict inequality must hold, for some 4, in (16') is clear, for otherwise,
A~1(0)¢, = 0, which contradicts the fact, from Lemma 2.1, that A = A(0) and
its inverse are both positive definite.

Finally, to establish (14), first note from (743) that no diagonal element a; ;
of A can vanish, as this would force A to have a zero row and to be singular.
Thus, the condition in (17) necessarily pertains only to off-diagonal entries of the
matrices A(e) and (A(e))~'. But as a,j(€) = a;; for all i # j from (8), (17) can
be expressed as

a;,; = 0 if and only if a; ;(€) = 0 for each € > 0, a7
and on letting ¢ | 0, we can only deduce (cf. (14)) that
a;,; = 0 implies a; ;(0) = 0,

for it could be the case that a;; > 0 and oy j(e) > 0 for each ¢ > 0, while
a,-,j(O) =0.0

3 An Example
Consider the matrix

A1 = (18)

N W oW
N W
W NN
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which can be verified to be a symmetric pre-ultrametric matrix in IR**3. Then,
for each ¢ > 0,

3+¢ 3 2
Ai(e) = A1 +els = 3 4+4¢ 2 R (19)
2 2 3+¢€

whose associated rooted tree (cf. Theorem 2} can be verified to be

(1,2,3)

(3)

(1) (2)

Then, the representation for A;(e) in (9) holds with the following definitions:

Ti(€) := 2;uy = (1,1, 1)T T3(e) i= L;uz == (1,1,0)% T3(€) == ¢ us := (1,0,0)7

74(€) == 1+ uq 1= (0,1,0)7 75(c) := 14 ¢ us := (0,0,1)7.
In this case (cf. (10)),
span {ug : 7¢(0) > 0} = span {(1,1,1)";(1,1,0)";(0,1,0)7; (0,0,1)"} = €2,

so that A; is then a symmetric ultrametric matrix. Now, the inverse of A1, given
by
+16 -1 -04
ATt =] -1 41 0|, (20)
—-04 0 06

is such that A7! has some zero off-diagonal entries, while 4; has no zero off-
diagonal entries. This shows, in particular, that the implication of (14), which
holds vacuously for Ay, is true, but that the inverse implication in (14) does not
hold. We also see from (20) that strict diagonal dominance holds in the first and
third rows of A;l, while only diagonal dominance holds in the second row of Al‘l.

As a final comment, it was our original thought that the case of strict inequality
in (14ié) could be weakened to the case of inequality in (14i5), while still preserving
the main results of Theorem 1.1, if some irreducibility-like additional hypothesis
were added. As it turned out, our additional hypothesis, that of (10), is what
resulted. It is perhaps interesting to note that the assumption of (10) and the
assumption of irreducibility of a matrix (cf. {3, p. 19]) both can be viewed as global
properties of a matrix.
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