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INTRODUCTION

1. General Remarks

Alternating direction implicit methods, or ADI methods as they are called
for short, constitute powerful techniques for solving elliptic and parabolic
partial difference equations. However, in contrast with systematic over-
relaxation methods, their effectiveness is hard to explain rigorously with
any generality. Indeed, to provide a rational explanation for their effective-
ness must be regarded as a major unsolved problem of linear numerical
analysis.

The present article attempts to survey the current status of this problem,
as regards elliptic partial difference equation in the plane. It is divided into
four chapters and four appendices.

Part I deals with ADT methods which iterate a single cycle of alternating
directions. In this case, the theory of convergence is reasonably satisfactory.

Part II studies the rate of convergence of ADI methods using m > 1
iteration parameters, in the special case that the basic linear operators
H, V, £ in question are all permutable. In this case, the theory of con-
vergence and ‘of the selection of good iteration parameters is now also
satisfactory. :

Part 111 surveys what is known about the comparative effectiveness of
ADI methods and methods of systematic overrelaxation, from a theoretical
standpoint. Part IV analyzes the results of some systematic numerical
experiments which were performed to test comparative convergence rates
of different methods. The four appendices denl with virious technionl
questions and generalizations.

No attempt has been made to survey practical applications of ADI
methods to industrial problems.
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2. The Matrix Problem

Consider the self-adjoint partial differential equation
J ou d ou

where the function G is nonnegative, while A and C are positive. Let the
solution of Eq. (2.1) be sought in the interior of a bounded plane region &
which assumes given values v = u(z, y) on the boundary ® of ®.

To find an approximate solution to the preceding Dirichlet boundary
value problem, one commonly [8, Section 20] first covers & with a square
or rectangular mesh having mesh-lengths , &, approximating the boundary
by nearby mesh-points at which u is approximately known. One then takes
the values u(z;, y,;) of u on the set ®(h, k) of interior mesh-points as un-
knowns. On G(h, k), one approximates —hk 3[Adu/dz]/dx by H and —hk
d[Cau/dyl/dy by V, where H and V are difference operators of the form

Hu(z,y) = —alz, p)u(z + k, ) + 2b(z, Y)ulz, y)

— oz, Y)ulx — h,y) (2.2)
Vu(z, y) = —alz, y)ulz, y + k) + 28(z, y)u(z, y)

= vz, Yulr,y — k). (23)
The most common! choices for a, b, ¢, o, 8, v are
a=kA(x + h/2,y)/h, c=kA(x — h/2,y)/h, 2b =a+¢ (24)
a=hC(z,y+ k/2)/k, ~v=hClx,y—Fk/2)/k, 28=a+~v. (25

These choices make H and V symmetric matrices, acting on the vector space
of functions u = u(x;, y;) with domain ®(h, k). We will normally consider
only the case h = k of a square network; general networks will be treated
in Appendix C.

For any k > 0, the preceding “discretization” defines an approzimate
solution of the given Dirichlet boundary value problem for (2.1), as the
algebraic solution of a vector equation (system of linear algebraic
equations) of the form

H+V+3Du=k (2.6)

In (2.6), = is the nonnegative diagonal matrix whose Ith diagonal entry,
associated with the interior mesh-point x; = (x, ¥;), is R2G(zs, ¥,). The
vector k is computed by adding to the source terms A?S(z;, y;) the terms in
(2.2)—(2.3) associated with points on the boundary ® of ®, for which one
can substitute approximate known values of u.

t Other possible choices are discussed in Birkhoff and Varga [1, Section 2].
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Our concern here is with the rapid solution of the vector equation (2.6}
for large networks.? For this purpose, it is essential to keep in mind some
general properties of the matrices £, H, and V.

As already stated, 2 is a nonnegative diagonal matrix. Moreover H and
V have positive diagonal entries and nonpositive off-diagonal entries.
Because of the Dirichlet boundary conditions for (2.1), the diagonal
dominance of H and V implies that they are positive definite [19, Section
1.4]; such real symmetric and positive definite matrices with nonpositive
off-diagonal entries are called Stieltjes matrices.

If the network ®&(h, h) = ®, of interior mesh-points is connected, then
H 4+ Vand H + V + 2 are also drreducible; it is known? that if a Stieltjes
matrix is irreducible, then its matrix inverse has all positive entries.

The matrices H and V are also diagonally dominated, by which we mean
that the absolute value of the diagonal entry in any row is greater than or
equal to the sum of the off-diagonal entries. For any 6 2 0, the same is
true a fortioriof H + 6Z, V -+ 62, and for :H + 6,V 4+ 62if 6, > 0,6, > 0.
The above matrices are all diagonally dominated Stieltjes matrices.

By ordering the mesh-points by rows, one can make H tridiagonal; by
ordering them by columns, one can make V tridiagonal. That is, both H
and V are similar to tridiagonal matrices, but one cannot in general make
them both tridiagonal simultaneously.

It can be shown that the approximate solution of (2.1) for mized
boundary conditions on ®, of the form

du/on + d(z, y)u = Uz,y), d> Oon &, 2.0

can be reduced to a matrix problem of the form (2.6) having the same
properties. This is also true of rectangular meshes with variable mesh-
lengths h;, k;, as will be shown in Part IT and Appendix C; see also [10, 19].

3. Basic ADI Operators

From now on, we will consider only the iterative solution of the vector
equation (2.6). Since it will no longer be necessary to distinguish the ap-
proximate solutions u from the exact solution u(z, y), we will cease to use
boldface type.

Equation (2.6) is clearly equivalent, for any matrices D and E, to each
of the two vector equations

(H+Z+ Dwu=FkF— (V- Dy, 3.1

V+Z+Eu=k— (H—-Euy, (3:2)

2 We will not consider the truncation or roundoff errors.

# See Varga [19], Chapter I11, Section 3.5; irreducibility is defined there in Chapter I,
Section 1.4.
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provided (H + = + D) and (V + Z + E) are nonsingular. This was first
observed by Peaceman and Rachford in [16] for the case Z = 0, D=E
= pl a scalar matrix. In this case, (3.1)-(3.2) reduce to

H+phu=k— (V—phu, (V+phu=Fk— H—pDr
The generalization to Z # 0.and arbitrary D = E was made by Wach-
spress and Habetler [24; see also 23].

For the case & = 0, D = E = pI which they considered, Peaceman and
Rachford proposed solving (2.6) by choosing an appropriate sequence of
positive numbers p., and calculating the sequence of vectors Una, Un+h
defined from the sequence of matrices D, = E. = p.I, by the formulas

(H+Z+ D)tnyy =k — (V= Da)ua (3.3

(V42 + EDtnp = k — (H — Ea)tngy- (3.4)

Provided the matrices which have to be inverted are similar to positive

definite (hence nonsingular) well-conditioned tridiagonal matrices under

permutation matrices, each of Eqs. (3.3) and (3.4) can be rapidly solved -

by Gauss elimination. The aim is to choose the initial trial vector u, and

the matrices Dy, Ey, Dy, Es, . . . s0 as to make the sequence {un} converge
rapidly. )

Peaceman and Rachford considered the iteration of (3.3) and (3.4) when

D, and E, are given by D, = p.I and E, = j,I. This defines the Peaceman-
Rachford method:

tpyy = (H + 2+ pD)7' [k — (V — pal)ua] (3.5)

tUngr = (V + Z 4 5D)7 [k — (V = BaD)ttnss]. (3-6)

The rate of convergence will depend strongly on the choice of the iteration
parameters pa, pn. :

An interesting variant of the Peaceman-Rachford method was suggested
by Douglas and Rachford (7, p. 422, (2.3)], again for the case T = 0. It
can be defined for general = = 0 by

tnpy = (Hi+ pud) 7'k — (Vi — paD)un] 3.7

Unpp = (V1 + pal) [ Viua + Pnuwi]: (3.8)

" where H, and V; are defined as H + 3= and V + }Z, respectively. This

amounts to setting Dn = En. = p.] — 3Z in (3.3) and (3.4), and making

some elementary manipulations. Hence (3.7) and (3.8) are also equivalent
to (2.6), if U, = Unpy = Unsr.
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PART I: STATIONARY ADI METHODS (CASE m=1)

4. Error Reduction Matrix

In Part I, we will discuss only the case that D, = D and E, = E are
independent of n, so that p, = p and 5, = 5 in the preceding formulas.

In this case, it was shown by Wachspress and Habetler [24, Theorem 1]
that iteration of the Peaceman-Rachford method (3.5)-(3.6) is always
convergent for D = E when D + 1% is positive definite and symmetric
and H + V + Z is positive definite. This is always the case in the Dirichlet
problem of Section 2, if one chooses D = E = pI — 3Z, where p is a posi-
tive number.

We now consider the effect of the Peaceman-Rachford and Douglas-
Rachford methods on the error vector, defined as the difference e, = u,
— u,, between the approzimate solution u, obtained after the nth iteration,
and the ezact solution u. of the vector Eq. (2.6). A straightforward calcu-
lation shows that, for the Peaceman-Rachford method, the effect of a
single iteration of (3.5)-(3.6) is to multiply the error vector e, by the error
reduction matriz T, defined by

To= +Z+4p)7"H = p)(H + Z + pI)™(V — pI). (4.1)

Likewise, the error reduction matrix for the Douglas-Rachford method
(3.7)-(3.8) with all p, = p is given by

W, = (Vi+ p)7'(H1 + pI)7'H V1 + p%) =
[HiVyi+ p(Vi+ Hy) + pH 7' (Hi Vi + o). (4.2)

If one assumes that D, = —3Z + pI = E, also for the generalized
Peaceman-Rachford method (3.3)-(3.4), then from (4.1):
T, = (Vi+ o)™(Hy — pI)(Hy + pI)"* (V1 — oI), (4.3)
and the matrices W, and T, are related by
2W, =1+ T, “4)

But other choices are possible. For example, with D, = pI = E,, the
Douglas-Rachford method is

H 4+ Z 4+ pal)tingyy = k = (V — pul)u, ~ (4.5)
V4 Z 4+ pal)ttnn = (V + 32)un + GZ + pul)Unss- (4.6)
The error reduction matrix for p = p, is therefore
U=V +Z+pD)M{GZ+ p)(H + Z + pD)7el — V)
+V+4E2. @)
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Error reduction matrices for still other ADT methods of the form (3.3)—
(3.4) will be studied in Section 7.

5. Norm Reduction

For fixed D, E, the preceding ADI methods have the form wnn = Mu,
4+ b, where M is a fixed real matrix and b a fixed real vector. In the termi-
nology of Forsythe and Wasow [8], they are stationary iterative methods.
Tor such methods, it is well known [8, p. 218] that the asymptotic rate of
convergence is determined by the spectral radius A(M) of the associated
(error reduction) matrix M. This is defined as the maximum of the magni-
tudes of the eigenvalues of M; thus

AM) = Max; {1 B.1)

Here the subscript I refers to the Ith eigenvalue.

A stationary iterative method is convergent if and only if its spectral
radius is less than one. More generally, the spectral radius a = A(A) is
the greatest number such that the asymptotic error after n iterations, for
n large, is o(8") for any 8> o Hence R= —log A(M) measures the
rapidity of convergence; R is called the asymptotic rate of convergence of A.

In applying the convergence criterion A(M) < 1 to ADI methods, it is
convenient to use the following well-known result.*

Lemma 5.1. For the norm llzl] = (@'Q2)'?, Q any real positive definite
malriz, if, for a fized real matriz M, || Mz £ 4llz|] for all real z, then
AM) £ 7.

This must be combined with another lemma, which expresses the alge-
braic content of a theorem of Wachspress and Habetler® (24, Theorem 1].

Lemua 5.2. Let P and S be positive definite real matrices, with S symmetric.
Then Q = (P — S)(P + S)7'is norm-reducing for real x relative to the norm
[zl = =872V

Proof. For any norm llzl|, the statement that Q is norm-reducing is
equivalent to the statement that ||(S — P)yli* < IS + P)y||? for every
nonzero vector y = (P + 8)7'z. In turn, this is equivalent for the special
Euclidean norm |lzi] = (x8~'2)¥? to the statement that y(P + S)S7!
(P + Sy > yP — S)S-YP — 8)'y for all nonzero y. Expanding the
bilinear terms, canceling, ard dividing by two, this is equivalent to the

+See Householder [1%a], where the general result for complex matrices is given.
¢ The phrase “norm-reducing”’ there refers to Fuclidean norm only in special cases.
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condition that y(P + P’)y’ > 0 for all nonzero y. But this is the hypothesis
that P is positive definite.® »

TaeoreM 5.1. Any stationary ADI process (3.8)—(3.4) with all Dn = D
and all E, = E is convergent, provided = + D + E is symmetric.and positive
definite,and 2H + X+ D — Eand 2V +Z + E — D are positive definite. .

Proof. It suffices to show that A(T) < 1. But since similar matrices have
the same eigenvalues and hence the same spectral radius, the error re-
duction matrix

T=V+Z+E"H-BHE+Z+D(V-D) (2
of (3.3)-(3.4) has the same spectral radius as
T=V+zZ+ETV+I+E

= [(H — EYH + 2+ D)J[(V — D)}V + Z + D)™} (3.3)
By Lemma 5.2, both factors in square brackets reduce the norm [+ D
+ E)-iz]¥? = ||z||, provided Z+ D+ E =28, R = H+3zZ +
(D — E)/2] and Ry = [V + 32 + (E — D)/2] are positive definite, and
2 + D + E is also symmetrie.

6. Application

1t is easy to apply the preceding result to difference equations (2.2)-(2.3)
arising from the Dirichlet problem for the self-adjoint elliptic differential
equation (2.1). In this case, as stated in Section 2, H and V are diagonally
dominated (positive definite) Stieltjes matrices. The same properties hold
afortiori for 91H + GzV + (/%)) if all 0; = 0 and 01 + 0y > 0.

Hence the hypotheses of Theorem 5.1 are fulfilled for D = pl — 6Z,
E = 5I — 6= forany p, 5 > 0 and 6, § with 0 < 6, § < 2. Substituting into '
(3.3)-(3.4), we get the following '

- CoroLLARY 6.1. If p, 5> 0 and 0 < 6, § < 2, then the stationary ADI
method defined with 6’ = 2 — 6 by

(H + 62/2 + pD)tnyy = k — (V + 6Z/2 — pD)ua (6.1)

(V +82/2 + pDtnys = k — (H + 6'2/2 — pDunys, (6.2)

18 convergent.
In fact, it is norm-reducing for the norm defined by

llz||2 = 22+ D + Ey'z = «'[(p + B)I + (6 + 0)Z/2] 2.

6 Note that P is not assumed to be symmetric, but only to be such that
2'(P 4+ P"x > 0 for all real z 5 0. :

7This result, for D — E = 0, is due to Wachspress, Sheldon, and Habetler (see
{28, 24]). For the analogous result on W, see Birkhoff and Varga [1].
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CoroLLARY 6.2. The Douglas-Rachford method is convergent for any fized
p>0.

The proof ‘is immediate from (4.7), with § = § = 1. This result shows
also that, if 8 = §’ = 1 and if the largest? eigenvalue of 7T, is positive, the
rate of convergence is less than half that of T,.

The convergence of the Douglas-Rachford method has not yet been
established for other values of 6, except when HE = ZH and V2 = ZV.

In a connected network ®,, this implies that = = ¢ is a scalar matrix, as
has been shown in [1].

If HZ = ZH and VZ = IV, then the two middle terms of (4.3) arc
permutable, and so we have

To=KH - pD)(V —pD), K= (H+Z+p)(V+Z 40D
This can be compared with the identities
I=KYHV A+ C+p)H+V)+ 22+ p2 + 22
U, = K-HV + Z(H + V) + o= + o + ).
For any «, we therefore have ’
Klal + (1 = )T,] = HV + p* |
+ (o2 + 2ap — p)(H + V) + (202 + 7).

When a = (p + Z)/(p + 2Z), this is just KU,,, proving

Lemma 6.1. If a = (p+ Z)/(p + 22), and if T = oI, then the error
reduction matriz (4.7) is U, = ol 4+ (1 — )T,

CoroLLARY 6.3. If = = oI, then A(U,) < 1.
When Z = oI is a scalar matrix, one can reduce the discussion of station-

ary ADI methods of the form (6.1)-(6.2) to the case § = § = 1, using the
following result.

Lemma 6.2. If Z = oI, then (6.1)-(6.2) are equivalent, for p’ = p + bo
— /2,8 = p+ b0 — /2, to:

(Hi+ o' Dtnpas = bk — (Vi — p'Du, (6.3)
(Vi+ #'Dtpys = k — (Hy — F'Dtnsrpe. (6.4)

With H, = H+2/2 and Vi = V + /2 as in (3.7) and (3.8), the
verification is immediate. Lemma 6.2 is very helpful in choosing good
parameters p and 5, as we will now see.

*Since T, may have complex eigenvalues, the condition is that an eigenvalue of
largest magnitude be positive.
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7. Optimum Parameters

For any given fixed p, 5 > 0 and 6, § satisfying 0 < 6, § < 2, Corollary
6.1 shows that (6.1)-(6.2) is convergent. We now estimate its asymptotic
rate of convergence. By Theorem 5.1, this is R = —In [A(T)] = —In
[A(T)], where as in (5.3) and in (6.1)-(6.2),

T = [(Ho — p)(H; + 1" [(Ve — sD(Ve + o)™, . (7.1)
with the notational convention
= H + 62/2 and Vo=V + 62/2. (7.2)
Both products in square brackets in (7.1) are symmetric matrices, and
hence have real eigenvalues, if 8 = § or if T = oI is a scalar matrix.

For simplicity, we now assume 6 = §; we let a be the least and b the
largest eigenvalue of Hy; we let « be the least and 8 the largest eigenvalue
of Vy; and we restrict 6 so that 0 < ¢ £ band 0 < @ £ 8. Then the first
product in square brackets in (7.1) reduces the Euclidean norm by a factor
SuPasush | (8 — p)/(u + 5)], or less, and the second product reduces it by

a factor less than or equal to supe<, <5 |(v — 5)/(» + p)|. Hence T reduces
the Euclidean norm by a factor

N (= p)v — p) '
b; ; = o ———r 7.3
L e T =
or less. By Lemma 5.1, we conclude
TurorEM 7.1. Let a, b and a, B be the least and greatest eigenvalues of Hy
and Vy, respectively. Then, for all p, 5, A(T) < Y(a, b; «, B; P p).

It will be shown in Appendix A that there exist optimum parameters:
values p* and 5* of p and 5 such that

¥(a, b; o, B; p*, 5*) = Min,; ¥(a, b; o, 8; p, ). (74)
The following corollary is immediate.

CoroLLARY 7.1. Under the hypotheses of Theorem 2, with 6 = 8, the
spectral radius of the generalized Peaceman-Rachford method (6.1)—(6.2) with
optimum parameters is at most

G(a, b; o, f) = Min,, ¥(a, b; a, 8; p, ). (1.5)

In Appendix A, we will discuss the problem of obtaining such optimum
parameters p* and 5* But for the present, we will confine our attention
to the simpler problem of optimizing p subject to the constraint p = p:
that is, to the problem of deterxmmng a single optvmum rho. We have

CoroLrary 7.2. In Corollary 7.1, let p = j. Let a, b and a, B be the least
and greatest eigenvalues of Hy and Vi, respectively. Then, for all p,
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A(T,) £ su — P (L= Pl

(") pﬂé‘.‘ézu-i—p v+ p

The right member of (7.6) defines a function of the eigenvalue bounds
and p which is so important that we shall denote it by a special symbol.

DerINtTION. The functions A(p) end F(a, b a, f) are deﬁned for given
O<a§band0<aSB,by

(7.6)

- p—pl |r—0p

Mp) = maxeguzs |2 P2 = gl bia Bi0) (D)

and . V
F(arb: a, B) = mill,,>o 4’(0': b,a,ﬁ,p) (7-8) )

Note that F is a minimaz of a family of rational functions; its existence
will be established in Appendix A. The following restatement of the key
inequality (7.6) follows from the definition of F.

COROLLARY 7.3. In Theorem 7.1, for the optimum p = § = p*, we have the
asymptotic rate of convergence B* whzch satisfies

R* = —InA(Tp) = —In F(a, b; o, 8). (7.9)

This corollary shows plainly that one can break down the problem of
approximating p, and bounding A, into two parts: estimating the least and
greatest eigenvalues of Hy and Vi, and knowing the function F. We will
discuss the second of these questions first, referring to Appendix A for
details.

8. The Funcﬁoﬁ F
Some properties of the function F follow almost immediately from its
definition by (7.8).

Lemuma 8.1. If ¢/ S a,b SV, £ and B S B, then F(a, b; a, f) £
F(a’ b; o, B). (Monotonicity Principle)

" For, the range of values of ¢ and 7 in (7.7) is enlarged, independently of
p. Hence, for all p, ‘

X(a,b; e, B;0) £ X, V5,85 p)-
From this inequality and (7.8), Lemma 8.1 follows immediately.
Lemya 8.2. Forall ¢ > 0, ’
F(ca, cb; ce; cf) = F(a, b; a, B). (8.1)

For, the substitutions a — ca, b —» ab, a—ca, -+ , 8 — c8 leave the
definition of F unaffected.
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By the symmetry of the definition, we also have
F(a7 b; e, B) = F(ay B;a,b), (8.2)
and likewise A(a, b; &, B8; p) = Xa, B; a, b; p) for all p.
It is easy to show that 0 < X(p) < 1forall p > 0, and hence that F < 1.
The exact value of F can be computed [keeping the symmetry (8.2) in

mind] using Appendix A. Theorem A.1 asserts that if ab < of, then F is
given by (A.10) as

. [{b— Vab\ (8 — Vab (V“Jé-«;)(ﬁ—«/aa)}

.o b 7 8.3
F Mm{(b'i—\/a'?;)(ﬁ-;-\/ﬁ) VeB +a/ \B + Ve (83)
with p* = +/ab in the first case, and p* = +/aB in the second case. Note
that since 8 = VaB = Vab and Vap Z Vab 2 a, all factors in (8.3) are
positive.

Using the preceding formula in Corollary 7.3, we obtain the following
result.

TaEoREM 8.1. By choosing p* as Vab or as vV aB, we can make the asympto-
tic rate of convergence of the Peaceman-Rachford method (6.1)-(6.2) at least
—In F, where F is given by (8.3), with a, b and «, B the least and greatest
eigenvalues of Hy and Vg (or vice-versa, whichever makes ab < of). -

9. Helmholiz Equation in a Rectangle
- As an example, consider the modified Helmholtz equation Gou — V2u = 8
in the rectangle ®: 0 < z < X,0 < y < Y. This is the specialcase A = B
=1, @ = Gy 2 0 of (2.1), to which one can reduce any elliptic DE (2.1)
with constant coefficients by elementary transformations.
In this example, the Dirichlet problem has a known basis of orthogonal
eigenfunctions
' : Uge = sin (rpz/a) sin (wqy/b). 9.1)
On the set ®; of interior mesh-points of any subdivision of ® into squares of
side h = X/M = Y/N, these ugoforp=1,..., M —landg=1,...,
N — 1 are also a basis of orthogonal eigenvectors for the three operators
H, V, T defined in Section 2. In fact,

Hugpq = ppqlipg, Vipg = vpqllpg, Zlpg = OUpg, (9.2)

where ppq = 4 sin(rp/2M), vy = 4 sin*(xq/2N), ¢ = h*G,.

These eigenvalues p,,, vy, range from small positive numbers pxy = 4
sin?(wr/2M), vy = 4 sin¥(x/2N) to 4 — pu, 4 — v». More specifically, we
have the inequalities

4 sin? (n/2M) < ppe S 4 cos? (x/2M),- (9.3)
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4 sin? (x/2N) £ vpe S 4 cos? (v/2N). 9.4)

Since the three matrices, H, V, and Z have a common set of eigenvectors
(9.1), these are also eigenvectors for the error reduction matrices T,, W,
and U, defined by Egs. (4.3), (4.2), and (4.7), and their generalizations to
arbitrary 6. The associated eigenvalues, which express the factor by which
the u,,~component of the error function is multiplied, are therefore given by

_(re= e O\ (v —p O\ .
)\.pq(Tp)’(“:+p+08><vq+p+gs) 3—-h2Go, (9.5)

_ (e £ 9g + ) + ps + p?
)‘PQ(UP) - (u'p + P _;1__ S)(Vq + p + S) (96)

and, by (4.4),
Moad(Wo) = [1 4+ 2(S,)1/2, 9.7

where S, denotes the special case of T, obtained by the choice § = §' = 1,
suggested by Sheldon and Wachspress.

Using these general results, it is evident from (9.5) that the Peaceman-
Rachford method is convergent for the Helmholtz equation in the rectangle
provided p > (1 — 6)s/2; if 6 = 1, it is convergent if p > 0. Hence, by
(9.7), the Douglas-Rachford method with 8 = 1 is convergent (in this
special case) provided p > 0. It is also convergent, by (9.5), if § = 2.

Foro0 =6 =1,T, =8, one can also compute the exact optimum rho
and corresponding most rapid asymptotic rate of convergence for the
Helmholtz equation in a rectangle. By formula (9.5), the spectral radius is

_ (ko + 0/2) = p| |(g+ 0/2) — p
AT = masa o/ F ol e+ a/2) + o
For any fixed p, the two factors inside the absolute value signs are mono-
tone, and so the maximum absolute value of each is assumed for one of the
extreme values of u, and v, numbers which are given by (9.3) and (9.4)
respectively.
As a consequence, we obtain

AT,) = ¢(a, b; o, B; p), (9.9)

wherea = pyy+0/2,)b=4 —py +0/2, a =vy+ /2, 8=4 —vy + 0.
Note thata + b = a + 8 = 4 + o, whence Corollary A.1 of Appendix A is
applicable. It yields the following result, since ab < «8if M = N.

9.8)

TureoreM 9.1. For the Helmholtz equation in a rectangle, with M = N, the
optimum p for the Peaceman-Rachford method with § = ¢ = 1 {s

p* = VB = [(4 sin? 5’% + g) (4 cos? éfﬁ + g-)]m (9.10)
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The corresponding spectral radius is

- =Z + 4 sin? ==
AT = (”/"‘73 - “) (’3 - ‘/“6)} ? M e
Vo +a/\s+ Vas/ | _ 5 + 4 cos? 5%
2]

In the casc ¢ = 0 (of the Laplace equation), the preceding formulas
simplify. Then p* = 2sin (r/N), and the associated spectral radius is

_ [sin (z/N) — 2 sin? (x/2M) cos (7/2N) — sin (x/2N)
AT,) = [sin (x/N) F 2 sin® (r/ZM)] : [cos (x/2N) + sin (ar/zN)]‘

9.12)

10. Monotonicity Principle

Tor most regions and most, difference equations (i.e., for most choices of
H and V), the eigenvalues p, of H and », of V cannot be varied inde-
pendently to produce an eigenvalue of T,. As a result, though the spectral
radius is bounded above by the right side of (9.11) for the Helmholtz
equation with Dirichlet-type boundary conditions, on any rectangular mesh
®(h, k) in which no connected row has more than M + 1 and no column
more than N + 1 (N £ M) consecutive points, one does not know that p*
as given by (9.10) is really the optémum rho.

In such cases (for arbitrary self-adjoint elliptic difference equations with
Dirichlet-type boundary conditions), one can still determine good values of
rho by relating the given boundary value problem to the Helmholtz
equation in a rectangle, and applying Weyl’s monotonicity principle® [25a].

TueoreM 10.1. Let A and B be two real n X n symmetric matrices, with
eigenvalues on S ... £ an and B1 £ ... £ B, respectively. Let the eigen-
values of C = A+ Bbeyi < ... S v, Then ;i + B S v S ar + B of
i+j—12ksl4+m—n

This principle has many immediate corollaries for the operators H, V,
H + 62, V + 62, and so on. For instance, it shows that if omia is the
smallest eigenvalue of =, then the eigenvalues of H + 6Z exceed those of
H (arranged in descending order) by at least fomin. Likewise, it shows that
the eigenvalues of H and V increase when A (z, y) and C(z, y) are increased
in (2.1), since one adds a diagonally dominated Stieltjes matrix to each, and
such matrices are symmetric and positive definite.°

Finally, it shows that if the spectral radius (= Euclidean norm) of B is

® We omit the proof.
10 In general, only nonnegative deﬁmte but, in the present case, they are positive
definite if A(z, ) and C(z, y) are increased at all points.
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at most 8, then the eigenvalues of 4 + B = C differ from those of A
arranged in the same order by at most 8.

11. Crude Upper Bound

Using the preceding observations, one can easily obtain a crude upper
bound®! for Ay = A(T ) and in fact a “good’” rho p; such that X{p;) is less
than unity by an appreciable amount. One need only combine Theorem
8.1 with the monotonicity principles of Section 10. For simplicity, we
consider only the case of constant , k.

First, one observes that the matrices H and V are changed by positive
semidefinite matrices when A(x, y) and C(z, y) are increased in (2.1), and
also when I is increased. It follows by Theorem 10.1 that if A(z, y) and
C(z, y) are replaced at all mesh-points by their maximum and minimum
values 4, T and 4, C, respectively, then the spectrum is shifted up resp.
down, as regards all spectral values.

Second, if the network ®(h, k) is embedded in a larger (rectangular)
network & by any extension of the coefficient-functions A (z, y) and B(z, ),
then the least eigenvalue is decreased (or left unchanged) and the upper one
increased (or left unchanged). This is because, on ®, the effect of H and V
is that of a matrix which is a principal minor of the corresponding matrices
H and V on ®&. The least and greatest eigenvalues amin and omsx of H have
eigenfunctions », w with support ®& such that vHv' = vHv' = amav’ and
wHw' = wHw = am.ov’, respectively. Hence

&min = minn;tﬂ[vﬁvl/vv,] £ Omin £ Gpax S ma'xw;éo[wgwl/wwi] = Emax;

and likewise for V.
Combining the two preceding observations, we obtain the following
result.

TrEoREM 11.1 Suppose that & = ®(h, k) can be embedded in a rectangle
with side of length Mh and Nk parallel to the axes. Then

Ao £ F(a,b; a,8), (11.1)
where
. T 3 T 3
a = 44 sin? sty b =44 cos’ 5or + 3 (11.2)

a = 4C sin? =% + 5 8 = 4T cos? * (113)
2N 2

T 3

oM T2

Cororrary 11.1. If A(z, y) = C(z,y) and M = N in Theorem 11.1, then
x(pl) —g F(a'y b; &, 5)3 where = \/ab‘

11 This result was obtained for the Laplace equation in Varga [17].
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Proof. In this case, a + b = a + 8; hence the conclusion follows. If
A # C, however, in general ¢ + b # o + 8.

12. Eigenvalues of H,V

One can obtain arbitrarily close approximations to the minimum eigen-
values g (and v;) of H (and V). For any nonzero vector z, the Rayleigh
quotient satisfies 2’Hz/x'z 2 m; if y = Hz is any positive vector, then
min,[(Hz):/z:] £ w. Wachspress [25] has invented an iterative process,
based on the Stieltjes property of H and the inverse power method, for
computing p; with arbitrary accuracy. Similar remarks apply to »:.

The less crucial maximum eigenvalues of H and V are bounded above
by Gerschgorin’s Circle Theorem [19], often with sufficient accuracy.

For small mesh-length h, accurate asymptotic bounds can be found using
the fact that on each connected row (resp. column) of G, H (resp. V)
defines a discrete Sturm-Liouville system. Such discrete Sturm-Liouville
systems have been thoroughly studied in the literature.’'® The least eigen-
value of the matrix H, for small fixed h, is approximately A? times the
lowest eigenvalue of the corresponding confinuous Sturm-Liouville system,
a fact which gives a convenient asymptotic expression for u (k). The error
in this bound is small for A small.!b

The largest eigenvalue corresponds to an eigenvector, whose components
oscillate in sign, and is about equal to 44, the maximum being taken over
®. The error is ordinarily 0(h), but is 0(h?) if A = A(y).

Similar estimates can be obtained for V. But the fact that the extreme
eigenvalues in question can be accurately estimated does not imply that
p* or A(T,) can be accurately estimated. As has already been observed in
Section 7, p» and », cannot be varied independently execept in special cases
(to be treated in Chapter II).

s See [9], Chapter X; also [10a].

1 See [12b].
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PART Il: COMMUTATIVE CASE

13. introduction

It was proved in Birkhoff and Varga [1] that, for m > 1, the analysis
of the asymptotic convergence rates discussed in Douglas and Rachford [7]
was applicable to the self-adjoint elliptic difference equations of Section 1
in a connected plane network ®; if and only if the symmetric matrices H,
V, and 2 of (2.6) were commutative—that is, if and only if

HV = VH, H:z=z3H, Vz=2zV. (13.1)

In this chapter we study the extension of this observation to matrices
generally. ,

Accordingly, we consider the vector equation
H+V+2Du=k (13.2)
where T is a nonnegative diagonal matrix and where H + V + Z is non-
singular. As in [1] we make the following assumptions:
HV = VH (13.3)
2 = ¢l (o a nonnegative constant).!? (13.4)

We do not assume that H or V is symmetric. Instead, we make the follow-
ing weaker assumption:

H and V are similar to nonnegative diagonal matrices. (13.5)
Conditions (13.3)-(13.5) are related to (13.1) through the following:

Treorem 13.1. [ f H and V are positive definite symmetric matrices, and
if H+ V is irreducible, then conditions (13.3)-(13.5) are equivalent to the
commutativity condition (138.1).

The importance of conditions (13.3)-(13.5) for the study of ADI methods
depends on the following theorem of Frobenius:™

TueoreM 13.2. The matrices H and V have a common basts of etgenvectors
if and only if HV = VH and H and V are similar to diagonal matrices.

From this it follows that H and V have a common basis of eigenvectors
and nonnegative eigenvalues if and only if (13.3) and (13.5) hold. If
(13.3)-(13.5) hold, then for any nonnegative constants 6, and 6; the matrices

2 We remark that by a slight generalization of Lemma 2 of ref. [1] one can show that
if H+ V is irreducible then (13.4) is equivalent to the conditions HZ = ZV and
VI =2zV.

12 See Fxereisc 1 in Thrall and Tornheim [76¢], p. 190.
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H -+ 62 and V 4 6,2 also have a common basis of eigenvectors and
nonnegative eigenvalues.

In Section 14 we exhibit a class of problems involving elliptic partial
differential equations which lead to systems of linear algebraic equations
of the form (13.2) where the set of matrices H, V, and Z satisfy (13.3)-
(13.5). In Sections 15-17 we describe how the assumption of conditions
(13.3)-(13.5) leads to effective methods for choosing iteration parameters
and for accelerating the convergence of the Peaceman-Rachford and the
Douglas-Rachford methods. The application to the Helmholtz equation is
given in Section 18.

14. Problems Leading to Commutative Matrices

It has already been shown in Section 9 that the Dirichlet problem for the
modified Helmholtz equation in a rectangle leads to matrices H and V
which have a common basis of eigenvectors and positive eigenvalues. It
then follows from the remark after Theorem 13.2 that H and V satisfy
(13.3) and (13.5). Since = = oI, with ¢ 2 0, (13.4) holds also.

It was shown in Ref. [1] that if HV = VH, where the matrices H and V*
arise from a differential equation of the form (2.1) and from the difference
approximations (2.2)—(2.3), then the region is a rectangle, and the differ-
ential equation is the modified Helmholtz equation. However, as observed.
by Wachspress,'* one can obtain matrices H, V, and T satisfying (13.3)~
(13.5) from more general differential equations of the form

KE@R@u - P g (B3) - B0 2 (R0 %) - 5@y s

in the rectangle ®: 0 £z £ X,0 < y £ Y. The functions E;(z), Fi(y),
E,(z), Fa(y) are assumed to be continuous and positive in ®, and K is a
nonnegative constant. Evidently (14.1) is a special case of (2.1) with
Az, y) = Ex(@)Fi(y), C(z,y) = Exx)Fe(y), and G(z,y) = KEy(z)F:(y).

A difference equation leading to commutative matrices H, V,and 2 is
obtained as follows: First, choose mesh sizes h and k such that X/h and
Y /k are integers. Next divide (14.1) by E.(z)Fi(y) obtaining

1 i 1 o\ _ _S@y)
K= 5@ o (’” @ ) o) ay( @) )—Ez(x)Fx(Zl) (142)

Replacing —hkd[E,du/dz]/dzx and —hkd[F.0u/ dy]/dy by the expressions!®
given in (2.2) and (2.3), respectively, and substituting in (14.2) we obtain

H+V + Zulz,y) = tz,vy) (14.3)

4 Private communication and Ref. [24].
15 If one were to use the difference equation of Section 2, one would obtain matrices
H and V which, though symmetric, would not in general commute.
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where

Hu(z, 3) = Ao@u(z, 1) — A@ule + b 1) — A@ule — ), (144
Vu(z, ) = Coly)ulz, v) — C@)ulz, y + k) — C@)ulz,y — k), (14.5)
T = hkK, (14.6)

and t(z, ¥) = hkS(z, 1)/E:@@)Fi(y), A:(@) = kEx(z + (h/2))/hEx(2),
Ca(y) = hF:(y + (k/2))/kF1(y), ete.
We now prove

TueoreM 14.1. Let H, V, and 2 be the mairices arising from the solution
of the Dirichlet problem in a rectangle for the differential equation (14.2) and
using the difference equation (14.3). Then H, V, and = satisfy conditions
(13.3)-(18.5).1° v

Proof. We first prove

Lessta 14.2. Under the conditions of Theorem 14.1, conditions (13.4) and
(18.5) hold whether or not the region is a rectangle.

Proof. Because of (14.6) the matrix T satisfies (13.4). To show that H
and V satisfy (13.5) we observe that the matrices H® = FH and
V® = FV, where F is a diagonal matrix with nonnegative diagonal ele-
ments corresponding to the function F(z, y) = Eu(z)Fi(y), are the same as
the matrices which one obtains by using the difference approxin{xéﬁidns
(2.2) and (2.3) in (14.2). But in Section 2 it was shown that H® and V®
are symmetric and positive definite. It then follows that Hp =
FirHF-V2 = F-12H®F-12 gnd Ve = FUVF-12 = F2YOF-U2 are
symmetric. Moreover, since for any nonzero vector v we have (Hpv,v) =
(F-12HOF-1%y y) = (HSOF-U%, F-1%) > 0, since F-Y% # 0, it follows
that Hp is positive definite. Similarly, V is positive definite. Hence Hp
and Vr, and consequently H and V, are similar to diagonal matrices with
positive diagonal elements. A ,

To complete the proof of Theorem 14.1, it remains to show that H and
V commute. This is equivalent to showing that AV = VH, where H and
¥ are difference operators which correspond to H and V, respectively.
Actually, &I and ¥ are simply the operators H and V' defined by (14.4) and
(14.5) but restricted to functions defined only on ®&(h, k). In order to avoid
the necessity of writing special formulas for Hu and Vu for points adjacent
to the boundary, where certain terms in (14.4) and (14.5) would be omitted,
we write

Hu(z, y) = Ax)ulz, y) — Aulz, y)ulz + k, 1)

18 Theorem 14.1 can be generalized to include problems involving mixed boundary
conditions and nonuniform mesh sizes, as shown in Appendix C.
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Vu(z, y) = Co@)ulz, y) — Cule, Yyulz, y + k)
- 04(17, y)u(:c, vy - k)y (14'8)
where
Az, y) = A@T@ + b y), A, y) = A@T(E - hy), (14.9)
Colz, y) = Cy)T(z,y + k), Cilzr,y) = Ci@)T(z,y — k) (14.10)

and where I'(z, y) = 1if (z, y) isin ®(h, k) and T'(z, y) = 0 otherwise. The
use of the “projection operators” H and V is especially convenient for the
computation of produects of operators. We now prove

Lemma 14.3. Let H and V be difference operators defined over the rectan-
gular network" ®(h, k) by (14.7) and (14.8). Then H and V commute.

Proof. For any u(z,y) defined on ®(h, k) we seek to show that
AVu(z,y) = VAulz, y) for all (z, y) in ®(h, k). Evidently both AVu(z, y)
and VHu(z, y) are linear combinations of u(z, y) and other values of  in
®(h, k). The coefficient of u(z + h, y) for AVu(z, y) is —4i(z, y)Coly) =
—A(z)Co(y)T (z + h, y) which is equal to the coefficient of u(z + h, y)
for VHu(z,y). Moreover, the coefficients of wu(z + h,y+ k) are

Ai@)Coy)T(x + h, y)T(x + h,y + k)
for AVu(z, y) and

A@)CYT (@ + by + BTz, y + k)

for VHu(z, y). If (x4 h,y + k) does not belong to. ®(h, k) both coeffi-
cients are zero. Otherwise, since the region is rectangular and since (z, y)
isin ®(k, k) it follows that both (z + h, y) and (z, y + k) belong to ®(#k, k).
Thus the two coefficients are equal. Similar arguments hold for the coeffi-
cients of u(z — h, y), ulz, y + k), ete., and the lemma is proved.

The proof of Theorem 14.1 is now complete.

We remark that the matrices Hr and Vr considered in Lemma 14.2
commute provided H and V commute. For problems to be solved on large
automatic computing machines it may be advantageous to use symmetric
matrices because of the savings in storage. The operators Hr and Vp corre-
sponding to the matrices Hr and Vy are given by (14.4) and (14.5) where

Au@) = (Er[z + (h/2)] + Ei[z — (h/2)])/Ex(2),
Ai(@) = Ei(z + (h/2))/V Ex(z)Ee(z + h), et
Theorem 14.1 shows that, with a self-adjoint differential equation of the
form (2.1), for there to exist a function P(z, y) such that the matrices H,

V, and 2 satisfy (13.3)-(13.5), it is sufficient that the differential equation
have the form (14.1). Here H, V, and Z arise from the use of the difference

17 A petwork ®R(h, k) is “rectangular” if it consists of the points (ze + ik, yo + j&),
wheret =0,1,...,pandj=0,1,...,1, forsomex, %, h > 0and & > 0.
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approximations (2.2) and (2.3) for the differential equation obtained by
‘multiplying both sides of (2.1) by P(z, y) = 1/E:(z) Fi(y). In Appendix D
it is shown that the condition is also necessary. It is natural to ask whether
a similar necessary condition might hold for elliptic equations more gen-
erally. In this vein, Heller [12] has shown that for the equation

%u *u
A(xy y) 'a—;; + C(x) y)

ou Ju

+ Gz, yu = Sz, y) (14.17)

it is sufficient that A and D depend on z, that C and E depend on y, and G
is a constant. However, these conditions are not necessary,' as the follow-
ing example shows.

Ezample. Consider the problem of solving the equation

3%, d%u 2 du 2 du
T ay2+x+yax+x+yay”

in the unit square 0 < z < 1, 0 < y < 1 with prescribed values on the
boundary of the square. Writing the difference operators H and V in the
form (14.4)—(14.5) we have Aq(z, %) = Colz, v) = 2, Au(z,¥) = Colx, y) =
@+y+ e+t and A,y =Cile,y) = @ +y — W+
By direct computation one can show that the operators A and V commute.
Hence so do H and V. To show that the matrices H and V satisfy (13.5)
we observe that H is a tridiagonal matrix whose diagonal elements are
positive and whose elements on the adjacent diagonals are negative.
Replacing the nonzero off-diagonal elements a:; by Vai,a,: we get a
symmetric matrix which is similar to the original matrix. Thus H has real
eigenvalues and is similar to a diagonal matrix. Because of weak diagonal
dominance H has nonnegative eigenvalues and is similar to a, nonnegative
diagonal matrix. Since the same is true of ¥, condition (13.5) holds.

We remark that one could make (14.18) self-adjoint by multiplying both
sides by — (xz + y)? obtaining

(14.18)

a du ad du
“2(etird) - (erwf) =0 Ut

Since this equation is not of the form (14.1), it follows from the necessary
condition for self-adjoint equations stated above that the matrices and
V corresponding to (14.19) based on the difference approzimations (2.2) and
(2.3) will not commute even if one first multiplies both sides of (14.19) by
any nonnegative function. Thus even though (14.19) and (14.18) are equiv-

1 This contradicts a statement of Heller [12, p. 162]. Even the weaker conditions
that there exists a nonvanishing function P such that PA and PD depend only on z,
that PC and PE depend only on y, and that PG is constant are not necessary.
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alent equations, by the use of one difference equation we obtain matrices
H, V, and T which satisfy (13.3)-(13.5) while with the other difference
equation we do not. '

The question of how general the differential equations of the form (14.17)
can be in order for the associated m. ‘rices H, V, and X to satisfy (13.3)-
(13.5) remains to be studied. '

15. The Peaceman-Rachford Method

We now consider the Peaceman-Rachford method for solving (13.2)
defined by
(HI + PnI)un+l,'2 =k — (VI - PnI)un } (15 1)
(Vi+ pal)tnis = k — (Hi = pal)Uniap ’
where H, = H + 13, Vi = V + }=. Equation (15.1) is derived from
(6.3)—(6.4) by replacing p’ and 5’ by pa. If the matrices H, V, and 2= satisfy
(13.3)-(13.5), then there exists a common basis of eigenvectors for H, =
H + (¢/2)I and for Vy = V + (¢/2)I. Moreover, if v is an eigenvector of
such a basis, then
Hwp = v, Vw = w, (15.2)
where » and » are suitable eigenvalues of H; and V; respectively. Hence the
eigenvalues of T, are all of the form (u — p)(v — p) /(u+ p)(» + p), where

T, = (Vi + pl)"'(Hy — pI)(Hy + p)7' (V1 = pI). (15.3) -
(See (4.1).) Moreover,
_ T e —p) =)
M) = LGy e T o 154

is an eigenvalue of II/*; T,. Evidently all eigenvalues of II{. T, are given
by (15.4) for some eigenvalues u of H; and » of V1. Thus we have

8 T | =) = p)
<

s(f ) < me 01 00020 (155)
where » and » range over all eigenvalues of Hy and V1, respectively. In
cases such as that of Section 14, where the eigenvalues of H; and V; of a
common basis of eigenvectors include all pairs (u;, »;) of eigenvalues u; of
H, and »; of V1, one has equality.

In actual practice there are usually so many eigenvalues of Hi and V
that it is not practical to consider them individually even when they are
known. It is, however, often practical to estimate upper and lower bounds
for the eigenvalues of Hy and V;. Thus, having estimated a, b, o, and 8 such
thata £ p £ b, @ £ v < B one seeks to minimize

_ YTl (e (e
¥n(@,b, @, B, p) soegh s1=11 (u + ps> (V + PE), (15.6)

aZvsp
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where p = (p1, ps,. . ., pn). Frequently, it is convenient to use the
inequality

¥u(a, b, &, 8, p) < [®x(3, b, p)]? (15.7)
where @ = Min (a, «), 5 = Max (b, 8), and where

&,(a, b, p) = max
@5 p) osvsbgw‘r-f-p.

The problems of mlmmlzmg ¥, and $, are equivalent to the problems of
determining the minimax of the rational functions involved over certain
domains. For the case m = 1 the problem of minimizing ¥, is solved in
Appendix A. The problem of minimizing ®,, for m = 2, r an integer, has
been solved by Wachspress [25]. The solution is sketched in Appendix B,
which also contains a general discussion of the problem of minimizing ®n.

(15.8)

16. Methods for Selecting lteration Parameters
for the Peaceman-Rachford Method

We now consider two choices of the iteration parameters for the
Peaceman-Rachford method defined by (15.1). One choice of parameters
was presented by Peaceman and Rachford in [16]. The other was given
by Wachspress [23, 24]. Though neither choice of parameters is optimum,
nevertheless, their use makes the Peaceman-Rachford method effective.

We choose @ and b so that for all eigenvalues p of H,y and v of V; we have
a = v =band welet

¢ = (16.1)

e

By (15.5), (15.6), and (15.7) the spectral radius of IIf%; T,,satisfies®

A (II T) < [®a(a, b, p)] (16.2)
i=1
where, by (15.8), ®..(a, b, p} is given by

®n(a, b, p) = r ”‘i~ 16.3
(@bp) = max 11| = 163)
The parameters of Peaceman and Rachford are
@i—1)/2m
pi7 = (%) s t=12...,m, (16.4)

and those of Wachspress are

13 The exponent 2 at the end of (16.2) was omitted in [16] and in Young and Ehrlich
[29].
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)\ 6=1/(m=1) )
pﬁm“b(g) , mz21=12...,m (16.5)

We first consider the average rate of convergence R for the Peaceman-
Rachford parameters when m is held fixed. We define R.. for any choice of
parameters by

Rum= —X1og (A 11 T,”)). (16.6)
m i=1 )

Moreover, by (16.2) we have
B2 B = —2 log 8u(e, b, p). (16.7)

TrEOREM 16.1. For fized m if the iteration paramelers are given by (16.4)
then

A (II]_ Tm) < [®mla, b, p)]* < 8, (16.8)
where .
5= T, (16.9)
and
z = ¢l (16.10)
Moreover, as ¢ — 0
RaZ Bn= }nz + 0(22). (16.11)

Proof. The inequality (16.8) is proved in Appendix B, (B.14). To prove
(16.11) we first note that by (16.7), (16.8), and (16.9)

2 -4
Rn. 2z —mlog 5 = m? + 0(2%). (16.12)
On the other hand, by (16.3), (16.4), and (16.7) we have

2 1—2 4
Bn < ———10g1’1b+p — ol Il 5 = 2+ 06, (18.13)

Equation (16.11) follows from (16.12) and (16.13).
We next seek to optimize the choice of m for a given ¢. We estimate the
average rate of convergence from (16.6) and (16.8) as

2
o) = ——~log3, (16.14)

where & is given by (16.9). We note thay by (16.7) and (16.8),
RazRaz k™

* Evidently for m = 1, R, is just the asymptotlc rate of convergence as deﬁned in
Section 5.
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Following a method of Douglas [4] we study the behavior of R asa
function of m, where m is assumed to be a continuous variable. Because the
right member of (16.9) is a monotone-decreasing function of m, by (16.10),
a one-to-one correspondence between m and § is defined. Solving (16.9) and
(16.10) for m we obtain

1 log ¢

™= 2log [0 — /(L + 9] (1615
Substituting in (16.14) we obtain
B = _4logdlog [(1 =8/ 48] (16.16)

log ¢

Equating to zero the first derivative of the above expression with respect to
§ we obtain :

1-—8 o 1—3

2 %Bits

= §log é. (16.17)
It is easy. to prove
Lemma 16.2. The function R defined by (16.16) is mazimized when

5= V2 —1= 0414, (16.18)
and the corresponding value of B is
4(log ) . 3.11
® = .
R4 Tog ¢ Tog ¢ (16.19)

Of course, the value § = 0.414 will in general correspond to a nonintegral
value of m, and the actual value of E{’ would in general be less than indi-
cated by (16.19). In actual practice one would use the following procedure:

(1) Estimate a and b, and compute ¢ = a/b.

(2) Find the smallest integer m such that

Gy < e, (16.20)

where 5 = V2 — 1 = 0.414.
(3) Determine the iteration parameters by (16.4).
(4) The estimated average rate of convergence is given by

2
& _ L
R¢ log 5,

where
[ — cl/?m

=1 + oliem

For the above proéedure we prove

)

TreoreM 16.3. If for given a and b the number of iteration parameters m
is chosen as the smallest integer satisfying (16.20), and if the iteration param-
eters are chosen by (16.4), then for any 1 > 0 and for sufficiently small ¢
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4(log )2 —n . 3.11 — ¢

R.zR.2 loge “log e (16.21)
where § = V2 — 1 = 0.414. Moreover,
Lim {Bn(—log 0)} = 4(log §)* = 3.1, (16.22)

c—0

and
I_:i-rgl {Bu(—logc)} <4|logd| {{logs|+ 8} = 4.57. (16.23)

Proof. If 5 < c thenz 2 & by (16.10). Consequently, by (16.7), (16.8),
and (16.9), we have

2 2 1 -2z 2 1—38
R - 2 > _£
En. 2 log & log T, 2 log 7 ;

2 = 2 <
- 2 = — (m—1}/m
m log & m—1 log &
But since 52" > ¢ we have

R.(—=logc) = 4( ) (log §)2,

and, since m — «© as ¢ — 0, (16.22) follows. By (16.7), the inequality
(16.21) holds. On the other hand, by (16.13) we have

1 — 221 2 1 -2z 2 vy /1 — 22+t
En l°gH1+z2H=”Zzl°g<1+z)“;zg(1+z“—x)
Usmg the formula
—(1/2log (1 —2)/QA +2)) =z + 23/3 + 25/5 +.
we have
—lo II( 2"’) <23 G-2ri=—2, (1624
g 14221 = %5 1-2* '
and hence ,
2 1—2z 4 z?
Bn = —~log (1 T z) Yo d— (16.25)

But by (16.20) we have m = (1/2)(log ¢/log §), and
B.(—logc) <4logblog< T )-}—8llog5[(1 ¢ (16.26)
Because of (16.20) and (16.10) it follows that '

Lim z = Lim ¢V = §,
=0 0

Consequently (16.23) holds, and the proof of Theorem 16.3 is complete.
For a given m, we have by (16.7) and (16.25)



ALTERNATING DIRECTION IMPLICIT METHODS 215
CoroLLARY. If the p; are chosen by (16.4), then

®.(a, b, p) = (1 = )exp[ —23/(1 — 2)7] = de-A-2, (16.27)

We now consider the parameters of Wachspress given by (16.5). For the
case of fixed m we prove

TueoreM 16.4. For given m, if the iteration parameters are given by (16.5)
then

A (H T) < [®nla, b, p)]? £ & (16.28)
1= ;
where
_ (1L—=uV
¢ (1 + y) ! (16.29)
and
y = clm—n, (16.30)
Moreover, as ¢ — 0,
Rn2ERn.= %y + 0(y?). (16.31)

Proof. The inequality (16.28) is proved in Appendix B, (B.16). To prove
(16.31) we first note that, by (16.7), (16.28), and (16.29)

2 4
E.= ~m log e = mY + 0(y?). (16.32)
On the other hand, by (16.3), (16.5), and (16.7) we have

_g_ by )
Rn m1 H by + p.
and hence, by (16.5),

1 21— 4
Rm = ‘“"" log (1—._:%) - IOg H (1 + y21—3) = ;,; Y+ 0(?!2) (1634)

From this (16.31) follows, and the proof of Theorem 16.3 is complete.
We now look for an m which will maximize the average convergence rate
as estimated by

A

(16.33)

B = ——%log 3 (16.35)

where ¢ is given’ by (16.29). We note that by (16.7) and (16.28)
R,z R.z RY.

Asin the case of the Peaceman-Rachford parameters we consider Y as
a function of ¢, where by (16.29) and (16.30), e and m are related by (16.29).
Because ¢ is a monotone-decreasing function of m, a one-to-one correspond-
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ence between m and e is defined. If we were to replace m by m — 1
in (16.35), then we would have, by (16.29) and (16.30),

fon - _8log Velog [(1 = V&/(1 + V)],
" loge

By Lemma 16.2 the optimum value of Ve would be V2 — 1 = 0.414 and
g, the optimum of ¢, would be

=5 = (V2 -1)=3-2V2= 0172 (16.37)
Of course the value ¢ = 0.172 will be inaccurate not only because of the
replacement of m by (m — 1) in (16.35) but also because the value of m
corresponding to & by (16.29)—(16.30) will not be an integer. In actual
practice one would use the following procedure:
(1) Estimate a and b, and compute ¢ = a/b.
(2) Find the smallest integer m such that

from-1 < ¢ (16.38)

where § = V2 — 1 = 0.414.
(3) Determine the iteration parameters by (16.5).
(4) The estimated average convergence rate is given by

(16.36)

2
B3P = —=loge,
where

€ =

1 — cl3tm—D\2
1 + cll!(m—l))

In spite of the fact that the above procedure does not give the best value
of m, we can prove

TareoreEM 16.5. If for given a and b the number of iteration parameters
m is chosen as the smallest integer satisfying (16.38), and if the iteration
parameters are chosen by (16.5), then for any n > 0 and for sufficiently small ¢

16(og ) =5 , 622 — 1

A N T =T (16.39)
where § = V2 — 1 = 0.414. Moreover,
Lu.'n {Bn(—log c)} 16(log 5)? = 6.22, (16.40)

and :
I:'_nﬁ {B.(—logc)} <8|logd| {|logé|+ 45} = 7.66. (16.41)

Proof. If 52D < ¢, then y 2 §. Consequently, by (16.7), (16. 28), and
(16.29) we have
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4 = 4 m — 2
Buz —>logi = -—m_2(log8)( ; )

But since §2»~? > ¢ we have, by (16.37),

Ra(—logc) = 8(log 5)2("27: 2).

Moreover, since m — @ as ¢ — 0, (16.40) follows. By (16.7), the inequality
(16.29) holds. On the other hand, by (16.34) we have

4 1=y 2 mI—II_l___L_ —yt
Rm é m IOg 1 ' y m log % 1 ' ygi_.l
But, by (16.24) we have
4, 1=y 4y
R. = log Ty + T = (16.42)

Thus, from (16.38) it follows that

— 5log LY 514
Ra(—loge) < 8logflog ] . + 8ilogsl(1 )
Because of (16.30) and (16.38) it follows that

Lim y = lim cV/2m=1 = §,
c—0 0

Thus (16.41) follows, and the proof of Theorem 16.5 is complete.
For given m, we have by (16.7) and (16.42)

CoRrOLLARY. If the p; are chosen by (16.4), then

— 2
2ot 2 ({70 oo [-20/0 - vl (643)

Theorems 16.3 and 16.5 show that the Wachspress parameters are supe-
rior to the Peaceman-Rachford parameters by a factor of approximately
two, provided that the values of m are chosen by (16.38) and (16.20),
respectively. Numerical experiments described in Part IV tend to confirm
this superiority.

17. The Douglas-Rachford Method

In Sections 3 and 4, two variants of the Douglas-Rachford method are
given. The first is defined by (3.7)—(3.8); the second is defined by (4.5)—
(4.6). Because of the assumptions (13.3)~(13.5) on the matrices H, V, and
Z we can express the eigenvalues of the error-reduction matrices W, and
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U,, defined by (4.4) and (4.7), respectively, in terms of the eigenvalues 4’
of H and # of V. Thus
W+ ) + o) + g
W+ +p0 +d+5)
is an eigenvalue of W,, where
d = a/2, (17.2)

W+ ) + o) + po + p?
W+o+p0 +o+0p)

Ay =

(17.1)

and
Ay =

(17.3)

is an eigenvalue of U,.

Both variants of the Douglas-Rachford method are identical if ¢ = 0.
We now show that for ¢ > 0 the variant corresponding to W, is superior to
the other variant. We show that using p’ = p + ¢’ with the first variant
yields an eigenvalue Ay which is smaller for all positive 4’ and »' than the
corresponding eigenvalue of U,. This will imply that A(W,) = A(U,) and
that for any py, p2, .+ - . P,

A (II1 W,,J <A <H U,,)'
1= i=1

Now, replacing p by p + ¢’ in (17.1) yields
W+ N+ )+ o+ o)

W= T e A0 + o+ 9

But since
[+ ) +0) + po+ 0] = [(W + ) + o) + (0 + )]

= o'W + V) + o2/2,
which is positive for ¢ > 0, it follows that Ay > Aw for all 4" and »'. Hence,
for ¢ > 0 the first variant of the Douglas-Rachford method is superior to
the second. Henceforth we shall consider only the first variant.

From (17.1), if x and » are eigenvalues of Hy = H + ¢'I and V; =
V + o'I, respectively, then

uv 4 p
M, ») = Ul Gt )0+ 99 (17.4)

is an eigenvalue of IIfx., W,. It is convenient to define

l u + p?

(D) = Y
¥ (a, b, @, 6, p) argfg,,,gl G T o0 £9)

aSrSp

(17.5)

and
pv + pi?
ag,nswa (.u + o) + p0)

= p:\ (v — s\,
a;n:;’;b i=1 2 2(,; -+ P.) (, +p )] (17.6)

!
:};

@ (a, b, p) =

]
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Evidently, we have

A (H Wpe) e 2 (a, b, o, B,p) S @,(,?)(ﬁ, B: p) 17.7m)
f=1

where @ = Min (g, a), b = Max (b, 8). We also define the average rate of
convergence R, by

Ra=—log (A (I:'I1 W,,,)). (17.8)

Evidently by (17.7) we have
Rz R = —1 log 323, 5, p). (17.9)

The solution to the problem of minimizing ¥ for the case m = 1 is
given in Appendix A. It is also shown that if a + b = a + B, then the
Peaceman-Rachford method with the optimum single parameter is at least
as effective as the Douglas-Rachford method with the optimum single
parameter.

We now study the convergence of the Douglas-Rachford method with
‘parameters as given by (16.4). This selection of parameters was used by
Douglas and Rachford [?]. We shall assume that the eigenvalues u of H
and » of V all lie in the range a < g, » < b. We now prove

THEOREM 17.1. For fized m, if the p; are given by (16.4), then

A (ﬁ WP") = (I’g))(a: b; P) < dp, (1710)
i=1
where
5p = 3(1 + 82, (17.11)
and where & is given by (16.9). Moreover, as ¢ = a/b — 0 we have
Fu= 22406, (17.12)

where z 1s given by (16.10).

Proof. The inequality (17.10) is proved in a manner similar to that used
in Appendix B to prove (B.14). To prove (17.12) we first note that by
(17.6), (17.8), (17.10), and (17.11),

1+ 22
(1 + 2)2

On the other hand, by (17.6), (17.7), and (17.9)

1wl L b=\

1 1 2
P — e — [ — 2
Rn.2 log 6p = log = =z -+ 0(z).

and by (16.4),
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1 —_— 22&—1

1 mry o1 2 2
B, s — ;;;logigl I:é + 2 (W) ] =z + 0(z?). (17.13)

This completes the proof of Theorem 17.1.
We next seek to optimize the choice of m for a given c. We estimate the
average rate of convergence from (17.8) and (17.10) as

R = — }-n log 8. (17.14)

Relating m and & as in the case of the Peaceman-Rachford method we have,
by (17.11), (16.9), and (16.10),

1-3 1 ls)
B _ 2o () e (5 +3%)

as (17.15)
Equating to zero the first derivative of B® with respect to § we obtain
5(1 — ) log i = g = (14 ) log (& + 15%). (17.16)

Let & be the solution?! of (17.16) in the range 0 < § < 1. Numerical com-
putations lead to the value

5o = 0.60. (17.17)
The corresponding value of & is
5p = 0.68. (17.18)

In actual practice one would use the following procedure:
(1) Estimate a and b and compute ¢ = a/b.
(2) Fine the smallest integer m such that

1 — §\m
(1 = 5) s (17.19)
where § satisfies (17.16) and (17.17). By (17.17) one would actually
use
' (0.25) < ¢. (17.20)

(3) Determine the iteration parameters by (16.4).
(4) The estimated average rate of convergence is given by

R = ~—-1n;log 5o, 17.21)
where
14 ¢lim

bo = 31+ &) = Ty

(17.22)
For the above procedure we prove

* The solution is unique in the range 0 < & < 1 since d?R%” /d8* < 0 in that range.
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THeOREM 17.2. If for given a and b the number of iteration parameters m
18 chosen as the smallest integer such that (17.19) is satisfied, and if the iteration
paramelers are chosen by (16.4), then for any n > 0 and for sufficiently small ¢

1-
Zlog( )log( +~52)“‘ﬂ
R.2 B, = 1438 2 i'1.07—7;
—log ¢ —log ¢

‘where § satisfies (17.16) and § = 0.68. Moreover,

Lim (B.(~log o)} 2 log (1 = 5) log( +1 52) =107,  (17.29)

(17.23)

and
1-3 1,1, (1 — 3
Lim {n(~log 0} = 2o (i ;) ﬂ“’g (3+3 #) + ey
= 1.16.  (17.25)
Proof. Let z be given by (16.10) and let
2= 12 (17.26)

If m satisfies (17.19), then 2" < ¢, 2 <2 6 <4 and 6 < }(1 + 5).
Consequently, by (17.9) and (17.10) we have

1 1 (i1
R.z - logdp = m10g<2+26>
1 L 15\ /m
w3 27) ()
But since 22D 2>-¢, we have

En(~log ) Z 2(~log 2) log (l + l;z) (_m__>

m—1

Since m — 0 as ¢ — 0, (17.24) follows. By (17. 9), the inequality (17.23)
holds. On the other hand by (17.13) we have

1 1 + 22021
E. IOg’g 1 + 221y
921
= —-—iog (1 + )2 + m ‘; log (1 + 1+ 22(2:’—-1))
1, 1- o1l 11—z 2 g
S Rt R L S et A e

But by (17.19) we have

R.(—logc) < 2llog z]{

3
log (1 = )2 +2 izz}“ (17.27)
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Because of (16.10), (17.19), and (17.26) it follows that

. 1-=3 ,
I;ir(x]xz- l+5—2—-0.25.
Hence (17.25) follows, and the proof of Theorem 17.2 is complete.
For given m, we have by (17.9) and (17.27)

CoROLLARY. If the p; are chosen by (16.4), then

p—-1
00, b,0) 2 e [~2/(1 = 27] |
= §p exp [—223/(1 — 2)?]. (17.28)
Theorems 17.1 and 17.2 show that the Douglas-Rachford method with
the parameters (16.4) is much less effective than the Peaceman-Rachford
method either with fixed m or with m chosen as a function of ¢ = a/b by
(17.19) and (16.20) for the respective methods. The Douglas-Rachford
method is inferior to an even greater extent to the Peaceman-Rachford
method with the Wachspress parameters for the case where m is allowed to
depend on c. This does not necessarily imply, of course, that if optimum
parameters were used with each method, the Douglas-Rachford method
would be inferior to the Peaceman-Rachford method. However, as stated
earlier, for the case a + b = @ + 8 and m = 1, the Peaceman-Rachford
method is definitely better.

18. Applications to the Helmholtz Equation

In this section we apply the results of Sections 4 and 5 to the Dirichlet
problem for the modified- Helmholtz equation,

Gu~— — — = = 8(z, ¥), (18.1)

where Gy is a nonnegative constant, in the rectangle0 Sz < X,0<y < Y.
As in Section 9, we assume that the mesh size is the same in both coor-
dinate directions, and that for some integers M and N

X Y o
h=M=N‘ (18.2)

It follows from (9.3)-(9.4) that the eigenvalues p of Hy = H + (¢/2)I and
the eigenvaluesvof Vi= ¥V + (o/2)I satisfy

4sm’——+~ Su=s 4c0s"-1-+gv‘
2M :
2 2 (18.3)

43111’2—]\7 '2~_ v $4cosz-—+-t
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where ¢ = h?Gy: If L = max (M, N),

a=4sin’-2%+g§u,v§4cos’% 5="0. (18.4)

Given m, one could determine m iteration parameters for the Peaceman-
Rachford method by (16.4) for the Peaceman-Rachford parameters and by
(16.5) for the Wachspress parameters. One would also use (16.4) for the
iteration parameters for the Douglas-Rachford method. On the other hand,
if one lets m depend on ¢ = a/b, then m can be determined by (16.20) and
(16.38) for the Peaceman-Rachford and the Wachspress parameters, re-

spectively, and by (17.19)-(17.20) for the Douglas-Rachford method.

We now determine asymptotic formulas for the rates of convergence,
with both parameter choices for the Peaceman-Rachford method and for
the Douglas-Rachford method as h — 0. Evidently, by (18.4), we have

a_ (= Go\,, I

¢ = (Z+ B)m+ o, (18.5)
where Z = max (X, Y). By Theorems 16.1, 16.2, 16.4, 16.5, 17.1, and 17.2,
we have

TrEOREM 18.1. For the Dirichlet problem for the modified Helmholtz equa-
tion (18.1) in the rectangle 0 £z £ X,0 S y < Y let R, RS, and R
denote respectively the average rates of convergence of the Peaceman-Rachford
method with the Peaceman-Rachford parameters (16.4), the Peaceman-
Rachford method with the Wachspress parameters (16.5), and the Douglas-
Rachford method with the parameters of (16.4). Then as h— 0,

R,(f) _Z_ 1% (Kh)”’" + O(hﬂlm)’ R;.W) g % (Kh)ll(m—l) + O(hzl(m—!))

BP 2 2 (Khyim 4 0k, (18.6)

where K2 = (x?/4Z%) + Go/8. If the number m of iterations in each case 1s
chosen by (16.20), (16.38), and (17.19) respectively, then for any n > 0 and
Sor sufficiently small h we have

R;fwz.l;_fl@_"_" o » 31l —n

, 0.535 — 1.
= —log Kh ™ = —log Kh

[02)] e d
Ry 2 =g K

(18.7)
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PART 1ll: COMPARISON WITH SUCCESSIVE
OVERRELAXATION VARIANTS

19. The Point SOR Method

For the solution of the matrix equation
Au=H+V +2u =k,
introduced in Section 2, the n X n matrix A is, by its construction, real,
symmetric, and positive definite. We now split the matrix 4 into
A=D-E-FE, (19.1)
where D is a real diagonal matrix, and E and E’ are respectively strictly
lower and upper triangular matrices.?? Since 4 is positive definite, then D
is a diagonal matrix with real positive diagonal entries, and is thus also
positive definite. It is convenient to denote the strictly lower and upper
triangular matrices D! E and D! E’ respectively by L and U. Thus,
A=DI-L~-U0). (19.2)

The point successive overrelaxation (SOR) method of Young [26] and
Frankel [10] is defined by :

(D — wE)tnya = {(1 — @)D + wE}u, + vk, (19.3)
where u is again some initial vector approximation of the unique solution
of (19.1). The quantity « in (19.3) is called the relazation factor. Since
D — E is triangular, this procedure is easily carried out and easily pro- -
grammed. It is convenient to write (19.3) equivalently as

Unt1 = swun + (D - WE)_XIC, (194)
where .
Lo = (D — wE) {1 — w)D + wE'}. (19.5)

The convergence properties of the matrix £, as a function of the pa-
rameter  follows from the following general result of Ostrowski [14].

TraeoreM 19.1. Let the n X n matriz A be given by (19.1), where D is
hermitian and positive definite, and let D — wE be nonsingular for all 0 <w
< 2. Then A(£.) < 1 4f and only if A is positive definite and 0 < w < 2.

Thus, as long as we choose any « with 0 < w <2, we are sure of con-
vergence for the successive overrelaxation iterative method of (19.3).
While A(£.) is continuous function of w for the closed interval 0 < v £ 2,

22 A square matrix T = Ht«,,ﬂ is called strictly lower triangular if £; ; = Ofor allj 2> 1.
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we are assured of the existence of an w, such that A(£.) > A(L,,) for all
0 < @ £ 2. But Ostrowski’s Theorem doesn’t aid in the practical de-
termination of this w, in the general case.

Young [26] considered a class of matrices A = D — E — E’ which
possess the property that D is a real diagonal matrix, and that the real
triangular matrices E and E’ could be simultaneously expressed, after a
suitable permutation of indices, as

FI
____.} (19.6)

010 0
E E - ; E' 3 J——
F |0 0|0
Here, the partitionings of both matrices are the same, with the diagonal
submatrices being square and null. Denoting
B=L+U
as the point Jacobi matrix, Young proved with? the assumption of (19.6):

THEOREM 19.2. Let A = D — E — E’, where D is a positive definite
diagonal matriz, and E and E’ are real matrices of the form (19.6). If A s
positive definite, then

AL > AML,,) = wp — 1, for all w % wy, (19.7)
where
- . AB)\*
=1+ {1 _ (19.8)

The assumption (19.6) on the form of the matrices E and E’ is a special
case of what Young calls Property (A) for matrices. Note that this as-
sumption precisely characterizes the optimum relaxation factor ws If
R(M) = —log A(M) is the asymptotic rate of convergence for the matrix
M, then Young proved

" R(£.) ~2V2{R(B)} V2 (19.9)

as A(B) 1 1. This simple formula shows that, for small mesh size, successive
overrelaxation with optimum parameters gives order of magnitude im-

provements in computing time over the Jacobi (and Gauss-Seidel) iterative
methods.

20. Helmholtz Equation in a Square

The basic theoretical results established for ADI methods (Theorem 5.1)
and the point SOR method (Theorem 19.2) were for one-parameter station-
ary iterative methods, i.e., where one fixed parameter is used in the course

2 This is actually a special case of results in [26].
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of computation. We now compare the one-parameter Peaceman-Rachford
method with the one-parameter point SOR method for the numerical
solution of the Helmholtz equation Gyu — V?u = S in the unit square with
uniform mesh spacing h = 1/N. To make this comparison equitable, we
shall optimize the asymptotic rate of convergence of each method as a
function of its single parameter.

For the point successive overrelaxation method, the conditions of
Theorem 19.2 are fulfilled by the matrix A = D — E — E'forany N > 1.
In this case, it can be verified that

4 cos (r/N) _ cos (x/N)

= 4 = = ==
A{DYE 4+ E")} = A(B) 11 Gt 1 + o/ (20.1)
where ¢ = Ggh?. Thus, from Theorem 19.2,
min A(L,) = A(L,) = wp — 1
_ cos (r/N) 2
.= {1 T o/ (L1 o/d) = cosz(w/N)ﬂm} (202)

For the Peaceman-Rachford method, the matrix T in this special case is
ol. The eigenvalues of the matrices H, = H + (1/2)Z and V=V +
(1/2)Z can be conveniently calculated from (8.3)-(8.4), and all lie in the
interval 4 sin? (x/2N) + ¢/2 < z < 4 cos? (r/2N) + ¢/2. Appealing to
Theorem 8.1, we conclude for this problem that

. _ N _ (P — 4sin® (x/2N) — a/2\?
min A7) = ATy = ($ 5 (v 1 o)

(20.3)

where
p = ((4sin? (x/2N) + ¢/2)(4 cos? (z/2N) + o/2))V2. (20.4)

But it can be verified that the expressions in (20.2) and (20.3) are identical.
Thus we obtain the result?

TreoOREM 20.1. For the Helmholtz equation in the unit square, the optimized
one parameter Peaceman-Rachford method and the optimized point SOR
method have identical asymptotic rates of convergence for all h > 0.

We point out, however, that numerical requirements for these two
methods are different, since the Peaceman-Rachford method requires
roughly twice as much arithmetic computations per mesh sweep as does
the point SOR method. This will be discussed more in detail in Part IV.

We now consider the asymptotic convergence rates of these methods for
small A = 1/N. For the point successive overrelaxation method, it follows
from (19.9) and (20.1) that

R(T5) = R(L.) ~ 2(x* + Go)'*h, h — 0, (20.5)
2 In Varga [17] only the special case Go = 0 was considered.
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whereas for the point Gauss-Seidel method, the special case w = 1 of (19.3)
has, for purposes of eomparison, an asymptotic rate of convergence

R(&y) ~ (r’ + %) 2, b — 0. (20.6)

Young and Ehrlich [29] have extended the analysis for Laplace’s equation
(Go = 0) of a single optimized parameter Peaceman-Rachford method to
that of a fixed number m > 1 of optimized parameters used cyclically, and

they showed that ,
Y 4 (wh\Ym ‘
R(g Ts,.) = ( 5 ) ,h—0. (20.7)

See also Section 18. If, however, the number of parameters m is allowed to
change as a function of the mesh spacing h, it can be shown (Section 18) that

k3 3.107
R(.I,.Il Tﬁ) > 1386 + 2|In hr| (20.8)
for all h sufficiently small.

These results for the Helmholtz equation for the square rest firmly on the
fact that the matrices H and V possess a common basis of orthonormal
eigenvectors.'But for such problems, the results of (20.5) and (20.8) show
that m-parameter ADI methods are superior for m > 1, in terms of
asymptotic rates of convergence, to point SOR methods for all sufficiently
small mesh spacings h.

21. Block and Multiline SOR Variants

Several extensions of the results of Section 19 are of practical and
theoretical interest. First, Ostrowski’s Theorem 19.1 permits the use of
nondiagonal matrices D. This, however, means that the corresponding
SOR. method of (19.3) requires the direct solution of nondiagonal matrix
equations, like those first introduced in the definition of ADI methods in
(3.3)-(3.4). Second, Young’s Theorem 19.2 can be similarly rigorously
extended to the case where D is not diagonal, and the corresponding method
is called the block or multiline SOR method. One can also show, for ir-
reducible Stieltjes matrices 4, that the asymptotic rate of convergence is
increased as one passes from point to block or multiline SOR methods,
which makes these extensions of practical value. See Varga [19, 20] and
references given there.

Tt is relevant to point out that multiline SOR methods are theoretically
a special case of block SOR methods, but in actual practical computations,
the entries of a block correspond to the mesh points of k adjacent horizontal



228 GARRETT BIRKHOFF, RICHARD S. VARGA, AND DAVID YOUNG

(or vertical) mesh lines, hence the name k-line SOR. Parter [15] shows that
the rate of convergenee of k-line Jacobi method for Laplace’s equation in
a rectangle is

R(B®) ~ £\, h—0 @1.1)
where \? is the minimum eigenvalue of the Helmholtz equation
Vi + A% = 0. (21.2)
Theorem 19.2 can be applied, and we conclude from (19.9) that
R(£.2) ~2VEN, b — 0. (21.3)

Thus, increasing the number k of lines in SOR methods yields improved
asymptotic rates of convergence, but these asymptotic results are always
O(h), as h— 0, in contrast with ADI methods which have asymptotic
convergence rates O(hY™) for this problem. See Section 18. Moreover, the
arithmetic requirements? per mesh point of the multiline SOR methods
increase linearly with k, in that roughly (k + 6) multiplies and (k& 4 7)
additions are needed per mesh point. These combined observations suggest
that k = 1 or k¥ = 2 be used in practical problems.

Another generalization of Young’s work is based on the concept of
weakly cyclic matrices of index p > 2, an outgrowth of earlier work by
Frobenius. We say that a matrix M is weakly cyclic of index p > 2 if there
exists a permutation matrix P for which P M PT has the form

0 0 -+ - - 0 M,
Myy O - « - 0 0
0 M, 0 0
PMPT — . o . (21.4)

0 0 -« - - My,, O

where the diagonal submatrices are square and null. If we assume that the
matrix B = L 4 U is of this form, then we can state [21]

TueoreM 21.1. Let B = L + U be weakly cyclic of index p > 2. If the
matriz B? has nonnegative real eigenvalues less than unity, then

A(L.) > AMEw) = (ws — 1)(p — 1), w # ws, (21.5)
where wy 18 the unigue positive root less than p/(p — 1) of
A B)ay® = p2(p — 1)*=>(ws — 1). (21.6)

Moreover, R(£.,) ~ (2p*/(p — 1))V2{R(B)}V? as A(B) increases to unity.

# See [20], where some representative arithmetic req\iirements are given for SOR
variants.
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The case p = 2 is originally due to Young [26]. Other extensions of
Young’s work are worth mentioning. First, it is apparent that the successive
overrelaxation method is basically a one-parameter iterative method, in
that one selects a single optimum relaxation factor. In generalizing this to
iterative methods using a sequence of w;’s, Golub and Varga [11] make use
of a familiar idea of considering Chebyshev polynomials® in the matrix B.
Tt is shown that use of optimum relaxation factors wy’s is always superior
for any number of iterations to the original successive overrelaxation
method of Young and Frankel, but asymptotic convergence rates are un-
affected. This superiority has been confirmed in numerical experiments
(See Ref. [11]). In Part IV, these improved SOR variants are compared
numerically with ADI methods.

22. Analogies of ADI with SOR

The theory of successive overrelaxation for weakly cyclic matrices of
index p > 2 can be applied to ADI methods. First, we write the equations
(8.1)—(3.2), leading to the definition of the Peaceman-Rachford method, in
the form (with @ = 1 — 6):

u=(H+ 6+ o)~ {k — (V+ &2 — pl)u}, (22.1)
w=(V+ 62+ pD){k — (H+ 02— plu}. (22.2)
Dealing with column vectors with 2n components and 2n X 2n matrices,

this can be written as
U = 0 l Uy )% ]
[u,] [Dn ][uz]+[92 (22.3)
Co=(H+ 06+ p) (I —6Z — V);
D, = (V + 6Z 4 o)~ pl — ¢Z — H). v
The 2n X 2n matrix of (22.4) is thus weakly cyclic of index 2, and applying

the successive overrelaxation method with w = 1 (called the Gauss-Seidel
or single-step method), we obtain

WD = Caf + gy uft = Dttt 4 (22)

Except for notation, this is equivalent to (3.3)-(3.4) for a single fixed
acceleration parameter p.

Similarly, it can be shown [18] that the Peaceman-Rachford method,
with m parameters p; used cyclically, is just the successive overrelaxation

c,
1]
where

(22.4)

% The use of Chebyshev polynomials in problems of numerical analysis goes back to
" Flanders and Shortley [16¢c].
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method with » = 1 applied to a 2mn X 2mn matrix which is weakly cyclic
of index 2m.

There is another interesting comparison between SOR methods and ADI
methods. Consider the numerical solution of the Helmholtz equation of
Section 2 on a uniform mesh & in a rectangle, and suppose that the initial
error vector €@ is such that all its components are zero, save one (which
we assume is positive). Then, one iteration of the Peaceman-Rachford
method distributes this error at a single point over the entire mesh. On the
other hand, if the rectangle is Mh X Nk, it could take up to M + N — 2
iterations of the point SOR method to accomplish the same task. See [19].
Intuitively, successive overrelaxation seems less attractive from this point
of view.

A final analogy [19] between these different methods is that both can be
thought of as approximations to the time-dependent parabolic partial
differential equation

ou a ou a u
3 = —G@yu+ o [A (=, 9) 5;] + a [C(x, Y) 5‘&], (22.6)

with prescribed initial conditions. SOR methods can be viewed as explicit
approximations to (22.6) in which the relaxation factor w = At plays the
role of the time increment from one step to the next. ADI methods, on the
other hand, ean be viewed as ¢mplicit approximations (like the Crank-
Nicolson method), in which the iteration parameter p = 2/At plays the
role of the reciprocal of the time increment. ‘
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PART IV: NUMERICAL EXPERIMENTS

23. Introduction

In this chapter we describe some numerical experiments which were
conducted to test the theoretical predictions of Part II on the convergence
of the Peaceman-Rachford method. One set of experiments involved the
solution of the Dirichlet problem with Laplace’s equation for the regions
.shown in Fig. 1. These experiments were run at the University of Texas

Region I. Unit square
-1 1 1 1 1 1
(h="5+ 16 20" 10’ 80’ 60’

4
10 10
removed from center

gl L 1 1 1
10 ' 20’ 40’ 80 ' 160

Region II.  Unit square with 4.4 square

Region III, = Unit square with -15- X -;— square m
removed from each corner
1 1 1 1 1 1

""‘5’*'{6’56’5*@3'1“6‘0)

Region IV, Unit square with —12- X 51' square

removed from one corner
L1111
h=19 26" 20 30 * 160 )

Region V. Right isosceles triangle with two
equal sides of length unity
1 1 1 1 1 1
=% %525 5 o)

Fira. 1. Regions considered.
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and are described in Sections 24-26. Another series involving more general
differential equations and boundary conditions were conducted at the
Gulf Research and Development Company. They are described in Sec-
tion 27.

24. Experiments with the Dirichlet Problem

For each of the regions shown in Fig. 1 the five-point finite difference
equation analog of the Dirichlet problem with Laplace’s equation was
solved? for a number of mesh sizes using the Peaceman-Rachford method
and the successive overrelaxation method. In every case, the boundary
values were assumed to vanish; hence both the exact solution of the
Dirichlet problem and the finite difference analog vanish identically. The
advantage of this choice is that at each stage the approximate value at
a given point is exactly equal to the error at that point. In each experiment,
starting values of unity were assumed at each interior mesh point, and the
iterative process was terminated when the approximate values at all mesh
points became less than 10~%, in absolute value. We remark that the term
“successive overrelaxation” means point successive overrelaxation as dis-
tinguished from block overrelaxation (see Section 21).

For the Peaceman-Rachford method three choices of iteration pa-
rameters were used: the Peaceman-Rachford parameters of (16.4); the
Wachspress parameters (16.5) ; and the optimum parameters. The optimum
parameters were chosen by a procedure of Wachspress [25] for m = 1, 2,
4 (see Appendix B). For m = 3 the determination was made numerically
on the computer using a successive approximation procedure. One, two,
three, and four Peaceman-Rachford parameters and optimum parameters
were used, while two, three, four, and five Wachspress parameters were
used. Mesh sizes of h = 1/5,1/10, 1/20, 1, 40, 1/80, 1/120, and 1/160 were
used,” though not all mesh sizes were used for every region or every pa-
rameter choice. Table I lists the numerical values of the parameters used.
For the successive overrelaxation method the optimum relaxation factors
were determined analytically for the square region using (19.8) and (20.1)
and empirically for other regions to within +0.01, and are given in Table

¥ The following computing machines were used: the Control Data 1604 computers
at the University of Texas, at the Control Data Corporation, Minneapolis, Minnesots,
and at the National Bureau of Standards, Boulder, Colorado; the IBM 704 and 708
computers at Texas Agricultural and Mechanical College. The work of L. W. Ehrlich
and W. P. Cash of the University of Texas Computation Center is gratefully acknowl-
edged.

#In previous experiments by Young and Ehrlich [29], one, two, three, and foltr
Peaceman-Rachford parameters were used with mesh sizes of h = 1/5, 1/10, 1/20,
and 1/40.
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II. Because of the arge amount of machine time which would have been
required, the mesh sizes of A = 1/160 and k = 1/120 were not used, and
h = 1/80 was used only with the square.
Tables IT and III give values of N§ for the Peaceman-Rachford method
for the values of h and m indicated. Here N§ réfers to an actual or esti-
mated number of iterations, and « and 8 have the following meanings:

P Peaceman-Rachford parameters
a = < W Wachspress parameters ’
B optimum parameters

0 observed number of iterations

g=1" “virtual” number of iterations, as defined below
¢ predicted number of iterations, as defined below
¢ predicted number of iterations, as defined below

For a given m, the virtual number of iterations N,* was determined by
N,* = log 108/ —log A= where A* is the estimated mean -spectral radius
found by estimating the limiting value of the quantities fo = ¥en/€nm,
forn=m+4+1, m+ 2, ---, where e, denotes the maximum absolute -
value of the approximate solution (and hence in this case of the error) after
n iterations. In the case of the square, the matrices H and V have a common
basis of eigenvectors. As long as in the expansion of ¢ in terms of the
common basis of eigenvectors the component of the vector v associated -
with the largest eigenvalue of II%; T, does not vanish, then f, will approach
the mth root of the spectral radius of Ii%, T,

Tasre I

ITERATION PARAMETERS

ht m Peaceman-Rachford Wachspress Optimum
5 1 11755705 — 11755705
5 2 "~ 0.67009548 0.54887621
2.0623419 2.5178099
5 3 0.55560485 0.45359594
1.1755705 1.1755705
2.4873180 3.0466903
5 4 0.50591866 0.42174787
0.88754970 0.78715591
1.5570576 . 1.7556445
2.7315972 3.6180340 3.2767586
5 5 R 0.38196601 * —
T — 0.67009550 - —_
—_— © 1.1755705 —
- 2.0623419 -
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Tasie I. (Continued)

At m Peaceman-Rachford Wachspress Optimum
—_ 3.6180340 —
10 1 0.61803400 — 0.61803400
10 2 0.24596235 0.097886967 0.18760957
1.1529451 3.9021131 2.0359623
10 3 0.18092034 0.097886967 0.13497175
0.61803400 0.61803399 0.61803400
2.1112388 3.9021131 2.8299802
10 4 0.15516607 0.097886967 0.11821609
0.38988857 0.33438737 0.33457893
0.97967999 1.1422860 1.1416320
2.4616595 3.9021131 3.2310830
10 5 — 0.097886967 —
— 0.24596234 —_
- 0.61803399 —
— 1.5529451 —
— 3.9021131 e
20 1 0.31319083 — 0.31319083
20 2 0.087907193 0.024623319 0.024623319
1.1158188 3.9753768 3.9753767
20 3 0.057556742 0.024623319 0.040456047
0.31319083 0.31286893 0.31319083
1.7042051 3.9753768 2.4245772
20 4 0.046572773 0.024623319 0.033125729
0.16592687 0.13407789 0.14039288
0.59115497 0.73007542 0.69723598
2.1061338 3.9753768 2.9550133
20 5 — 0.024623319 —
— 0.087771701 —_
- 0.31286893 —_—
— 1.1152452 -
— 3.9753768 —
40 1 0.15695853 — 0.15695853
40 2 0031115900 0.0061653325 0.022434444
0.79174897 3.9938348 1.0981320
40 3 0.018143240 ) 0.0061653325 0.012261962
0.15695853 0.15691819 0.15695853
1.3578601 3.9938348 2.0091540
40 4 0.013854188 0.0061653325 0.0093924997
0.069884949 0.053345898 0.058924690
0.35252200 0.46157849 0.41809268
1.7782335 3.9938348 2.6229420
40 5 — 0.0061653325 -
- 0.031103904 —_
e 0.15691819 —
—_ 0.79164722 —

— 3.9938348 —
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Tasre 1. (Conilinued)

k1 m Peaceman-Rachford Wachspress Optimum
80 1 0.078519631 — 0.078519 631
80 2 0.011003253 0.0015419275 0.0078568620
0.56031907 3.9984583 0.78470673
80 3 0.0057152520 0.0015419275 0.0037654768
0.078519631 0.078519632 0.078520642
1.0787508 3.9984582 1.6373638
80 4 0.0041190070 0.0015419275 0.0026918638
0.029393390 0.021183944 0.024740608
0.20975235 0.29103799 0.24919891
1.4968007 3.9984582 2.2903583
80 5 — 0.0015419275 —_
— 0.011003253 —
— 0.078519632 -—
— 0.56031907 —
— 3.9984582 —
120 1 0.052353896 — 0.052353896
120 2 0.0059900539 0.00068535005 0.0042633301
0.45758027 3.9993148 0.64290834
120 3 0.0029079793 0.00068535005 0.0018960170.
0.052353897 0.052353807 0.052354899
0.94255504 3.9993148 1.4456572
120 4 0.0020261500 0.00068535005 0.0013022248
0.017708830 0.012338721 0.014899126
0.15477761 0.22214056 0.18396586
1.3527777 3.9993148 2.1048059
120 5 — 0.00068535005 —
— 0.0052900539 —
—_— 0.052353897 —_
—_ 0.45758027 —
— 3.9993148 —
160 1 0.039267386 — 0.039267386
160 2 0.0038908000 0.00038551904 0.0027647161
0.39630090 3.9996147 0.55771640
160 3 0.0018004230 0.00038551904 0.0011669595
0.039267385 0.039267386 0.039267903
0.85642517 3.9996147 1.3213529
160 4 0.0012247357 0.00038551904 0.00077925470
0.012360483 0.0084082046 0.010397443
0.12474654 0.18338369 0.14829872
1.2589880 3.9996147 1.9787209
160 5 - 0.00038551904 —_—
— 0.0038908000 —
— 0.039267385 —_
— 0.39630090 —

3.9996147
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240 GARRETT BIRKHOFF, RICHARD S. VARGA, AND DAVID YOUNG
TasLe IV

Prepicted AND OBserveDp Numsers or Iterarions Using PeacEMan-RacErorp
AND WacHSPRESS PARAMETERS

- Region I Region I1
m NF NF NP NT N7 N NI NY N NJ NP NT
1 82 -— 8 — 91 — 85 — 7% — 85 —
2 33 82 34 82 36 73 33 85 28 72 30 79
3 26 25 29 26 . 27 22 26 23 26 23 23 22
4 23 18 20 20 o 27 15 24 17 21 20 20 17
5 22 16 30 18 = 25 14 22 14 21 19 20 15
6 21 15 31 18 24 14 21 14 22 21 18 18
7 21 15 33 18 26 11 21 9 20 23 16 19
8 20 15 34 18 24 13 20 10 25 25 20 20
$ 20 15 36 17 2 14 20 10 24 26 22 21
10 20 15 38 20 27 11 20 10 26 26 23 24

Mesh size: b = 1/40
(For explanation of symbols see Section 24.)

~ The predicted number of iterations N & was determined by N& = log
10%/R.. where R, is defined by (16.7) and equals, for the case of the square,

B = — %log .(a, b, p). (24.1)

In each case the function ¢.(a, b, p) was evaluated numerically to at least
four decimal places of accuracy on the computer.

The predicted number of iterations, N2, was determined by N.* = log
105/R® and N¥ = log 108/R$P where B and B3 are lower bounds
for R, for the Peaceman-Rachford parameters and for the Wachspress
parameters respectively which are given respectively by (16.14) and
(16.36).

For the successive overrelaxation method the observed numbers of
iterations are given in Tables II and III on rows labeled “SOR” and in
columns headed “N#.” The corresponding values of w are also indicated.
The predicted number of iterations N, was determined by solving the
equation?®

4N, (0 — 1)¥—1 = 10°8 (34.2)
Table IV gives predicted, virtual, and observed numbers of iterations

1 Young [25b] showed that the number of iterations needed to reduce the Iz norm of
an initial error vector by « factor «, did not exceed n, where 5n(w — 1)»! = « provided
w is the optimum relaxation factor. Varga [19] showed that this equation could be re-
placed by #r{w — 1)*! = a for some constant, », which can be shown to be less than 4.



100

ALTERNATING DIRECTION IMPLICIT METHODS 241

using the Peaceman-Rachford parameters and the Wachspress parameters

with up to 10 parameters for the Regions I and II and for h = 1/40.
Figures 2-6 show graphs, with logarithmic scales, of the observed number

of iterations versus h~! for the successive overrelaxation method and for

300

REGION T
©
' P e
o A 4//33. AD!I PARAMETERS
Y & _-- SOR PEACEMAN-  WACHSPRESS
e S RACHFORD
a ST
w A m=2 A
Vma i
Om=4
Mae 5 |
1 1 ] L 1 1
Q) 10 20 40 80 120!
h—t
Fia. 2.

the Peaceman-Rachford method with the Peaceman-Rachford parameters
and with the Wachspress parameters. Reciprocal slopes of straight lines
fitted to the data points in each case are given in Table V. These slopes are
also given for the case of the optimum parameters, though the correspond-

ing graphs are not included in Figs. 2-6.

-
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© 25. Analysis of Results

- For the case of the square, the numbers of iterations N for the Peace-
man-Rachford method predicted by the theory of Part II agree closely
with the observed values N¢. In fact, for m > 1 the values of N differ

100

10

REGION I

ADI PARAMETERS

SOR PEAGEMAN- WACHSPRESS
RACHFORD ;

o4O
333 33
UIJSOJN.""
addp

wonou oW

F1a. 3.

from the corresponding N by at most five iterations and usually by much
less. The agreement is especially good in view of the fact that changing the
order in which the p; are used sometimes changes the number of iterations

by two or three.
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The close agreement is to be expected since by (16.6) the actual rate of
_convergence R, is given by

R, = —logA(ﬁ T,,‘,>,
=1

and since, as noted in Section 15, the inequality (15.5) becomes an equality
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Fic. 4.

in the case of the Helmholtz equation. Thus, the only difference between
R.. as given by (16.7) and the actual rate of convergence R,, lies in the ap-
proximation of
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REGION I
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where « is any eigenvalue of H or V, by ¢.(a, b, p), where

Y — pi,

®,(a, b, p) = max H ¥ F pi

aSySbi=1

But for small k by (9.2) there will be a large number of eigenvalues of H
and V distributed over the interval a < ¥ < b; hence the error in the above
approximation will be slight.

Since for each parameter choice ®,.(a, b, p) was evaluated on the computer
to at least four decimal places of accuracy, the discrepancies between the
N and the N¢® are primarily due to roundoff. It is expected that closer
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REGION X

300

100

ok ADI PARAMETERS
SOR PEACEMAN~ WACHSPRESS
——w ...RAGHFORD _ ___ _
O m=|
A m=2 A
Vv ms:3 ¥
O m=4 @&
m=5 =
1 } L 1 1 11
8 10 20 40 80 120 160
h-t
Fia. 6.

agreement would result if a tighter convergence criterion were used, thus
minimizing the influence of the particular initial error vector which was
present. In support of this, we note that the virtual numbers of iterations
N.= agree much closer with the predicted numbers of iterations N than do
the observed numbers of iterations Ny, especially in the case of the
Peaceman-Rachford parameters. Thus the actual rate of convergence as
measured by the N,* agrees closely with the predicted rate of convergence
as measured by N&.

For regions other than the square, the predictions of the numbers of
iterations based on the theory of Part IT are no longer valid. The observed
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number of iterations is seldom more than, and never more than twice, that
for the square. In the case of the successive overrelaxation method, it can
be proved® that rate of convergence for a given region is at most that for
any region which includes the given region. For the Peaceman-Rachford
method with one parameter, it was shown in Sections 10 and 11 that if a
region can be embedded in a rectangle, then the rate of convergence of the
Peaceman-Rachford method for the rectangle using the best value of p is
at most that using the same p for the given region. Since for m = 1 the
optimum p was used for the square for each mesh size, this result is ap-
plicable here, and is confirmed by the numerical results. For m > 1 the
following conjecture is offered:

For a region which can be embedded in a rectangle, the rate of con-
vergence of the Peaceman-Rachford method for a given set of iteration
parameters is at least § times that for the rectangle where 6 is a constant
such that 1 = 6 = 1/2.

As a consequence of the agreement between the numbers of iterations as
predicted by the theory of Part IT and the actual number, it follows that
the Peaceman-Rachford method is extremely effective. Thus, from Theorem
18.1 it follows that for fixed m, the number of iterations is 0(h~/™), and
that if a good value of m is used,’® then the number of iterations is 0(|log hl).
Consequently, one would expect that, asymptotically for small h, log N&
would be a linear function of log A~! with slope 1/m for the Peaceman-
Rachford parameters and with slope 1/(m — 1) for the Wachspress pa-
rameters. Inspection of the graphs of Figs. 2-6 reveals that the observed
data points do indeed lie roughly on straight lines. Moreover, as indicated
by Table V, the slopes of the lines are close to the predicted values for small
m, especially for the square. For other regions where the theory of Part II
does not apply and for larger m, the agreement is not as close. The dis-
crepancy for the larger m may be explained by the fact that the quantity
(a/b)V2n = (xh/2)Ym, which is assumed to be small in the derivation of
the asymptotic formulas (18.6), is actually rather large for m = 4 even
for h as small as 1/160. In this case the value is 0.315. Presumably, the
actual slopes would be closer to the predicted slopes if much smaller values
of h were used.

Although the values of h used were not small enough to test whether N
is O([log k) if a suitable value of m is used for each h, nevertheless, there

» See Young [25b].

# For the Wachspress parameters this would be 0(h 1/ (m—1)y,
" @ Determined by (16.20) and (16.38) for the Peaceman-Rachford parameters and for
the Wachspress parameters, respectively. :
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seems no reason to doubt its validity. In any case, both N¢* and N &
increased yery slowly as h decreased; for example, even with h = 1 /160,
only twenty-two iterations were required using five Wachspress parameters.
The main increase in computer time as h decreased was simply due to the
presence of more mesh points rather than to the increase in the number of
iterations.

In comparing the effectiveness of the Peaceman-Rachford method with
that of the successive overrelaxation method, one must remember that
twice as much machine time was required per iteration with the Peaceman-
Rachford method as with the successive overrelaxation method. For the
case m = 1, it was shown in Part III that the spectral radii of the two
methods are identical for the square provided that the optimum iteration
parameters are used in each case. However, since the Jordan normal form
of the matrix corresponding to the successive overrelaxation method is
not diagonal, the number of iterations is somewhat larger. For this reason,
although the spectral radius of the method using the optimum relaxation
factor wy is (wp — 1), the predicted number of iterations is determined by
(24.2). This yields a larger value than if N, had been determined by the
usual formula (w, — 1)¥ = 109, which would be valid if the Jordan
normal form of the corresponding matrix were diagonal.

While the number of iterations for the successive overrelaxation method
is slightly larger than for the Peaceman-Rachford method for m = 1,
nevertheless, because only half as much time is required per iteration, the
successive overrelaxation method is definitely superior to the Peaceman-
Rachford method with one parameter. However, since the number of
iterations with the successive overrelaxation method is asymptotically
proportional to (2rh)~! as compared to (m/4)(2/xh)™ for the Peaceman-
Rachford method with the Peaceman-Rachford parameters, the superiority
of the latter method for m > 1 isevident. This superiority is amply reflected
in the Tables II and III and in Figs. 2-6, not only for the square but for
the other regions as well. Estimating the number of iterations for the suc-
cessive overrelaxation method as five hundred seventy for the case h =
1/160 and comparing with twenty-two iterations required using the
Peaceman-Rachford method with five Wachspress parameters, the latter
method is faster by a factor of nearly thirteen to one.

We now consider the choice of iteration parameters. Theorems 16.2 and
16.5 indicate that the Wachspress parameters are superior to the Peaceman-
Rachford parameters provided one chooses good values of m by (16.20) and
(16.38), respectively. The results of Tables IT and III confirm this super-
jority for the case of the square. There seoms little to choose between the
two parameter choices for the other regions. The optimum parameters are
not appreciably better than the Wachspress parameters. Because of the
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theoretical superiority of the Wachspress parameters over the Peaceman-
Rachford method and because the Wachspress parameters are easy to
determine as compared with the optimum parameters, their use is recom-
mended.

Concerning the choice of the number of iteration parameters, m, the
values predicted for the square by (16.20) for the Peaceman-Rachford
parameters can be estimated from Tables II and IV by observing where
N is smallest. This follows since (16.20) was derived by maximizing
BP and since NF = —log 10~¢/—log RY. In the case of h = 1/40 the
smallest value of NP occurs for m = 3 or 4, whereas the value of m from
(16.20) is 4. By (16.38) the predicted optimum value of m for the Wach-
spress parameters would be 5. The fact that N7 is smaller for m = 9 than
for m = 5 is a reflection of the inexactness of the approximation used in
Section 16 to derive (16.38).%

Tt is to be noted that for A = 1/80, 1/120, and 1/160, the values of n
determined by (16.20) would be 5, 5, and 6, respectively, and those de-
termined by (16.38) would be 6, 6, and 7 respectively. Such values of m
were not used, but if they had been, presumably fewer iterations would
have been required.

Returning now to the case b = 1/40, based on the observed values No*
and N7, it appears that it would have been better to use larger values of
m, say between 1} and 2 times those indicated by (16.20) and (16.38). In
support of this, we note that N/* and N appear to decrease for all m up
to 10. Moreover, even with N.# and N7 there is only a small increase for
values of m larger than those given by (16.20) and (16.38) respectively.
Consequently, it seems safer to use a value of m which is slightly too large
than to use one which is too small.

26. Conclusions

The following conclusions and recommendations summarize the results
of the preceding experiments; they seem reliable at least for the Laplace
equation with given boundary values (the Dirichlet problem) and a square
mesh.

(1) The rate of convergence of the Peaceman-Rachford method is ac-

curately predicted by the theory of Part II.

(2) For each of the other regions which were embedded in the square,

the number of iterations required was usually less than and pever

3 On the other hand, we note that N.¥ agrees more closely with N than N.* does
with N/#. This is as expected because the bound (B.15) of ®.(a, b, p) for the Wachspress

parameters took into account two factors of (16.3) while the corresponding bound
(B.14) for the Peaceman-Rachford parameters uses only one factor.
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more than twice that required for the square. It is conjectured that
this is true in general for any region embedded in any rectangle.

(3) The Peaceman-Rachford method is an extremely effective method,
and, for small &; is much superior to the successive overrelaxation
method. In fact, by suitable choice of parameters, the number of
iterations only increases as |log h|; hence the increase in computer
time involved in passing to a smaller mesh size is almost entirely due
to the increase in the number of points, and only very slightly due
to an increase in thé number of iterations.

(4) The Wachspress parameters are recommended in preference to the
Peaceman-Rachford and to the optimum parameters. Unless other
information is available, it is recommended that the number of
parameters used be chosen between 13 and 2 times that obtained
from (16.38).

27. Experiments Comparing SOR Variants with ADI Variants

The following is a brief summary of experimental results* obtained on
the IBM-704 and 7090 at the Gulf Research Laboratory (Hamarville, Pa.),
comparing the latest SOR variant with the Peaceman-Rachford method.
The experimental results of the previous sections specifically compared
the point SOR method with the Peaceman-Rachford method, and in no
case (Table III) did the point SOR method with optimum w require fewer
iterations than the Peaceman-Rachford method. The situation is however
changed when the newer variant of SOR, using the two-line iterative
method (Section 21) coupled with the cyclic Chebyshev semi-iterative
method (Section 21), is similarly compared. Using the same regions for
the Dirichlet problem, the same starting values of unity and the same
method for terminating iterations as described in Section 23, the total
number of iterations for each method was normalized by the relative
amount of arithmetic required by each method per mesh point. Specifically,
the arithmetic requirement for the TBM-704 for the following methods
were in the proportions

(Point SOR 1.00
2-line cyelic Chebyshev 1.26}»
eaceman-Rachford  2.05

and the numbers of observed iterations were multiplied by these constants
and called normalized iterations; these normalized iterations are then di-
rectly proportional to actual machine time.

# By Harvey S. Price and Richard 3. Varga.
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The curves in Figs. 7 and 8 illustrate the basic results of this experi-
mentation. For each mesh spacing, each process was optimized with respect
to acceleration parameters. This means that in the case of the 2-line cyclic
Chebyshev method, estimates of the spectral radius of the Jacobi matrix
were varied to find fastest convergence. For the Peaceman-Rachford
method, the number of parameters, to be used cyclically was similarly
varied. From these curves, we see that there is a substantial decrease in
iterative time in passing from the point SOR to the 2-line cyclic Chebyshev
semi-iterative method. Second, in each of these cases (and in all other cases
actually considered) we see that there is a critical value h* of the mesh
spacing such that if b > h*, it is better to use the 2-line cyclic Chebyshev
iterative method, but for all h < h*, the optimized Peaceman-Rachford
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method is superior in terms of actual machine time. Again, the curves of
Figs. 7 and 8 indicate that the Peacernan-Rachford method for small h
is vastly superior to any of the SOR variants. These figures also show that
there is a great variation in this critical value h* from problem to problem.

Also in this experimental program at Gulf were problems of the general
form

'—(Plul(xi y))s - (quv(xt y))v + au(x, y) = f (23, y)) (x7 y)fR; (271)

where R is a bounded connected set with boundary T, subject to boundary
conditions of the form

ou
a(z, !I)“(x, y) + B8(z, ¥) 5;; = ¥(z, ¥), (xx y)el. (27'2)
80
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In particular, cases where P, and P; were discontinuous (typical of prob-
lems occurring in reactor and petroleum engineering) were similarly con-
sidered. For one such problem, it was possible to select two parameters
;1> p: > 0 such that the spectral radius of the associated Peaceman-
Rachford method was

A(TpTpy) = 13.48.
This divergence is complementary to the known convergence of Theorem

5.1 for a fixed value of p and should serve to warn the unsuspecting reader
of possitie divergence in his use of ADI methods.
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APPENDIX A: THE MINIMAX PROBLEM FOR ONE PARAMETER

1. Peaceman-Rachford Method -

In this section, we again examine the minimax function F(a,b; , B)
defined by (7.8), which arose in connection with the Peaceman-Rachford
method. For 0 < a £b,0 < a £ 8, F(a, b; o, f) is defined as a minimax
function by the formulas

B

#(a, b, p) = maxz s, el(n — p)/ (1 + P), (A1)
and

F(a,b; a, B) = min, ¢(a, b, p)é(, 8, p).- (A2)
Clearly ¢ < 1 for any p > 0, and ¢ > 1 for any p < O; moreover ¢ tends
continuously to 1 as p — ». Hence the minimum is assumed in (A.2) for
at least one finite positive “optimum rho” p*.

Again, for fixed p = 0, the continuous function [(p — )/(k + p)| is
decreasing for u < p and increasing for u > p; moreover it has 1ts minimum
when u = p. Hence its maximum value oceurs at p = a or p = b. Com-
paring the values there, we obtain

o(a b, ) {(b—p>/(b+p) if0<p < Vab,
a, 0,p) =
(b —a)/(p+a) ifpzVab
This completes the determination of ¢; it is analytic for all nonnegative
p ¥ Vab, and continuous everywhere.
It is also easy to determine the unique “optimum rho” p* which mini-

mizes ¢(a, b, p). Since In ¢ is an increasing function of ¢, p* is that rho
which minimizes In ¢. By (A.3),

(A.3)

2b/(p* — b?) < 0. if p < Vb,
dlngfdp = /T TPI <O o= (a4)
2a/(p? — a?) >0  if p > Vab.
Hence the optimum rho is Vab, and
. . 61/2 —— 12
min ¢(a, b, ) = d(a, b, Vab) = G AS5)
= tanh [(In ¢)/4], c = b/a.
Since 0 £ ¢ < 1for 0 < p < + o, it follows that
d1/2 — d~1!2 . 1
Fla,b;a,B) < P = tanh [(In d)/4], (A.6)

where d = min (b/a, /).
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It is also evident that
F[\/‘a) b’ &, ﬁ) = [nﬁnﬂ 43((1: b; Pn . [minp (f)(()l, ﬁr p)], (A7)

equality holding if and only if ¢(a, b, p) has the same “‘optimum rho” p*
as o(e, 3, p). Referring back to (A.5), we obtain the following result.

Leyva ALLF sati.sﬁes. the inequality
o b (b/a)z — (b/a)H2 (Bla)? — (8/a)7?
Fla, b, ) 2 (4 m bja) @/ F @l Y
equality holding if and only tf ab = of.

CororLrary A.l. If a = aand b = B, we have
o2 — 122
F(a,b;a,b) = [m], ¢ = b/a.
We now try to determine F generally. Since In F is an increasing function
of F, we have
In F = min, [In ¢(a, b, p) + In ¢(e, B, p)].
Moreover by the remark after (A.3), the sum in brackets is continuous
everywhere, and analytic for p 5 Vab, v/aB. Finally, differentiating (A.4)
again, we obtain d*(In ¢)/dp* < O for all p /ab.
A similar result holds for ¢(«, 8, p), and so we get : Q

@*[In ¢(a, b, p) + In (a, B, p)1/dp* <0, (A9

for p # Vab, VaB. Since a minimum cannot occur "where the second
derivative is negative, we conclude

Lemma A2. In all cases, p* = Vab or p* = \/EB.

Substituting back into (A.2) and (A.3), we obtain the following definitive
result.

TueoreM A.1. If ab £ aB, then F(a, b; o, B) = F(a, B; a, b) is the smaller
of the following two numbers:

b_\/m)ﬂ \/~> or a5~a> 8 — VaB\, (A.10)

b+ Vab)\B+ Vab Vo +a)\8+Vas) T
The first option occurs if p* = \/:z-l;; the second if p* = VoB. The

following condition, which we mention without proof, states which value of

p is optimal.

TaeoreM A.2. Let ab £ oB. If a Z a, then p* = Vab; if a £ a and

b = B, then p* = VaB. If a £ «and b £ B, then p* = Vab if af Z ab and
p* = VaB if af £ ab.
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CoroLLARY A.l. If a + b = a + B and ab £ of, then p* = v af.

Caution. In Theorem A.2, the value of p* is not necessarily unique. For

example, if a8 = ab, the two values p* = Vab and p* = Vap are both-
optimal, though they are in general distinct.

2. Douglas-Rachford Method

We now determine the minimax function F?(a, b; «, B) for the Douglas-
Rachford method, defined on the domain 0 <a b, 0 <a =8 by the
formula

b. $ = i 3 "v + p’ *
FP(a, b; @, f) = miD,>0 Mo 450 TG + )

Clearly, 0 < (w + p%)/(u + p)(v + p) < 1 if p > 0 for p, v 88 specified
and it tends to 1 continuously as p — 0, <. Hence the minimum is assumed
in (A.11) for some finite positive optimum p = p*.

One easily verifies the algebraic identity

wp 1 1u=—p=—0p (A.12)
w+pl+r 2 2w+t '

On the other hand, from (A.1)-(A.2), using the remarks after (A.2), one
can derive the following alternative formula for F:

. = mi = =)
F(a, b; o, ) = min,>o max'li‘;if; PEIED (A.13)

This will be compared with the following consequence of formulas (A.11)
and (A.12).

(A.11)

FP(q, b; a:‘rﬂ) = % + émin,,,\e énla, b; o, B; R (A.14)

where

. . n Hu — p)(» — p)
y b’ 2 ] = o Cam® e Y - A-l
#0(a, b; e, 6 ¢) M L o+ 0) (A-15)

We can compute ¢p by (A.3). If ab < a3 anda £h, then
®—pB—0/0+EB+0 if0 < p s Vab,
- b—pB—0p) p—allo— > & /7 N
¢p max P EDIES ifvVab £ p S Va (A16)

(p—a)(p —a)/(p + a)o + &) if Va8 < ».

If « > b, then ¢p is negative, and so 77 < 1/2; this case is atypical for
elliptic difference equations.
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When a = « and b = 8 (for example, if H = V as for the Helmholtz
problem in a square), énla, b; o, b; p) = [6(e, b, p)]* by (A.16) and (A.3).
Hence, in this special case, 2 = (1 + F)/2.

In general, one merely has the inequality

FP(a,b; o, 8) = [1 + F(a, b; 0, 8)1/2, (A.17)

which is evident if one compares (A.13) with (A.14)-(A.15). A complete
discussion involves an elaborate analysis of special cases, and so we merely
state a partial result without proof.

TaeoreM A.3. If ab £ b £ a £ Vap, then the optimum rho pp* for the

Douglas-Rachford method is ~'ab, and the spectral radius of the error re-
duction matriz 1s

%o(Vab) = 2Vab/(a + b + 2V ab). (A.18)
if ab £ af < bB, then
pp* = {[(a + )b — (b + Blac]/[(b + B) — (a + )2, (A.19)
and the spectral radius of the error reduction matrix is
< _ 1 1/b—pp*\ (B = pn*\
Moloo®) = 545 (7 22%) G+ ) (4.20)

For the Helmholtz equation in a rectangle, treated in Section 9, a + b
= o+ B and so b = o Hence (A.19)-(A.20) hold, and so F? > F except
in trivial cases.

3. Parameter Translation

As in section 7, we define

b g o (w— D= 5| |
‘I’(a: b; , B py B = Maxg%;:gg s+ 50+ 0 (A20)

and we define @ as the minimax function
G(ay b; o, 13) = minp.'ﬁ ‘I’(a: b; a, 8; o, ﬁ): (AZl)

allfor0 < ¢ < band 0 < a £ B. Since the functions whose extrema are
sought are continuous, the existence of  for 5 > —a and p > —a, and
hence that of G, follows by simple compactness arguments. Any pair p¥,
#* minimizing ¥ will be called optimal, for the reason stated in Section 7.

The function ¢ is closely related to the function ¢. Indeed, setting

A=(F—0p)/2m=n+8n=v—4andr=(p+ 5/2 cearly
=0 =B+ po+p=0n—10—1/(at )+
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Substituting into (A.20), we get »
. (1 — 'rnv; ) 9
Habiain ) = mitgrsg gl T ol 4
=¢la+Ab+ A0 — Aﬁ—-Af)
Now taking the minimax, we get
G(a,b; @, B) = ming F(a + A, b+ A;a — A, 8 — 4). (A.23)
We will now calculate this expression.
One easily verifies that (@ + A) (b + A) = (¢ + 4A) (8 + 4) if and only
if A = (af — ab)/(a + b + a + B). With this choice of 4, both options in
(A.10) assume the same value. Hence we have

THEOREM A4. For A= (a8 —ab)/(a+b+atB) ;

G(a, b;e,8) S Fla+ A, b+ A;a—48—20)
b+A—a+A\[(B—A—a—A\

b+A+a+A)(B—-A+a——A) (A.24)

1t is attractive to speculate that the preceding inequality can be reversed,
so that one optimizes the iteration parameters by a translation making

ab = af.
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APPENDIX B: THE MINIMAX PROBLEM FOR m > 1 PARAMETERS

1. Optimum Parameters

For any 0 < a £ b and any positive integer m, we now define the
functions ‘

én(a, b; p) = maXsgu s I‘Il [ = p)/(u + p)]} (B.1)
and ‘ ‘ '
Fm(a; b) = min, ‘bm(a’ b;P); p= (Ph R ] Pﬁ): (BZ)

which generalize the definitions of ¢(a, b, p) and F(e, b; a, b) in formulas.
(A.1) and (A.2) of Appendix A. Itis evident that ¢m is a symmetric function
of the p-—that is, it is invariant under any permutation of the subscripts

i=1,...,m. Hence, without loss of generality, we can assume that the
p: are arranged in ascending order, so that
nEmE... 8 pme (B.3)

This a,ssuniption will be made below.
Because the factors in (B.1) are homogeneous of degree zero, it is also
evident that

o0(a, b:p) = dulcaicbicp) and Fa(a,b) = Fulca,cb), (BA)

for any ¢ > 0. That is, the value of F.(a, b) depends only on the ratio b/a,
and the positive integer m.

An optimum m-vector p* = p*(a, b; m) for given a, b, and m is defined as
a real m-vector which minimizes ¢n(a, b; p)—that is, such that ¢m(a, b; %)
= F,(a, b). The existence and continuity of ¢m for fixed a, b, p is evident
since the product on the right of (B.1) is continuous and the domain is
compact. The existence of p* then follows since ém(a, b; p) is decreased if a
negative p, is replaced by —p;, since ¢ < 11if all p; are positive, and since
om — 1 as all p; — +; this makes the domain where ¢mia, b;p) £ 1 — ¢
compact, and nonvoid for sufficiently small e > 0.

The uniqueness of p*, a more difficult question, is also known. It expresses
the fact that the family of rational function expressible as products of the
form TO[(x — p:)/ (e + p:)] has the following basic property.

Chebyshev Property. For given 0 < a <bandm 2 1, there is a unigque
optimum m-vector p* with a < p* <p* <... < pm™ < b, such that
F.(a,b) = ¢n(a, b;p*). This vector is determined by the property that
the product %y (u — p:)/ (s + p:) in (B.1) assumes its maximum absolute
value Fn(a,b), with alternating signs, in exactly m + 1 points 7, with
a=rn<p*<n<...<mma1<pn*<tm="0 :
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For the proof of the fact that the functions in question have the stated
property, the reader is referred to Wachspress [25]. It is closely related to
the fact that the family of rational functions II (u — ps)/ (s + pi) is vari-
solvent® (unisolvent of variable degree).

The following symmetry property is also very helpful:

4’"‘(“1 b; P1s -« «y Pm) = QSm(a) b: ab/p;, RIS db/p,,‘). (B5)
This identity is a corollary of the fact that the correspondence u — ab/u
maps the interval @ £ p = b onto itself, combined with the evident alge-
braic identity
[(ab/u) — (ab/p:)]/[(ab/u) + (ab/p:)] = (ps — w)/(p: + k).
From (B.5) and the Chebyshev Property, it follows that
pmi1-1 = ab/p*. (B.6)
In particular, for odd m = 2n — 1, it implies p.* = Vb, as was proved '

for n = 1 by elementary methods in Appendix A.
From this Symmetry Property and the Chebyshev Property, it follows

that for even m = 2n, r, = Vab. As shown by Wachspress [25], one can
use the correspondence p — (p + ab/p)/2 to establish the following sharper
result.

TaroreM B.1. For any even positive integer m = 2,
Fanla,b) = ¢ua(a, b; p*, . . ., p3) = Fu(Vab, (@ +1)/2)  (BT)
= $u(Vab, (@ +b)/2; ¥, ., @n).
The optimum 2n-vector p* is related to the optimum n-vector o* by
Pr-s+1 = w* + \/m, Pr+s = w,‘* - m; (B.8)
so that w* = (pf—s41 + ab/ph-141)/2 = (phss + ab/phe)/2.

For n = 1, the optimum parameter for the interval a £ p = bis Vab.
Hence the case m = 2 can be explicitly calculated from (B.7) and (B.8) as
follows.

CoroLLARY B.1. For 0 < a < b and m = 2, we have

V2p* = [(a + b)Vab]i2 & [(a + b)Vab — 2ab]V2  (B.9)
and so

Fala, b) = {a + b — [2(a + B)Vab]¥}/{a + b + [2(a + b)Vab]'3.

, (B.10)

Making repeated use of (B.8), one can explicitly compute the optimum

m-vector for m = 27 any power of two. One can also compute Fn, using
3 See Rice [16b].
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(B.7). Specifically, one first computes the nested sequence of values, tending
to the arithmetico-geometric mean of @ and b:

dp = a, bo == b, Gy =V agbg, b,‘_g_ = (a,- + b,)/2 (Bll)
With these definitions, we obtain from (B.7)
r OV rbr
Fylae, bo) = Fem(ay, by) = .. . = Fi(a., b,) = (ﬂ*—\/‘%ﬁ ’ (B.12)
F m (a, )
A
1.0
.8 r
.6 I
.4 F
2 F
0

Fic. 9.

When m is not a power of two, the optimum parameters can still be
computed effectively using an algorithm of Remes [16a].* This method is
described and applied to compute numerical values by de Boor and Rice
[3a].

# See also Stiefel [16d].
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2. Good lteration Parameters
£ d

For many purposes, one can approximate Fa(a, b) sufficiently well by
relatively simple explicit formulas for p. Such choices of parameters may
be called good parameters, since they give rates of convergence for ADI
methods not too far from the optimum. o

A very simple and quite good parameter vector for arbitrary a, b, and m
was suggested by Peaceman and Rachford [16]. Their suggestion was to
use

piP = ak¥ 1, where k = (b/a)!/*™. (B.13)

TueoreM B.2. For the Peaceman-Rachford parameter vector defined by

(B.13), we have the inequality
bula, ;™) S (b — D/ + 1) = (1 = Va/b)/(L + Vajb). (B14)

Proof. Let u be given. Since each factor in (B.1) is less than one in magni-
tude, it suffices to show that one factor is bounded by (k — 1)/(k + 1).
But either p is in (a, ak), or in (bk%, b), or in some interval (pi, p:). In the
first two cases,

0 w—a)/p+a 2 E-—1)/Kk+1),

0(b—w/b+ws=sE-1/k+1).
In the third case,

or

0 <|p— et pizw x—-l.k?-r___(k“l)’,
=g+ pia pitp z4+1 k+z k41
Comparing these inequalities, (B.14) follows immediately.
Wachspress [23, 24] has pointed out that a better theoretical® upper
bound is given, for all m > 1, by the choice

< maxXy <o <k

p{® = ad¥?, where d = (b/a)V/Cm=D, (B.15)
TueorEM B.3. The Wachspress parameter vector (B.15) satisfies
én(a, b;p™) = [(d — 1/(@ + D] (B.16)

Proof. Each factor in (B.1) is less than one in magnitude, while for one
i, p is in the interval (pi_s, p:). For this 7, the corresponding factor in (B.1)
satisfies
B pit P T B x-—-l.dz—-xz(d—‘l2
ptpia pita mAzzsd A Atz di+1)’
completing the proof.
A still better parameter vector is defined by de Boor and Rice [3a].

# Though the bound (B.16) is better than (B.14), the inequality ém(a, b; ™) <
om(a, b; p®) does not hold in all cases (remark by J. Rice and C. deBoor).
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APPENDIX C: NONUNIFORM MESH SPACINGS
AND MIXED BOUNDARY CONDITIONS

In Section 14 it was assumed that the mesh spacings in the two co-
ordinate directions were equal, and Dirichlet conditions were assumed on
the boundary of a rectangle. We now seek to show that if the region is &
rectangle one can obtain commutative matrices even if the mesh spacing is
nonuniform and even if the mixed boundary condition (2.7) is used on some
sides of the rectangle, provided that d(z, y) is constant on each of these
sides. ‘

let Qp = Qp(Iy, Ls) denote the set of intersections of a family L of
horizontal lines and a family L, of vertical lines. T'wo points of Qp are said
to be adjacent if they lie on the same horizontal or vertical line segment and
if there are no other points of Qp in between. Following Forsythe and
Wasow?? we designate the distances from a point (z, y) to adjacent mesh
points in the increasing z, increasing y, decreasing z, and decreasing ¥
directions, respectively, by hz = hz(z), by = hy(y), hw = hw(z), and hs
= hs(y). The four points adjacent to (z, y) are thus (z + hz(2), ¥), (z,y +
hy(y)), (z — hw(x), v), and (z, y — hs(y)).

Given the problem of solving (14.1) in a rectangle, we let Ly and Ly be
arbitrary except that the horizontal sides of the rectangle must belong to
L, and the vertical sides to L. We assume that on each side of the rec-
tangle either u is given or else (2.7) holds with d a constant on each such
side. The set ®p = ®p(Ly, L) consists of the interior mesh points and those
points of Qp on the boundary for which the mixed conditions apply. For
each interior mesh point on Qp we approximate the differential equation
(14.2) by the difference equation defined by (14.3)—(14.6) where

ok Baathe) 4o 2hk  Ez—he)
M@ = ey B@ A TGt ) Ba@

Ag(z) = Ai(@) + Au(2), €Y .
C) = Foe £ e o o
Coly) = C:) + Cy),  (C2)
T = hkK. (C.3)
Here he' = he/2, ﬁn’ = hy/2, etc., and h and k are arbitrary positive num-

bers which might be chosen as the mesh spacings in the z- and y-directions
if these were constant.

¥ Bee [8], p. 194
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For points of ®&p which are on the boundary of the rectangle we develop
a difference equation based on both the differential equation (14.2) and the
mixed boundary condition. Consider, for example, the case of a point (z, ¥)
on the left vertical side. The boundary condition becomes

~% = 1, ). (C4)

"

The formulas for the difference operator V will be the same as for interior
points. To represent the differential operator — [8(E1(x)du/ox) /o)) Eox)
we use the approximation

EG+h) (33%)1 — By@) (%l;)o

kg Ex(z)

where (3u/0x), and (du/dz); represent values of du/dz at the points (z, y)
and (z + hg’,'y) respectively. But by (C.4) we have

— (&), + autw, ) = fm . (©3)

If we use the central difference approximation kg '(u(z + he, ¥) — u(x, ¥))
for (du/dx); we obtain

1 a du 2 ,
B E——;GI-) oz (El(x) —6_;) ~ hs*Es(z) {[Er(z + he") + dEy(z) ]ulz, y)

— Ei(z + heulx + he, v) — heEr(@)f(z, )},  (C.6)
and we have

2h.
Hu(z,y) = mi%;) {[Ex(x + h&") + dhgEr(z)]ulz, )

— Ey(x + he')ulz + hg, )}, (CD)

Similar formulas can be obtained for points of ®p on the other sides of the
rectangle.

We now seek to show that the matrices I, V, and = obtained from the
difference equation satisfy conditions (13.3)-(13.5). By (C.1) and (C.DH
the coefficients of the values of u appearing in the expression for Hu(z, y)
depend on z alone. Similarly, the coefficients in Vu(z, y) depend ony alone.
Hence the coefficients of the projection operators H and ¥ of (14.9)-(14.10)
are of the form (14.9)-(14.10). Therefore it follows by Lemma 14.3 that
H and ¥ commute, and hence the corresponding matrices H and V' com-
mute. Hence condition (13.3) holds. Moreover, by (C.3) condition (13.4)
holds. To show that the matrices H and V are similar to nonnegative di-
agonal matrices we note that FH and FV are symmetric, where Fis a
diagonal matrix with positive diagonal elements which correspond to the
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function F(z, y) which equals Eq(2)Fi(y) (he + hw)(hw + hs) as points of
®p inside the rectangle. On points of Gip on the left vertical side F(z, y) =
Ey(2)F1(y) (hw + hs)hs. Similar formulas hold for the other sides of the
rectangle. Since the matrices FI and FV are symmetric and have diagonal
dominance, it follows that they are nonnegative definite. Also, as in Lemma
14.2 it follows at once that H and V satisfy (13.5). Thus conditions (13.3)-
(13.5) are satisfied by the matrices H, V, and Z. '
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APPENDIX D: NECESSARY CONDITIONS FOR COMMUTATIVITY

In Section 14 and in Appendix C we have given some sufficient conditions
on the differential equation and the region for the matrices H,V,and Z to
satisfy conditions (13.3)-(13.5). We now present some necessary conditions.

We restrict our attention to the Dirichlet problem with the differential
equation (2.1),

L@ = 6 - 2 (460 %) - 2 (cwn ) = sww, ©D

where G(z, y), A(z, y), and C(z, y) belong to class® C® in ® + ® and
where G = 0, 4 > 0and C > 0in ® + ®. We assume that a square mesh
of length h is used and that & and ® are such that for an infinite sequence,
3¢, of values of h tending to zero all boundary points of the network belong
to ®, and moreover for all sufficiently small h in this sequence &, is con-
nected. We now prove '

Tareorem D.1. For the Dirichlet problem for the region ® and the differ-
ential equation (D.1), let there exist @ nonvanishing function P(z, y) such that
for all h in 3C the matrices H, V, and 3 satisfy conditions 13.3)-(13.5),
where H, V, and T are derived from the equation

P(QE, ?/)L(u) = P(Iy y}S(x, y)) (DZ)
using the difference approzimations (2.2) and (2.3). Then there exists a
nonnegative constant K and functions Ei(x), Ex(2), Fily), Faly) which are
positive and belong to class C® in ® + &, such that
{i(ﬂ:, y) = BE@)F,(y), C(z,y) = Ex(x)Pa(y), G(x,y) = KEAD)Fa(y), (D3)
(z,y) = ¢/Ex(2)F1(y), (cis a constant). ’
Proof. The difference operators H and V corresponding to (D.2) are
given by

Hu(z, y) = Aoz, y)ulx, y) — Az, p)ulz + b, y)

— Az, ulz — hy), (DA
Vulz, y) = Colz, Yulz,y) — Calx, Y)ulz, y + h)

- C4($; y)u(xr Yy — h)x (DE)

where 4,(z, y) = P(z, A + (h/2)y), A:(x,9) = P, pAG — (B/2)y),
ete. The so-called “projection operators” H and ¥ are defined as in Section
14 by

% Functions with continuous second partial derivatives are said to be of class C@.
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Hu(z, y) = Adz, pulz, v) — Lz Yul + b y)
- Ag(ﬂﬂ, y)u(x - h7 y)i <D6)

Vulz, y) = Colx, Yhulz, y) — Colz, yulz, y + 1)

- Tz, pulz,y — b), (D7)
where ;{1(13, y) = Al(xy y)r<'c + hr y)’ 23(177 y) = A;(:c, y)F(:c - h7 y); ete.,
and where T'(z, ¥) = 1 or 0 according to whether or not (z, y) belongs to
R '

We now prove two lemmas about general difference operators of the form
(D.6)-(D.7).

Levma D.2. If the coefficients As(z, y), 1 = 0, 1, 3, and Ciz, y), 1 = 0,
2, 4, are positive in Gu, and if O and V commute, then ®s is rectangular,
Ao(z, y) depends only on x and Co(x, y) depends only on y.

Proof. We first show that for any (z, y) if any three of the four points
(z, ), (& + h, v), (x, y + }), and (x + h, y + h) belong to &, then the
fourth does also. This and the assumption that ® is connected will prove
that @ is rectangular. Let us assume that the three points (z, ¥), (z + h, ¥),
and (z + h, y + h) belong to ®. Equating coefficients of u(z + h, ¥y + h)
in the expressions for AVu(z, y) and VHu(z,y) wehave Ai(z, ¥)Ca(z + R, y)
= Ay(z, y + WTslz, v), or

Az, ¥)Calz + b, YT (@ + h, YT + by + h)
= Al(xr y + h)Cg(it, y)r(x + h: Yy + h)r(x: Yy + h)'
But since T'(z + h, y + h) = I'(z + h, y) and since none of the coefficients
Az, y) or Ci(z, y) vanishes, equality is possible only if T'(z, y + k) = L.
Hence (z, y + h) belongs to ®. Since similar arguments hold in other cases
it follows that ®j is rectangular.
If the rectangular network G had only one column of points, then Co(z, ¥)
would clearly be independent of z. Otherwise, let (z,y) and (z + h, y) be
only two points of ®a. Equating coefficients of u(z + h,y) in the ex-

pressions for AV u(z, y) and VHu(z, y) we have —ZAi@, ¥)Coz + h,y) =
—Ai(z, ¥)Colz, y), or equivalently

Ay 1O+ b )T 4 by ) = — A, YCale, YT + ).

But since T'(z + h, ¥) = 1, and since A(x, y) > 0 we have Co(z + h,y) =
Co(z, y)- Since this is true for any point (z, y) of ® such that (x + h,y)is
also in ®y it follows that Co(z, ) is independent of z. Similarly, 4.(z, y) is
independent of y, and Lemma D.2 is proved.

We shall call the difference operators H and V symmetric if the corre-
sponding matrices H and V, respectively, are symmetric. Symmetry of #
implies that the coefficient of u(z + h, y) in the expression for Hulz, y) is
the same as the coefficient of u(z, ) in the expression for Hu(z + h, ),
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assuming that both (z, y) and (z + h, y) are in ®. One can readily verify
that necessary and sufficient conditions for symmetry of A and V are
Az, y) = Lz + h,y), (for (z,y) and (z + b, y) in Ry), (D.8)
Ciz,y) = Culz,y + k),  (for (z,y) and (z,y + ) in Ra). (D.9)
We now prove
Lemma D.3. Under the hypotheses of Lemma D.1 if H and V are symmetric,

then the nonzero values of A.(z, y) and A,(x, y) depend only on x, and the
nonzero values of Ca(z, y) and Cu(z, y) depend only on y. _
Proof. The network ®, is rectangular, by Lemma D.1. If (z,) and
(z, y + k) are any two points (z, y) and (z, y + k) in ®» such that Zy(z, y)
and Z,(z, y + k) do not vanish, then I'(z + h,y) = Tz + h,y + 1) = 1.
Hence (z + k, ¥) and (z + h, ¥ + k) belong to ®s. Equating the coefficients
of u(z + h, y + k) in the expressions for A Vu(z, y) and VHu(z, y) we ob-
tain Ax(z, »)Ca(z + by y) = Au(z, y + BTz, y) or
As(z, y)Calz + b, y) = Ai(z, y + B)Calz, y). (D.10)
Also, equating the coefficients of u(z* — h, y 4+ h) in the expressions for
BVu(z*, y) and VHu(z*, y), where z* = z + h we obtain Ai(z + h, y)
Tz, y) = &z + b,y + W)Talz + b, 1), or
A3(z + h’ y)Cz(z! y) = As(ﬁ: + h; y + h)cz(z + hy y),
and, by (D.8) ;
. Aulz, 9)Calz, y) = As(z, v + h)Ca(z + by 9). (D.11)
Combining (D.10) and (D.11) we obtain [4i(z,)]? = [4i(z, ¥y + M)
and since A; > 0 we have :
Ai(z,y) = As(z,y + D).

Since this is true for any two points (z, ¥) and (z + k, ¥) in ®s, it follows
‘that the nonzero values of 4(z, ¥) are independent of y. Similar arguments
can be used to prove this about A3(z, ¥) and to show that the nonzero values
of Cy(z, y) and Ti(z, y) are independent of z. Thus Lemma D.3 is proved.

In order to apply Lemma D.3 to the proof of Theorem D.1, since H and
¥ are not in general symmetric, we construct operators H®™ and V&
which are both symmetric and commutative. We let

H™(z,y) = Af(z, Yulz, y) — AV (z, Yulz + h, y)
. - zg‘w(x: y)u(x - hx y)r (Dlz)
Vi (z,y) = Cf(z, Yulz,y) — T (=, Yule,y + k)

- ‘Y{‘m(x: y)u(x’ /B h)r (DL—‘)’)
where
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(e = P [ 4(= + o) + 4(z =3 H)}
AP, 3) = P, )P + A (2 + 2 0),
AP, 5) = Pz, )P — b A (5= 3v)

n h h
o9 = Py [z +3) +C(av—3))

C%M(x) y) = Pil?(x) y)Pllz(x; y+ h)C (I: y‘+ g)’

. (D.14)

0Pz, 1) = P, )P,y — WA (50— 5)
Here, as usual, AM(z,7) = A (2, y)TE + h, 9),
AP (z,y) = AP (z, y)T(z — h, ¥), ete.

Tt is easy to see that H® and V™ are symmetric. To show that they
commute we consider the associated matrices H® and V®. Evidently, if
F(z,y) = 1/P(z,y) and if the diagonal matrix F corresponds to the
function F(z,y) then H® = FV2HF-V? and V® = Fuzyp-12, Clearly,
if HV = VH, then HMV® = V®H®, Hence, by Lemma D.2 it follows
that the nonzero coefficients 4™ (z, y) and C{(z, y) depend only on z and
y, respectively. In particular, A®™(z,y) = PV (z, y)PV*(z + h, YAz +
(h/2), y) must be independent of y except for points (z, ) of ®x such that
(z + b, y) does not belong to & It follows that

P, pP +h)A (2 + Hy) =06y (D19)

for all h in 3¢ and for all (z, ¥) in ®x except as noted above. Since P(z, ¥)
is continuous, the limit of both sides of the above equation exists as h — 0
through the sequence 3¢, and we have

Pz, 1)A(z,y) = X(z) = Lim 6(z, ). (D.16)
R

Since this is true for all points (z, y) which for some h in 3¢ belong to ®s
and such that (z + h, ¥) isin ®j, and since such points are dense in & + ®,
it follows by continuity that (D.16) holds throughout ® + ®. Similarly,
we have for some continuous function Y (y) '

P(z,y)C(z, ¥) = Y(¥)- (D.17)
Substituting (D.16) in (D.15) we have
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A+ (w20 _ _ ah
Az, PAiE + by X@XE A+

= 0i(z, b) (D.18)

or

tog (4 + ) — 1oE Ay — log A+ hy) = g 65)
= Oy, h).  (D.19)
Since A belongs to class C® and is positive in ® 4+ ® we have by the mean
value theorem

Az + (h/2), ) R\ 1L
bg (A pAG +hyI? £ (x T3 y) 58@ W)

. (D.20)
— 5@+ h) =0,
where
2 14,y
ta,y) = i (D.21)
The general solution of the difference equation (D.20) is
¢z, y) = aly) + 28(y) (D-22)

for suitable functions a(y) and B(y). Upon substituting (D.22) in (D.21)
and integrating we have
Az, y) = E@F:(y) exp [zY1(¥)] (D.23)

for suitable functions Ei(x)Fi(y) and Yy(y). Similarly for suitable Ea(2),
Fs(y), X1(z) we have

Clz, y) = E(2)Fay) exp [yXa(@)]- (D.24)

But by (D.16) and (D.17) we have A(z, y)/Clz,y) = X(z)/Y(y) so that
A =

axay <1 g C) = 0. (D.25)

But by (D.23) and (D.24), for some constant a

Xi(z) = Vily) = o,
and hence
Az, y) = E@)F(y)e, Clz,y) = Es(x)Fa(y)e™. (D.26)

Moreover, by (D.16), (D.17), and (D.26) there exists a constant ¢ different
from zero such that

P(x,y) = (D.27)

c
Ex(x)F(y)
Since the diagonal matrix T which corresponds to the function k2P (x, y)
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G(z, ¥) must be a constant times the identity matmx, by (13.4), it follows
that for some constant K

G(z,y) = KEy(2)F:(y). (D.28)
To determine the constant a we use the fact that A§ (x, y) and C§¥ (z, ¥)
are mdependent of z and y, respectively. By (D.14), (D.26), and (D.27)

we must have
eM/2F, (x + g) + e9m/2E, (2: - g)

independent of y. But since E,(x) is a positive function this is clearly im-
possible unless @ = 0. Therefore (D.3) follows from (D.26), (D.27), and
(D.28), and Theorem D.1 is proved.

Even if the diagonal matrix T is not a constant times the identity matrix
one might try to obtain matrices H’, V' and 2’ = 0 satisfying conditions
(13.3)-(13.5) by letting H' = H + 42, V' = V 4+ (1 — v)Z’ for some
constant v. Conceivably H’ and V' might commute even though H and V
did not. This is clearly not possible, of course, if £ = ol.

It can be shown that if G(z, y), A(z, ¥), and C(z, y) are of class C®, then
the conditions of Theorem D.1 are necessary in order for H' and V' to
commute. We omit the proof.
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