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Summary. It was recently shown that the inverse of a strictly ultrametric matrix
is a strictly diagonally dominant Stieltjes matrix. On the other hand, as it is
well-known that the inverse of a strictly diagonally dominant Stieltjes matrix
is a real symmetric matrix with nonnegative entries, it is natural to ask, converse-
ly, if every strictly diagonally dominant Stieltjes matrix has a strictly ultrametric
inverse. Examples show, however, that the converse is not true in general, ie.,
there-are strictly diagonally dominant Stieltjes matrices in R"*" (for every n=3)
whose inverses are not strictly ultrametric matrices. Then, the question naturally
arises if one can determine which strictly diagonally dominant Stieltjes matrices,
in R"*" (n=3), have inverses which are strictly ultrametric. Here, we develop
an algorithm, based on graph theory, which determines if a given strictly diago-
nally dominant Stieltjes matrix 4 has a strictly ultrametric inverse, where the
algorithm is applied to 4 and requires no computation of inverse. Moreover,
if this given strictly diagonally dominant Stieltjes matrix has a strictly ultrametric

inverse, our algorithm uniquely determines this inverse as a special sum of
rank-one matrices.

Mathematics Subject Classification (1991 ): 15A57, 15A48

1. Introduction

In Martinez et al. (1994), the new concept of strictly ultrametric matrices was
studied. With the notation N:={1, 2, ..., n} for any positive integer n, we begin
with their following definition:

Drefinition 1.1. A matrix B=[b; ;] in R" " is strictly ultrametric if

(1.1) i) B is symmetric with nonnegative entries;
iiy b, ;zmin{b; ,; b, ;} foralli,j, keN;

iii) b, ;>max b, ,: ke N\{i}} for all ieN,
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where, if n=1, (1.1iii) is interpreted as b, ; >0.
The result of Martinez et al. (1994) is

Theorem 1.2. If B=[b, ;] in R"*" is strictly ultrametric, then B is nonsingular
and its inverse, A:=[a; ;] in R"*", is a strictly diagonally dominant Stieltjes matrix

n
e, A is symmetric, a; ;<0 for all i and j in N with i%j, and a, .> a; .
(2] ] ] [ ik

Jor allie N ), with the additional property that kel

(12) ai’jZO ifal’ld Only lfV bi,j=0 (l,]EN)

For a shorter linear algebra proof of Theorem 1.2, see Nabben and Varga
(1994). _

The first question one might ask is if the converse of Theorem 1.2 is true,
Le, if A in R"*" is a strictly diagonally dominant Stieltjes matrix (which we
abbreviate below as an s.d.d. Stieltjes matrix) and if its inverse, B:=[b; ;] in
IR"*", satisfies (1.2), then is B strictly ultrametric? This converse turns out to
be true if n=1 or n=2, but fails in general for n>3. (Examples to this will
be given in Sect. 4.) This being the case, the second question one might ask
is if, given an s.d.d. Stieltjes matrix 4 in R"*", is there an algorithm, which
can be directly applied to A4, which determines whether 4! is strictly ultrametric
or not? Our main result here is to give such an algorithm, which is based
on graph theory. One of the consequences of our construction is that if the
given s.d.d. Stieltjes matrix does possess a strictly ultrametric inverse, then this
algorithm uniquely determines this inverse as a sum of special rank-one matrices.

2. Background

As background for this algorithm, we need the following graph-theoretic results
from Nabben and Varga (1994):

Proposition 2.1. Let B=[b, ;] in R"*" be symmetric with all its entries nonnegative,
and set ]

(2.1) T(B)::min{bl,j. l,jEN}.

If &, inR" is defined by &,:=(1, 1, ..., )T and if n>1, then B is strictly ultrametric
if and only if B—t(B)¢&, &Y is strictly ultrametric and completely reducible, i.e.,

there exists a positive integer r with 1<r<n and a permutation matrix P in
IR"™" such that

C O
02) R E b

where CeRR™" and DeR"™"*""D qre each strictly ultrametric.
Next, because the result of Proposition 2.1 can also be applied to the disjoint
principal submatrices C and D of (2.2), a complete characterization (cf. Nabben

and Varga (1994)) of strictly ultrametric matrices, via graph theory, is obtained.
Their result is
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Theorem 2.2. Given any strictly ultrametric matrix B in R " there is an associated
rooted tree for N=1{1,2, ., nf, consisting of (2n— 1) vertices, such that

2n—1
(2.3) B = Z TI ul U?,

=1

where the associated partition vectors u, in R" 0f (2.3), determined from the vertices
of the tree, are nonzero vectors in R" having only 0 and 1 components, and,
with the notation that

(2.4) x(w):=sum of the components of uy,

where the t’s in (2.3) are nonnegative with ©,>0 when x ()= 1. Conversely, given
any tree for N=1{1,2, ..., n}, which determines the associated partition vectors

u; in R, and given any nonnegative constants {t,}2"7* with ;>0 when x(u)=1,
2n—1

then Y tywuf is strictly ultrametric in IR <.
=1

To be more specific about the rooted tree and the associated partition vectors
u, in R” which were mentioned in Theorem 2.2, the top vertex of the tree
is the set N={1,2, ...,n}, which is associated with the column vector u,
=(1,1,...,1)T in R". The next level of the tree consists of a partition of N
into two disjoint nonempty subsets S, and S 3, and its associated partition vector
u, (resp. u;) in R” is such that its jth component is unity if jeS, (resp. jeS;)
and is zero otherwise. Each subsequent level of the tree is a partition, into
two disjoint nonempty subsets of a previous subset of N , with a corresponding
definition of their associated partition vectors in IR”, and this is continued until
singleton subsets of N are reached. This is illustrated below in Fig. 1 for n=35.

=

(1,2,3,4,5) ur=(1,1,1,1, 7

u2:=(1,0,0, 1,0 u3:=(0, 1, 1,0, )7

Ug =

(1,0,0,0,07% us = (0, 0,0, 1,0)7
e = (0, 0 Y

I
L0 ur:=(0,0,1,0, DT

{

8:=(0,0,1,0,00: 19 := (0, 0, 0,0, D7
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3. The Algorithm

For n=1, it 1s evident that a matrix [y] in R'*! is both an s.d.d. Stieltjes
matrix and a strictly ultrametric matrix if and only if y>0. Thus, consider
any s.d.d. Stieltjes matrix 4=[qa, ;] in R"*" (1= 2), so that

(3.1 ) a;=0forallisj (i jeN);
ii) a;;=a;; (i,jeN) (symmetry);

i) ), a;;=p;>0 (ieN)(strict diagonal dominance).
j=1

As is well-known, 4 is necessarily real symmetric and positive definite, the last

property following from (3.11), (3.1 iii) and the Gerschgorin Circle Theorem.
Next, set

(3.2) p(A)=min{—a; ;:isj (i,jeN)},
so that p(A4) = 0. (It is also convenient to define w(A):=0if n=1,)

Reduction Step 1. pu(A)>0. In this case, the s.d.d. Stieltjes matrix 4 has no
zero off-diagonal entries. With the positive vector p:=(py, pa, ..., p,)’ in R" from
(3.1 iii), consider the real n x n matrix

(3.3) , Z(d):zA'I_OCppT:[ai,j+apipj] (a>0),

which is a rank-one perturbation of the matrix A. Then, because all entries

of the matrix app” are positive for a>0 while the off-diagonal entries of A4
are all negative, there exists a unique &> 0 such that ’

(3.4) nA(@)=0.

By construction, 4(d) of (3.3) is then a real symmetric matrix with positive
diagonal entries and its off-diagonal entries are nonpositve, with some zero
off-diagonal entries because of (3.4). But since we have (cf. (3.1 iii) and (3.3))

z (a;, j4+ap;p))= Z a;, j+dap; Z Pj:Pi<1+OAC Z Pj)>0 (ieN),
j=1 j=1 j=1 =1

j=

it is evident that A(4) is also an s.d.d. Stieltjes matrix. Thus, starting with the
s.d.d. Stieltjes matrix 4 in R"*" with u(4)>0, we have constructed a rank-one
perturbation of 4 in R**", namely A (&), which is an s.d.d. Stieltjes matrix with
u(A(&)=0.

Next, we study the effect of a rank-one perturbation of 4 in (3.3) on its

inverse. With Bi=4 "1, the Sherman-Morrison formula (cf. Golub and Van Loan
(1989), p. 51), gives

o BTG ETB TG A
B“ n T IZB 1 ¢ n=n = - nen
(B—t&, &) TieEp e, T
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which, since 4¢&=p from (3.1 iii), can be written as
-1 tpp’ : T
(3.6) (B—1é&,¢&)) =A+m, provided that 1 —t¢&! p=0.
— TGy

In particular, on setting

(3.7) fim 50,
1+& ) p;

i=1
we see from (3.7) that

1—-tETp=1—¢ Zpi=—-—1—-;——>o
T +a Y

i=1

3

so that 1—1&) p=0. It also follows from (3.7) that

A

T
(3.8) & - m .
Thus, using (3.8), (3.6) can be expressed, for t=1%, as
(3.9) (B—t&, &) =A+app.

This can be used as follows. Given our s.d.d. Stieltjes matrix 4 with u(A4)>0,
then A4(4)=A+4pp”, with w(A(x))=0, is also an s.d.d. Stieltjes matrix but now
with some zero off-diagonal entries. Since 4(4) is a Stieltjes matrix, the fiverse
of A(&), namely (cf. (3.9)) B—t¢, &, certainly has only nonnegative entries (cf.

Varga (1962), Cor. 3, p. 85), but from (3.7) and the definition of (2.1), this implies
that.

(3.10) 0<t<1(B).

The last inequality of (3.10) insures that B is strictly ultrametric if and only
if B—1¢&, &x is also strictly ultrametric.
We summarize the above results in

Proposition 3.1. (Reduction Step 1). If A is an s.d.d. Stieltjes matrix in R**"
(n=2) with u(A)>0, then there exists a unique 4>0 such that A+dappt is an
s.d.d. Stieltjes with u(A+app")=0. Moreover, the inverse of A+dapp" is strictly
ultrametric if and only if the inverse of A is strictly ultrametric.

We remark that Proposition 3.1 is called “reduction step 1” because it takes
the question, of whether the s.d.d. Stieltjes matrix A4 with u(A)>0 has a strictly
ultrametric inverse, and reduces it to the equivalent question, of whether the
s.d.d. Stieltjes matrix A+4pp" (with u(A+3dppT)=0) has a strictly ultrametric
inverse.

This brings us to

Reduction Step 2. u(A)=0. In this case, 4 in R"*" (with n=2) necessarily has
some zero off-diagonal entries. First, assume that there is no permutation matrix
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P in R"*" such that PAPT is completely reducible. Then, the algorithm fails,
and the result is that while 4 is an s.d.d. Stieltjes matrix, its inverse is nor
strictly ultrametric. For, if its inverse B were strictly ultrametric, then from
(1.2) of Theorem 1.2, A and B would have the same zero entries, and from
(2.2) of Proposition 2.1 (with t(B)=0), B would be necessarily completely reduc-
ible, as would be A4, because of their common zero structure, which is a contradic-
tion.

Next, assume (in this case p(A4)=0) that there is a permutation matrix P

in IR"*" for which PAP" is completely reducible, i.e., for some positive integer
rwith 1 Sr<n,

C O )

PAPT= ,  with CeR"™" and DeR®n*@=n,

O D

where C and D are each an s.d.d. Stieltjes matrix. If the inverse, B, of 4 1is

strictly ultrametric, then the common zero structures of A and B, from (1.2)
of Theorem 1.2, implies that

B,

0
PBPT:[ ], with B,eR"*" and B,elR"™"*®=n,

0 B,

where B, and B, are each strictly ultrametric.
We summarize the above results in

Proposition 3.2. (Reduction Step 2). If A is an s.d.d. Stieltjes matrix is R"*"
(n=2) with u(A)=0, then the inverse of A is strictly ultrametric if and only
if A is completely reducible, i.e., there is a permutation matrix P in R"*" and
a positive integer r with 1 <r<n with

(3.10) PAPT:[C O}, with CéR*X"@nd DeR®—N*n=n,

O D

and C and D are each an s.d.d. Stieltjes matrix with a strictly ultrametric inverse.

We note that if A4 is an s.d.d. Stieltjes matrix in R**?* with u(4)=0, then
A must have the form

o 0 .
A-{O ﬁ] with >0 and f>0.

As such, A is then completely reducible and its inverse is strictly ultrametrix.
This shows (along with the first remark in this section) that any s.d.d. Stieltjes
matrix in R" ™", for n=1 or n=2, must have a strictly ultrametric inverse.

The reason for calling Proposition 3.2 the “reduction step 2” is clear: if
the s.d.d. Stieltjes matrix 4 in R"*" (n>2), with u(4)=0, is completely reducible,
then 4 has a strictly ultrametric inverse if and only if each of the two s.d.d.
Stieltjes matrices C and D of (3.10) has a strictly ultrametric inverse. Because
the matrices C and D are square s.d.d. Stieltjes matrices of reduced order, we
can then apply reduction steps 1 and/or 2 to both C and D to determine if
each has a strictly ultrametric inverse. Of course, this algorithm can be continued
until it either fails at some reduction step 2 (in which case, the original s.d.d.
Stieltjes matrix 4 in R"*" does not have a strictly ultrametric inverse), or else
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the algorithm successfully continues to termination, in which case 4 has a strictly
ultrametric inverse.

It is important to remark that if this algorithm does successfully continue
to termination, then the totality of reduction steps 1 determines all the ;s in
(2.3) of Theorem 2.2, as well as the associated column vectors u, in R". (For
example, © of (3.7) is the correct multiplier in (2.3) for the associated vector
u=(1, 1, ..., )" in R", if A has a strictly ultrametric inverse.) This will be
made clear in the first example of the next section.

4. Examples

In this section, we give eiamples showing how the algorithm of Sect. 2 can
be applied in sample cases.

Example 1. Consider

27 —22 -2
(4.1) A=l =22 32 —4],
v —2  —4 10

so that A, is, by inspection, a 3 x 3 s.d.d. Stieltjes matrix. For this example
(cf. (3.1 iii)), we have p=45(3, 6, 4)T with (cf. (3.2)) u(4,)= ++5>0. As u(4,)>0,
we apply reduction step 1 to 4, of (4.1).

1. Reductions Step 1 for A, of (4.1). In this case, we have

“-;“ Lo 1812
pph—|18 36 24|,
8

(38) 12 24 16

from which it follows (cf. (3.4)) that &, =19/3. Similarly from (3.7), £, =2. Thus,
(cf. (3.3)), the result of the reduction step 1 for 4, of (4.1) gives

285 —19 0
(4.2) A (@)= —19 38 0 |, withu(4,(4,))=0.
0 0 3803

At this point, we set t,:=7,=2, and we associate with ©, the vector u,
p . . . 1
:=(1, 1, 1)T, since A4, is a 3 x 3 matrix.
1

2. Reduction Step 2 for A,(&,) of (4.2). It is already clear from (4.2) that 4, (&,)
is completely reducible, so that the algorithm can be continued by applying

the reduction steps to the two principal submatrices of 4,(4,) of (4.2) which
can be expressed as

(4.3) Cl, 1=

P

3 -2
‘:_2 4}, and C, ,:=[1/3].

We see that ((C, ;)=1% and, by definition, that u(C, ,)=0.
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3. Reduction Step I for C, ; of (4.3). In this case, p=2(1, 2)T, and we similarly
determine that §,=4 and £,=1. (Here, we set T,:=7,=1 and associate with
7, the vector of u,:=(1, 1, 0)", since C, , is the 2 x 2 upper principal submatrix
of A,(4,).) In this case, reduction step 1, applied to C, |, gives

~ 0 ~
(@4) Catt=|glg] v w@ =0

4. Reduction Step 2 for C 1,1(&2) of (4.4). It is again clear from (4.4) that C 1,1(45)
is completely reducible, so that the algorithm can be continued. But as the
two principal submatrices of (4.4), as well as C,,, of (4.3), are trivially 1 x1
s.d.d. Stieltjes matrices, the algorithm has then successfully terminated, and we
conclude that the s.d.d. Stieltjes matrix 4, of (4.1) has a strictly ultrametric
inverse!

On gathering the results of the reduction steps 1 for the matrix of (4.1),

we specifically have the following values for t; and the partition vectors u; for
the associated rooted tree:

1,2,3) =2 and w=(1,1,1)7

3) =1 and w=(1, 1,07
=3 and wu3=(0,0, )Y
Ta=1 and w=(1,0, O)T

Ts=1/2 and  us=(0, 1, 0).

Fig. 2.
Thus (cf. (2.3)),
5
(45) Bl = Z T u, u,T.
I=1

As all the 7/’s are positive from Fig. 2, it follows directly from Theorem 2.2
that B,, the inverse of 4, is strictly ultrametric. Moreover, the explicit represen-
tation of (4.5) allows us to directly express B, by

4 3
(4.6) Bi=A;'=13 35
2 2

(2T SO V]
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Example 2. Consider the matrix

5 =2 =2
4.7) Ay=| -2 4 1),
—2 -1 4

which, by inspection, is a 3 x3 s.d.d. Stieltjes matrix. In this Czise (cf. (3.2)),
p(A)=1, and the reduction step 1 of Sect.3 can be directly applied. As p
=(1, 1, DT from (3.1 iii), it follows that (A, +pp")=0, ie. 8,:=1. Then,

6 —1 —1
(4.8) Ay+pp'=| -1 5 0},
-1 0 5

but as the above matrix is not completely reducible, the algorithm fails at' this
step. Consequently, its inverse, B,:=(4, +pp") ~?, given explicitly by

25 5 5
(4.9) By=(A,+pp") '=1g| 5 29 1 |= Lb: ;]
5 1 29

is then not strictly ultrametric. (This can also be seen directly from Definition
1.1: b, 3=1 while the min {b, ; by 3} =S5, thus contradicting (1.1 i).)
Consider again the matrix A, of (4.7), whose inverse is given by

15 10 10
(4.10) B,=xl10 16 9 |,
10 9 16

(where B, again fails to satisfy (1.11i) for i=2, j=3). We note that, for 4,
and its inverse B,, the condition (1.2) vacuously holds. For any n> 3, the nx n
matrix A, defined from the matrix 4, in (4.7) by

14 0 : : X
4.11) Av-;—[ 0 111-—3] (where I; denotes the identity matrix in IR7*J),

is then an <.d.d. Stieltjes matrix satisfying (1.2), but the inverse of A is clearly
not strictly ultrametric. This shows, for any n>3, that there are s.d.d. Stieltjes

matrices in R""", satisfying (1.2) of Theorem 1.2, whose inverses are not strictly
ultrametric.
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