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ABSTRACT

We investigate here iteration matrices T(w), for solving systems of linear equations,
which, like the SOR iterative method, are dependent on a single relaxation parameter,
w. We use a local perturbation analysis, for w small, of the extrapolated Jacobi iteration
matrix J(w), which results in geometrical necessary and sufficient conditions for the
convergence or divergence of T(w), for w small. Then, an application of this analysis is
given both for the SSOR (symmetric successive overrelation) iterative method and the
ADI (alternating directions implicit) method for solving non-Hermitian systems of linear
equations.

Keywords: Extrapolated Jacobi iteration, SOR, SSOR, perturbation analysis, optimal

paths of relaxation

0. Introduction

During the last few years, there has been renewed interest in the SOR. (succes-
sive overrelaxation) and the SSOR (symmetric successive overrelaxation) iterative
methods, because of their applications to parallel computation and to the pre-
conditioning of matrices in conjunction with the conjugate gradient method (see,
for example, Hanke, Neumann, and Niethammer [5]). In addition, there has also
been a similar renewed recent interest in the use of iterative methods for real non-
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Hermitian, as well as complex non-Hermitian, systems of linear equations (see, for
example, Freund [4]).

For an Hermitian matrix A whose diagonal matrix D is positive definite, a well
known result of Ostrowski (cf. Ostrowski [8] or Varga [9, p. 77]) gives that each
of the SOR and the SSOR iterative methods converges if and only if A is positive
definite and the real relaxation factor w satisfies 0 < w < 2. For related results
when A is non-Hermitian with unit diagonal entries, Broyden [1] and Niethammer
[6] showed that if the Hermitian part of A, namely (A -+ A*)/2, is positive definite,
then there exists an w, in (0,2] such that the SOR iterative method converges for
all w with 0 < w < wy; in [6], bounds for w, were also given. In light of Ostrowski’s
result which is both necessary and sufficient in the Hermitian case, it is natural to
ask if the converse of the above result is valid, i.e., if A has unit diagonal entries
and if the SOR iterative method converges for all w in (0,w,) for some w, > 0,
then is the Hermitian part of A positive definite? Buoni and Varga [2, Corollary
3.5] showed that this converse is not valid in general, and moreover, they derived
necessary and sufficient conditions for the simultaneous convergence and divergence
of the Jacobi and SOR iterative methods for complex relaxation factors w. 'The
results of [2] were obtained from a perturbation analysis coupling the spectra of
the Jacobi and SOR iteration matrices for complex relaxation factors w near zero;
the convex hull of the eigenvalues of the matrix D~! A played a central role in this
analysis.

The motivation for this paper came from the question, if such SOR extension
also give rise to SSOR. extensions, in particular. Our extensions here, via matrices
w2-compatible with the extrapolated Jacobi matrix (to be defined below), turns out
to have applications not only to such SSOR extensions, but also to ADI extensions.
For example, it is shown in Corollary 7 that there exists a real interval (0, wq) with
wy > 0, such that the SSOR. iterative method converges for all w € (0,wy), if the
eigenvalues of D~'A lie in the open right-half plane. A partial converse to this
is also given in Corollary 7. Further, optimal paths of relaxation in the complex
plane, in a more general setting than that of [2], will also be discussed in §2.

1. Relaxation methods for non-Hermitian linear systems
Given a matrix A € C"*", we consider a general splitting of A of the form
(1.1) A=D-L-U (D,L,U¢€C*™" with D nonsingular).

Usually, D is diagonal or block-diagonal matrix with D=!L and D~1U strictly lower
and strictly upper triangular matrices, respectively, but his is not needed here. With
this splitting of A, the eztrapolated Jacob iteration matrix J(w) € C**", associated
with the splitting of (1.1), is defined for each complex number w by

(1.2) J(w):=I-wD14,

so that J(w) is an entire function of w € C.



Next, consider any iteration matrix 7'(w) € C**" which is dependent on the
single complex parameter w, and we assume that there is a largest number r(T") > 0
such that T'(w) is analytic, as a function of w, in 0 < |w| < #(T). (We remark that
(T') can be +c0, as in the above case of the Jacobi matrix J(w)). Then, the matrix
T(w) is said to be w?~compatible with the Jacobi matrix J(w) of (1.2) if T'(w) can

be expressed as
(1.3) T(w) = J(w) — w? Rp(w),

where the matrix Rp(w) in C**" is further assumed to be analytic at w = 0.
(Consequently, Rp(w) is then also analytic in 0 < |w| < 7(T).)

As a concrete example of the above definition, consider the successive overre-
laxation matrix £(w), defined as usual from (1.1) by

(1.4) L(w) = (D -wL) ' [(1-w)D+wU]=( —wD™' L) (1 = w) +wD™'U).
It is clear that if
(1.5) w(D7'L) :=min{lw|:w € C and I—-wD™'L is singular},

then 0 < p(D~'L) < oo (with u(D~'L) = oo holding, for example, if D~'L is
strictly lower triangular), and £(w) is then analytic in 0 < jw| < u(D~LL).
Now, it is readily follows from (1.4) and (1.2) that (cf. Buoni and Varga [2])

(1.6) L(w)=J(w)—w?’D ' L(I —wD™'L)"'D™'4, 0< || <p(D7'L).
In this case (cf. (1.3)), £(w) satisfies (1.3) with
Re(w) := D'L(I —wD™'L)"'D714,

and Re(w) is analytic at w = 0. Consequently, £(w) is w?~compatible with J(w).
With the above notations and with the usual notations

o(F):={\:det(F —A]) =0} and p(F):=max{|A]: )€ o(F)}

for the spectrum o(F) and the speciral radius p(F), respectively, of a matrix
F € C"*™, we establish the following result, Proposition 1, which is a slight gener-
alization to w?-compatible matrices of the result of Buoni and Varga [2, Theorem
2.2]. (The proof of Proposition 1 is given only to indicate the flavor of the proofs
to follow; subsequent similar proofs will be omitted.)

Proposition 1. Let the matrix T(w) in C**" be w?-compatible with the Jacobi
matrix J(w) of (1.2), associated with the splitting of (1.1). If A is nonsingular and
if {t:(w)}}=, denotes the eigenvalues of J(w) (with multiplicities counted), then
there is an ordering {A;(w)}?-; of the eigenvalues T'(w) such that

(1.7) V(@) = @) = 0@ (i =12,...,n),

for all complex numbers w sufficiently small.



Proof. From (1.3), consider the matrix Q(w) in C"*" defined by
(1.8) Q(w) := D™'A+ wRp(w),

where the matrices Q(w) and Ry (w), from (1.3), are both analyticin 0 < |w| < r(T).
A classical result of Ostrowski [8, p. 334] gives us that if {;}7-, = o(D~1A) (with
multiplicities counted), there is an ordering {£;(w)}?-; of the eigenvalue of Q(w)
such that

(1.9) I (@) = 7] = 0™ (1=1,2,...,n),

for all w sufficiently small in modulus, where n is the order of the matrices 7'(w) and
J(w). From (1.2), we can write, from (1.3) and (1.8) for any w with 0 < |w| < r(T),
that

(110) QW) = —{(I-J() +e Rr()}

= LU-1@) + ) - TE) = 0 -TE).

Forw # 0, &(w) = 2(1 = A;j(w)) gives a 1 — 1 relationship between the eigenvalues

{&(w)}?=1 of Q(w) and the eigenvalues {Aj(W)}?=y of T(w), as does v; = 11—

pj(w)) similarly relate eigenvalues {7;}7-; of D~1A with eigenvalues {y;(w)}}= of

J(w). Thus, for each pair of eigenvalues £;(w) and p;(w) in (1.9), we have
1 i (w) — pi @)l _

165 (w) =7l = 51 = Aj) = A =p)l=——p=——= O’

In

)

and the final equality gives the desired result of (1.7). O

We remark that the exponent, namely 1+ (1/n), of w in (1.7) is in general best
possible as simple examples show. This exponent of w in (1.7) can be increased to
2 under additional assumptions on the associated matrices (cf. [2, Theorem 2.3] or
(6, Theorem 1]).

Consider as before any matrix T(w) € C**™ which is analyticin 0 < |w| < (7).

Then, set

(1.11) { zz

We note that if 7'(w) is w?-compatible with J(w), then T(0) = I from (1.3), so that
w = 0 is not contained in either Qp or Dy. In addition, we define

1l

{w in 0 < |w|<r(T):p(T(w)) <1}, and
{w in 0<|w]<r(T): p(T(w)) > 1}.

Il

(1.12) K(D'A) := closed convex hull of o(D™'A),

and

(1.13) K (D7'A) := interior of K(D7'A) (which is possibly empty) .



With this notation and with Proposition 1, we state next in Theorem 2 a slight
generalization of Theorems 3.4 and 3.6 of [2].

Theorem 2. Let the matrix T(w) in C**" be w?-compatible with J(w), where
J(w) is the extrapolated Jacobi iteration matrix of (1.2), associated with the split-

ting of (1.1). Then,

(1.14) Q; N Qp # ¢ if and only if 0 ¢ K(D™'A).

If 0 €X (D~ A), then

(1.15) DiNDy C{w € C:0< |w|<re}, forsome ro>0.

We remark that (1.14) of Theorem 2 gives that if 0 ¢ K(D~'A), then there
are values of w in 0 < |w| < (T for which J(w) and T(w) are simultaneously

convergent, which is a Stein~Rosenberg—type result. Similarly, if 0 610{ (D14),
then J(w) and T(w) are simultaneously divergent at every point of the punctured
disk {w € C:0 < |w| < ro}, for some o > 0, which is also a Stein-Rosenberg-type

result.

2. Optimal paths of relaxation

Since we are most interested in the cases where w is such that J(w) and T'(w) are
both convergent matrices, we examine more carefully the case when 0 ¢ K (D1 A)
of (1.4).

To begin, for each fixed r > 0, it is evident from compactness considerations
that there always exists at least one real f(r) such that w = re’®(") minimizes
the spectral radius of p(J(w)) on the circle |w| = 7. But, under the assumption
that 0 ¢ K(D~!A), it was shown in Buoni and Varga [3, Theorem 2.1], for r > 0
sufficiently small, that this 5(1) is unique, and, moreover, that the collection of
these points re'9(r) determines a smooth optimal path of relazation for J(re'?) in
the complex plane. This unique é(r) is determined solely from the geometry of the
vertex or edge of the convex set K (D~!A) which is closest to the origin. Specifically,

since 0 ¢ K(D~1A), then
(2.1) 7 :=min{|¢| : ¢ € K(D'A)} satisfies 7 >0,

and there exist a unique point Z = re‘¥ (1 real) of the boundary of K(D~!A), which
is closest to the origin. With 8K (D~'A) denoting the boundary of K(D~!A), two
cases arise: Case 1, where |z| = 7 intersects 0K (D~ A) in a vertex of K(D~!A),
and Case 2, where |z| = 7 intersects K (D~'A) in a point of an edge of K(D~!A)
which is perpendicular to the ray {z = re!¥ : r > 0}. This is shown in Figure 1
below. (In Case 2, the vertices of the edge of K(D~'A) which is perpendicular to
the ray {z = re¢'¥ : r > 0}, determines two real constants p; > 0 and pz < 0 with



l1] + |p2] > 0. These two constants p; and 2 are used below.)

Figure 1

With the notation that py := pa := 0 for Case 1, we state the results of [3,

Theorem 2.1].

Theorem 3. For the splitting of (1.1), assume that 0 ¢ K(D~'4) and let
re'¥ be the point of K(D~!A) which is closest to the origin. Then, there exists a
positive constant m such that, on the circle |w| = r with 0 < r < m, there is a

unique 0(r), given by

(2.2)  0(r) := —p — r(u1 + p2)/2 — 13 (1 + p2)°/48 + O(r®), as r — 0,

for which
(2.3) p(J(re?)) = min p(J(ré®)) <1 (0<r<m).

0<o<2n
Thus,
(2.4) lim 6(r) = -1,

r—0
and
. .2 3

(2.5) p(J(re®*)) =1—rr - 1—-%1——/}—2— + 1:11 (12 + pd) +O(r*), as r—0.

We remark that (2.4) gives us that the uniquely defined optimal path of relax-
ation for J(w), for |w| small, is tangential to the ray {re’¥ : r > 0}, as jw| — 0.

It was shown in Buoni and Varga [3, Theorem 3.1], using the relationship in
(1.6) between the SOR iteration matrix £(w) and the extrapolated Jacobi iteration
matrix J(w), that if 0 ¢ K(D~!A), then £(w) inherits a behavior similar to that of
J(w) given in Theorem 3, for |w| small. But the proof of this extends easily to all
w?-compatible matrices T'(w). Thus, we have



Theorem 4. Let the matrix T(w) in C**™ be w?~compatible with the Jacobi
matrix J(w) of (1.2), associated with the splitting of (1.1). If 0 ¢ K(D~'A), let
re*¥ be the point of K(D~A) which is closest to the origin. Then, there exists a
positive constant m’ such that, on the circle |w| = r with 0 < » < m’, there is a

d(r) for which

()Y . i6
(26) V p(T(re™ 7)) = moin p(T(re”)) < 1.
Moreover,
(2.7) tim 0(r) = ¥,
and
(2.8) p(T(re? ) = 1 = 17 + 0@ Y™, as r—0.

To complete this section, it may be useful in applications to have a geometrical
result which gives the convergence of an iteration matrix T'(w) on intervals of specific
rays {z = re'? : » > 0}. This new result is given in

Theorem 5. For the splitting of (1.1), assume that 0 ¢ K(D~'A), and let ¢
any real number such that the rotated set ' K(D~!A) lies in the open right-half

plane, i.e.,
(2.9) Re(e™%¢;) > 0 for all ¢ € o(D™1A).

If the matrix 7'(w) in C**" is w?-compatible with the Jacobi matrix J(w) of (1.2),
associated with the splitting of (1.2), there exists a positive constant M(f) such
that T'(w) is convergent for all w = re’® with 0 < r < M(0). Conversely, if

(2.10) Re(e™*%¢;) < 0 for some (; € o(D™'A),

there is no M’(6) such that T'(w) is convergent for all w = re*® with 0 < r < M'(0).
Proof. Because of rotations, there is no loss of generality in assuming that
0 = 0 satisfies (2.9), i.e., K(D~14) lies in the open right-half plane, so that

(2.11) Re ¢; >0 forall ¢ €o(DA).

Then from (1.2), each eigenvalue jj(w) of J(w) can be expressed as pj(w) = 1—
wR;e™i where {R;je's }ia01 are the eigenvalues of D7 'A. For w real, we have

(2.12) 1t (W)]? = 1 — 2wR; cosh; +w?R} (1 <j<n).

Assuming (2.11), it follows that

(2.13) 5= min 2% S
R;

T 1gi<n
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Hence, from (2.12), p(J(w)) < 1 for all 0 < w < B. Then, since T(w) is w
compatible with J(w) from Proposition 1, the eigenvalues {};(w)}?-; of T'(w) nec-
essarily all satisfy

2j(w) = pi (W) + OW'™), as w—0,
so that with (2.12),
A (@)]? = 1 - 2wR; cos ¥; + O(wl'*'%), as w—0.

Thus with (2.13), there is a w, > 0 such that T'(w) is convergent for all 0 < w < wy.
Conversely, if (2.10) holds, a similar analysis shows that [A;(w)|? > 1 for all
small w > 0, which gives the concluding of Theorem 5. O

3. Applications to the SSOR iterative method

With the splitting of A in (1.2), we consider the associated symmetric successive
overrelazation (SSOR) iteration matrix S(w), defined for our purpose as

(31) Sw) = (D=0 (1= PP +FUD - 5071~ 5V)
=(I- %D-IU)—l[(l - %)I + %D'lL](I - %D“‘L)“l[(l - ‘-;-)1 + %D-IU].

If, in analogy with (1.5), we set

(3.2) pw(DU) := min{|w| : I —wD'U is singular},

so that 0 < p(D~'U) < oo, then S(w) is analytic in 0 < || < min{u(L); p(U)}.
If we set

(3.3) Sw) = (I - %D”IU)S(w)(I - %D‘IU)"I,

a short calculation using (3.3) and (3.1) shows that, with (1.2),
» Sw) = Ju+9{I-3[D"'L+ D U]+ 2[(D7 L)% + (D71U)Y]
' +4D-1LD U} + O(w?),
as w — 0. But since (3.3) implies that
Wolirny-1 & W1
(3.5) S(w) =~ ED U=t S(w)(I - -2—D U),
a further short calculation with (3.4) and (3.5) shows that
(3.6) Sw) =Ju,+0W?) as w—0,

which gives us the result of



Proposition 6. The symmetric successive overrelaxation iteration matrix S(w)
of (3.1) is w?-compatible with the Jacobi matrix J(w) of (1.2).

As a consequence of Proposition 6, Theorems 4 and 5 are directly applicable to
the SSOR iteration matrix S(w) of (3.1). For example, as a special case of Theorem

5, we have
Corollary 7. For the splitting of (1.1) assume that all the eigenvalues of D~'A
lie in the open right-half plane. Then, there is an wy > 0 such that the SSOR matrix

S(w) is convergent for all 0 < w < wy.
We remark that Corollary 7 is then an extension of the results of Broyden [1]

and Niethammer [6], which were mentioned in §1.
As a further application, we mention that if the matrix 4 of (1.1), with D

nonsingular, can be expressed as
(3.7) A=H+V (HVeC™"),

then an associated ADI (alternating direct implicit) iterative matrix can be defined
by
(3.8) C(u) := (V + pD)~}(uD — H)(H + pD)~* (uD - V),

which is defined for all ; sufficiently large in modulus. Further, if

(3.9) u=: 2 where w is small and nonzero,
w

then C(2) can be verified to be w?-compatible with J(w) = I —wD~'A. As such,
Theorem 5 applies and gives regions of convergence of C(%), for w # 0 and small.
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