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A LINEAR ALGEBRA PROOF THAT THE INVERSE OF A
STRICTLY ULTRAMETRIC MATRIX IS A STRICTLY
DIAGONALLY DOMINANT STIELTJES MATRIX*

REINHARD NABBEN' AND RICHARD S. VARGA?

Abstract. It is well known that every n x n Stieltjes matrix has an inverse that is an n X n
nonsingular symmetric matrix with nonnegative entries, and it is also easily seen that the converse
of this statement fails in general to be true for n > 2. In the preceding paper by Martinez, Michon,
and San Martin [SIAM J. Matriz Anal. Appl., 15 (1994), pp. 98-106], such a converse result is in
fact shown to be true for the new class of strictly ultrametric matrices. A simpler proof of this basic
result is given here, using more familiar tools from linear algebra.
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1. Introduction. It is well known (cf. [3, p. 85]) that a Stieltjes matriz A = [a; 5]
in R™®, which is defined to be a real symmetric and positive definite matrix with
ai; < 0forall i #j(1<4j < n) has the property that its inverse is a real
nonsingular and symmetric matrix, all of whose entries are nonnegative. Now, the
converse of this result is not generally true for any n > 3, as the following simple
matrix below shows. For n = 3, define the symmetric matrix B in R®>? by

4 0 2
B:=|04 3|,
2 3 4

so that B possesses only nonnegative entries. As the eigenvalues of B are 4+
V13,4,4 — 1/13), then B is positive definite. But its inverse,

([ 7 6 -8
153-1=ﬁ 6 12 =12 |,
-8 —12 16

fails to be a Stieltjes matrix since its off-diagonal entries are not all nonpositive. For
n > 3, the matrix

B O dits i Bl O
0 I, and its inverse 0 I.s|’

where I,,_3 is the identity matrix in R2-32-3 similarly furnishes a counterexample
in R™™,

In the preceding paper [2, Thm. 1] by Martinez, Michon, and San Martin, it is
shown that a strictly ultrametric square matrix (to be defined below) is a nonsingular
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matrix, with nonnegative entries, whose inverse is a strictly diagonally dominant
Stieltjes matrix! As can be seen from their paper, their interesting result is proved
by using a variety of impressive tools from topology and real analysis, tools that
may prove useful for infinite dimensional extensions. The beauty of their result gave
us the stimulus to try to find a proof of their result that was fashioned solely from
more familiar tools from linear algebra, as such a proof might be more accessible to
numerical analysts and linear algebraists. We give such a linear algebra proof below.

With the notation that N := {1,2,...,n} for any positive integer n, we begin
with the following definition of [2].

DEFINITION 1.1. A matriz A = [a; ;] in R™™ is strictly ultrametric if

(i) A is symmetric with nonnegative entries,
(1.1) (if) a;; > min{a;x;ax,;} for all i,j,k € N,
(i) a;; > max{a;x: k € N\{i}} forail i€ N,

where, if n = 1, (1.1)(iii) és interpreted as a1,1 > 0.

The result of [2, Thm. 1] is stated in the following theorem.

THEOREM 1.2. If A = [a; ;] in R™® is strictly ultrametric, then A is nonsingular
and its inverse, A1 := [a; ;] in R™™, is a strictly diagonally dominant Stieltjes matriz
(ie, ai; <0 foralli# j and o;; > ZZ;I lai k|, for all 1 < 4,5 < n), with the

?

additional property that
(1.2) a;; =0 ifand onlyif a;; =0.

Our proof of Theorem 1.2 is given in §3, after some necessary constructions are
given in §2.

2. Some constructions. For notation, on setting &, := (1,1,...,1)7 in R?,
then
(2.1) €ntl

is a rank-one matrix in R™", all of whose entries are unity.

Our first result, which is independent of results or techniques in [2], is necessary
for our complete characterization of strictly ultrametric matrices.

PROPOSITION 2.1. Let A = [a; ;] in R™™ be symmetric with all its entries non-
negative, and set

(2.2) 7(A) :==min{a;; :4,j € N}.

If n > 1, then A is strictly ultrametric if and only if A — T7(A)é,€L is completely
reducible, i.e., there exists a positive integer v with 1 < r < n and a permutation
matriz P tn R™" such that

(2.3) P(A — 7(A)6nT)PT = [ ¢ o ] ,

O D
where C € R™" and D € R "2~T gre each strictly ultrametric.

Proof. For n > 1, assume that A is strictly ultrametric. Then, from (1.1) and
(2.2), it follows that 4 = [&; ;] :== A — 7(A)&,ET is strictly ultrametric with 7(A4) = 0.
Moreover, as n > 1 and as 7(A) = 0, some off-diagonal entry of A is necessarily zero.
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Step 0 (1,2,3,4,5) u = (1,1,1,1,1)7

Step 1 uz := (1,0,0,1,0)7;us := (0,1,1,0,1)T

Step 2 ug :=(1,0,0,0,0)T; us := (0,0,0,1,0)T
ue := (0,1,0,0,0)T;u7 := (0,0,1,0,1)T

Step 3 (5) wus:=(0,0,1,0,0)T;ue := (0,0,0,0,1)T

Fig. 1

By a suitable permutation of indices, we may assume, without loss of generality, that
617-,7, = 0. Set

(2.4) S:={jeN:a;=0} and T:={jeN:a,;>0}.

As @3, = 0, then n € S, and similarly, since A is strictly ultrametric, then (cf.
(1.1)(iil)) @1,1 > 0, so that 1 € T. Thus, S and T form a partition of N, i.e., § and
T are nonempty disjoint sets with SUT = N. Again, by a suitable permutation of
indices, we may assume, without loss of generality, that

(2.5) T={1,2,...,r} and S={r+1,r+2,...,n},

where 1 <r < n. _
Next, consider any j € T and any k € S. Since A is a nonnegative matrix,
(1.1)(ii) implies that

(26) 0= &1,]@ > min {dl,j; &j,k} >0 (] eT,ke S)
But as &; ; > 0 from (2.4), the inequalities of (2.6) and the symmetry of A give that
(2.7) : &j,k =0= dk,j (] €T, ke S),

which gives the desired representation of (2.3). That the block diagonal submatrices
C and D in (2.3) are each strictly ultrametric is a consequence of the fact that A is
strictly ultrametric.
Conversely, if n > 1, if C € R™ and if D € R* ™" (with 1 < r < n) are each
strictly ultrametric, and if 7 > 0, then from Definition 1.1, the matrix
R

is also strictly ultrametric. o

It is evident that the steps leading to the representation (2.3) can be similarly
applied to each of the strictly ultrametric block submatrices C and D of (2.3), provided
that their orders each exceed unity. More precisely, if C € R*" and if D € R*~02~F
where 1 <7 <n—1, then C—7(C)&-EF and D —7(D)¢, €L, are, from the proof of
Proposition 2.1, each completely reducible strictly ultrametric matrices. This process
can be continued until only 1 x 1 positive matrices remain. -This entire reduction
procedure can be described in terms of graph theory, as follows.
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For illustration, consider an ultrametric matrix A in R%>®, and suppose that the
block submatrices C and D in (2.3) are of orders 2 and 3, respectively. This is shown
in (reduction) Step 1 in the rooted reduction tree of Fig. 1, where the top vertex of Step
0 is associated with the set (1,2,3,4,5). At Step 1, the set (1,2,3,4,5) is decomposed
into the two nonempty disjoint sets (1,4) and (2,3,5), giving rise to two vertices in the
tree at Step 1. This step corresponds to the complete reducibility of A — 7(A4)&&F
in (2.3). In Step 2, each of the sets (1,4) and (2,3,5) is further decomposed into two
disjoint nonempty sets, giving rise to four vertices in the tree at Step 2, and this
procedure is continued until all remaining sets have single elements. In this way, the
5 x 5 ultrametric matrix A has the representation

9
(2.8) A=) rupnf,

£=1
where the sum over nine terms in (2.8) comes from the fact that there are nine vertices
in the tree of Fig. 1. The associated vectors u, are also explicitly given in Fig. 1. The
scalars {rg}J_, are nonnegative, with (cf. (1.1)(iii)) 74, 7s,76,7s, and 79 necessarily

positive numbers. In fact, if the constants {r,72,...,7e} in (2.8) are chosen to be
{1,0,0,1,1,1,2,1,1}, then A can be computed from (2.8) to be
21111
1 1 11
A=1{11 4 1 3
1112 1
1131 4

But, it is easy to verify (by induction) that for N = (1,2,...,n), the reduction
steps, as indicated in Fig. 1 for n = 5, give exactly 2n — 1 vertices for its associated
reduction tree. Hence, Proposition 2.1 gives the following representation for strictly
ultrametric matrices in IR™" for all n > 1, which goes beyond the results of [2].

THEOREM 2.2. Gwen any strictly ultrametric matriz A in R™® (n > 1), there

is an associated rooted tree for N = {1,2,...,n}, consisting of 2n — 1 vertices, such
that

2n—1
(2.9) A= z Tpugu;

£=1

where the vectors uy in (2.9), determined from the vertices of the tree, are nonzero
vectors in R® having only 0 and 1 components, and, with the notation that

(2.10) x(ug) :== sum of the components of uy,

where the 7¢'s in (2.9) are nonnegative with T, > 0 when x(u;) = 1. Conversely, given
any tree for N = {1,2,...,n}, which determines the vectors u; in R®, and given any
nonnegative constants {n},zz:;l with ¢ > 0 when x(ug) = 1, then Ef;;lnugu{ is
strictly ultrametric in R™".

COROLLARY 2.3. Any strictly ultrametric matriz in R™® is a real symmetric and
positive definite matriz.

Proof. From Theorem 2.2, any strictly ultrametric matrix admits a representation
(2.9) as a sum of rank-one nonnegative definite symmetric matrices. But, as the
condition that 7, be positive whenever x(u,) = 1 implies that the sum in (2.9) contains
a positive diagonal matrix, the sum (2.9) is necessarily positive definite. D
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3. Proof of Theorem 1.2. With the constructions of §2, we come to the proof
of Theorem 1.2. The proof is an induction on n. If A is an n X n strictly ultrametric
matrix, then from Corollary 2.3, A is nonsingular and A~! exists. That A~! is a
strictly diagonally dominant Stieltjes matrix that also satisfies (1.2) of Theorem 1.2
is obvious for n = 1. Thus, by the inductive hypothesis, assume that Theorem 1.2 is
valid for all ultrametric matrices in IR with 1 < j < n—1 where n > 2, and consider
any strictly ultrametric matrix A = [a; ;] in R™". Up to a suitable permutation, we
have from (2.2) and (2.3) that

(3.1) A=[g g]+ﬂm@§ with &, = (1,1,...,1)T € R®,
where, from Proposition 2.1, C in R™* and D in R* 5" (with 1 < r < n) are
both strictly ultrametric and nonsingular. But as r and n — r are both less than n,
the inductive hypothesis, applied to C and D, gives that C~! and D~ are strictly
diagonally dominant Stieltjes matrices. Hence, if

Cc 0

O D

(3.2) M:= [ o p-i

-1
] so that M~ = {C 0 ]
then M1 is also a strictly diagonally dominant Stieltjes matrix. Next, the Sherman—
Morrison formula (cf. Golub and Van Loan [1, p. 51]), applied to (3.1), gives the
following representation for A~! of (3.1):

_ T(AM TG M
[1+7(A)EEM18]

We first claim that the term in brackets in the denominator above is positive. To see

this, M, as previously noted, is a strictly diagonally dominant Stieltjes matrix, so

that M L&, is a positive vector in R®. On writing M £, := p > 0, this denominator
is just

(3-4) I+ r(AEME]=1+7(A)P 2 1

(33) (M +7(A)n-60) = AT =M

Moreover, since Mp = £, and since M is real symmetric, then the last term in (3.3)
can be expressed as the matrix

7(4)
(3.5) - WPPT,

which is obviously a real nonpositive definite symmetric matrix in R™?, all of whose
terms are zero if 7(A) = 0, or negative if 7(A4) > 0. But, as the matrix of (3.5) is
added in (3.3) to M1, which as noted above is a Stieltjes matrix, then all off-diagonal
entries of A~! are necessarily nonpositive.

To show that A~! is strictly diagonally dominant, let

M—lgn =p= (P11p27 cee 7pn)T > 0.
For the ith row sum of A~1, it follows from the second part of (3.3) and (3.5) that
T(A)p: Elpj _
(36) (A7) =pi— e = B >0 (i€ N).
T ki3
[1 +7(A) Zl pj} [1 +7(4) }:1179]
= j=
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But, as all off-diagonal entries «; ; of A~ are nonpositive, (3.6) succinctly and pre-
cisely gives that A~! is strictly diagonally dominant!

Finally, we establish (cf. (1.2)) that a;; = 0 if and only if a; ; = 0. First, if
7(A) > 0, then the strictly ultrametric matrix A = [a;;] is, up to a permutation
matrix P, given from (3.1) by the sum

Cc O
(3'7) A= [ O D ] +T(A)€n€r{’
which has only positive entries, i.e., a; ; > 0 for all ¢, j in N. On the other hand, from
(3.3) and (3.4),
- ct o 7(4)pp”
3.8 Al= —
34 o oh |- rE e

where every entry of the last matrix is negative. As the matrices C and D in (3.7) are
strictly ultrametric from Proposition 2.1, then C~! and D~! are Stieltjes matrices.
Thus, from (3.8), the entries o ; of A™! satisfy o, ; < 0 for all 4 # j. Moreover, since
A1 is a strictly diagonal dominant matrix, then ¢;; > 0 for all 1 < i < n. Hence, in
this case where 7(4) > 0, (1.2) of Theorem 1.2 vacuously holds.

If 7(A) = 0, then from (3.7) we have that

_[c o a4 _Ject o
A‘[o D] and A ‘[ 0] D‘l]’

so that A and A~! have the same off-diagonal blocks of zeros. But we can evidently
apply the inductive hypothesis to the block submatrices C and D, and we thus estab-
lish (1.2), namely, that the zero entries of A and A~! are the same. O

Having established Theorem 1.2, we deduce from it the following corollary, which
appears in [2, Lemma 1] as a step in establishing proof of Theorem 1.2.

COROLLARY 3.1. Let A in R™® be strictly ultrametric. If &, := (1,1,...,1)T in
IR®, then there exists a vector p in R®, with all positive components, such that

Proof. From Theorem 1.2, A~ is a strictly diagonally dominant Stieltjes matrix
in R®". Hence A~1£, =: p > 0, from which (3.9) directly follows. 0

In conclusion, we note that the more general problem of determining which non-
singular matrices in IR™®, with nonnegative coefficients, have inverses that are M-
matrices, has been studied by a number of authors over the years. Although we know
of no overlap between the results of this paper and results from these more general in-
vestigations, we have nonetheless listed, for the benefit of interested readers, a number
of papers [4]-(8] that deal with this more general problem.

Acknowledgment. We thank Professor C. R. Johnson for stimulating discus-
sions related to this research.
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