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AN EXTENSION OF A RESULT OF RIVLIN ON
WALSH EQUICONVERGENCE (FABER NODES)

R. Briick* A. Sharmal R.S. Vargat

Dedicated to Walter Gautschi on the occasion of his 65th birthday

Abstract. We continue our investigations of generalizations of Walsh’s equicon-
vergence theorem. The setting is a compact set E of the complex plane, whose
complement is simply connected in the extended complex plane, and the Faber
polynomials associated with E. Here, we study equiconvergence phenomena for
differences of interpolating polynomials, defined by Lagrange (and Hermite) inter-
polants in zeros of associated Faber polynomials.

1 INTRODUCTION

We begin with the well-known Walsh equiconvergence theorem [10, p. 153]. With
D, :={z€ C:|z| < 7} and with any R satisfying 1 < R < o0, let Ar denote the
set of all functions f which are analytic in Dg, but not in Dg. Then, the Walsh
equiconvergence theorem, simply stated, asserts that if f(z) = > 72, apz® is in
Ag, then

HIL%[Ln(z,f) - Su(z; )] =0, z € Dpe, (1.1)

the convergence being uniform and geometric on every disk D, with pu < RZ
where L,(z; f) denotes the Lagrange interpolant to f in the (n 4 1)** roots of
unity and where S, (z; f) := Y p_oaxz*. (Since the convergence to zero in (1.1)
takes place in the domain Dg2 which is larger than the domain Dg of analyticity
of f, the result of (1.1) is said to exhibit overconvergence.) Rivlin [9] extended
(1.1) by replacing Ly(z; f) by polynomials Py, »(z; f) which best approximate f,
in the £y-sense over all polynomials of degree n, in the (m + 1)** roots of unity,
where, for a fixed positive integer ¢ (i.e., ¢ E N}),m:=¢(n+ 1) — 1 for all n € N.
He showed that

ﬂli_)ngo[Pm,n(z; f) =Sz )1 =0, z € Dpitq, (1.2)

the convergence being uniform and geometric on every disk D, with g < R*+9,
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In a recent paper [2], we studied the problem of Walsh equiconvergence for
domains more general than disks. More precisely, if C., denotes the extended
complex plane, let E be a compact subset (not a point) of the complex plane whose
complement, Ce, \ E, is simply connected. By the Riemann mapping theorem, there
exists a conformal map ¥ of {w € C: |w| > 1} onto C, \ E, where the mapping
is normalized at infinity by 1¥(c0) = oo and ¢ := ¢’(c0) > 0. (The quantity ¢ is
called the capacity of E.) For 1 < R < oo, let Cg := {7z = ¢(w) : lw| = R} be
an outer level curve of F, and let Ap now denote the class of functions which are
analytic in Gg := IntCg, but not in Gg. If Fj denotes the k** Faber polynomial
associated with F and if

f(2) =) arF(2) (1.3)
k=0

is the Faber expansion of f with respect to E, we set
Sn(z; f) = Zaka(z). (1.4)
k=0

As in [2], if we assume that the boundary GF of F is a Jordan curve, then the
conformal map 1 can be extended to a homeomorphism of {w € C: |w| > 1} onto
C\Int E, so that we may define, for each m € N, the m+1 points {zi m } 7o, where

[ 2rik
Zkm = P(Wk,m), Wi m = €XP <m n 1> , k=0,...,m. (1.5)

The points zx,m are called the (m + 1) Fejér nodes with respect to E.
Following Pommerenke [8], we call F an rq-analytic curve (0 < ro < 1) if the
conformal map 9 admits a univalent continuation to {w € C: |w| > ro}. For f €
AR, let (1.3) be the Faber expansion of f with respect to E, and let L,, (z; f) denote
the Lagrange interpolant of f in the Fejér nodes (1.5). If L (z; f) = 3 peo bs Fi(2)
is the Faber expansion of L, (z; f), set

Sn (2L (5 £)) = > bp Fie(2). (1.6)
k=0

Our extension in [2] of Rivlin’s theorem [9] studied the region of equiconvergence
of the difference S, (z; Lm (- f)) = Dopeo @k Fi(2).
If we set

n

Smni(2:F) =Y argjmen Fr(2),  § €Ny, (1.7)
k=0

then for any integer £ € N, we considered the difference

-1

Amnt(2 ) = Sn (2 L (5 1) = D Smon i (2 ). (1.8)

j=0
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The following theorem was proved in [2].

Theorem A [2] Let 3F be an ro-analytic curve for some rg € [0,1), let f € Ar,
letm = ¢(n+1)—1 for a fixed ¢ € N, and let Ay, ,, ¢(2; f) be given by (1.8). Then,

lim Apmne(z; f) =0, z € Gy, (1.9)
n-—00
the convergence being uniform and geometric on every subset G,‘ for 1 < p <A
where

A := min{R"*%; R/rd; RI/v371Y, (1.10)
with 0F := 0 for any nonnegative integer k and 1/0 := co.

Remark. From (1.10), we see that if ¢ = 1 and if 0 < 7o < 1, then A = R,
and also that X — R for arbitrary ¢ as ro — 1. Thus, Theoremm A gives no
overconvergence in these cases. Indeed, the first author has shown in [1] that there
is no overconvergence in the case ¢ = £ =1 and ro > 0. '

In the special case of E = D; where ro = 0, (1.10) reduces to A = Ritig
For £ = 1, this gives the result of Rivlin [9, Theorem 1] and for ¢ = 1, this gives a
result of Cavaretta, Sharma and Varga [3, Theorem 1]. If ¢ > £+ 1 and ro < 4,
then (1.10) gives A = R!*%9, which means that we have the same ) as in the case
when E is chosen to be the closed unit disk D; (where 7o = 0).

The object of this paper is to investigate the situation where the nodes of
the Lagrange interpolant L,,(z; f) are the zeros of the Faber polynomial Fp, 1 (2),
rather than the Fejér nodes of (1.5). In §2, we list some properties of Faber poly-
nomials and state Theorem 1 and outline its proof. Section 3 deals with operators
analogous to those of Theorem A, but based on Hermite interpolation using Fe-
jér nodes and Faber nodes, respectively. It consists of a statement of Theorem B
(which was given without proof in [2]) and the statement and proof of its analogue
using Faber nodes. In §4, we give Theorem C (given without proof in [2]) and
prove an analogous result (Theorem 3) using Faber nodes. Sections 5 and 6 are
devoted to the proofs of Theorems B and C, respectively.

2 FABER NODES

In this section, we establish an analogue of Theorem A where we replace the m+1
Fejér nodes of (1.5) by the m + 1 zeros of the (m + 1)** Faber polynomial with
respect to E. We call these zeros Faber nodes. It is well known [5, p. 584], for an
arbitrary compact set E' (not a point) for which Coo \ E is simply connected, that
the associated Faber polynomials {F,(z)}n>0 satisfy

Jdim [P (b)) [ = o, ol > 1, (2.)

uniformly on every closed subset of {w € C : |w| > 1}. For any fixed R > 1, (2.1)
implies that the zeros of F,(z) all lie in Gg for any n sufficiently large, which
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further implies that all accumulation points of the zeros of {F,(2)}n>1 must lie in
E. Thus, L% (z; f), defined to be the Lagrange interpolant of f in the zeros of the
Faber polynomial F,+1(2), is then well defined for all large n. If 9F is r¢-analytic,
then (2.1) holds for |w| > r and thus, the Faber nodes all lie in the interior of
E for every n sufficiently large. It is known [7] that if E is convex, but not a line
segment, then all Faber nodes lie in the interior of E. In the case when F is the
line segment [—1, 1], it is well known that the Faber polynomials for E coincide
with the classical Chebyshev polynomials of the first kind.

Let L}, (z; f) denote the Lagrange interpolant to f € Ag in the m + 1 Faber
nodes, i.e., the zeros of the Faber polynomial Fp,41(2) of degree m + 1. Set

£~1

:n,n,ﬁ(z;f) = Sy (Z; L:n(’ f)) - ZSm,n,j (Z; f)’ teN, (22)

i=0

where Sy, n j(2; f) is given by (1.7) and where S, (z; L}, (+; f)) is the Faber expan-
sion of L7 (z; f) up to degree n. We now establish:

Theorem 1 Let f € Ag, let m = g(n+ 1) — 1 for a fixed ¢ € N, and let
A,“n ne(%: f) be given by (2.2), where Ly (z; f) is the Lagrange interpolant of f
in the Faber nodes (i.e., the zeros of Fy,41(z) with respect to a compact set E).
Then,

nlirgo Afn ez f) =0, z € GRa, (2.3)

the convergence being uniform and geometric on every subset G, for 1 < ju < RY,

Proof: We proceed along the lines of the proof of Theorem A of [2]. From the
well-known Hermite interpolation formula, we have, for any » € (1, R) and any
z € C, that

o PO om (9(0) — wm(2)
L =g [ 10 wc T O3 I

[¢l=r

where wy,(2) := ¢™ ¥ Fyq1(2). From [5, eq. (5.2)], the Faber coefficients ay of f
have the integral representation of

1 F (%K)
2mi TR
[¢l=r!

ay = — d¢, k=0,1,2,.... (2.5)

Then, from (1.4) and (2.5), we have

i, zeC. (2.6)
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From (2.4) and (2.6), we obtain
Sn @& Lin (5 1)

1 PO wm((O)) — wm(B(t)) < Fr(2)
27ml(lflf(%[) %iml $(Q) - $(1) wam (¥(0)) 1; S dt [ 4G,

(2.7)
where we choose r and 7' such that 1 < r < »' < R. Furthermore, from (1.7) and
(2.5) we easily derive that

£-1 (E(m+1) -1
ZOS"“W 27r1 / f t 1)(m+1) Cm+1 _1 Z Ck+1 dC’ zel
= I¢l=r!
(2.8)
But, as a consequence of the residue theorem (applied in |t| > ), it follows that
dt 1
27” / ¢ - Z> |C[ > Ty
|t|=r
which allows us to express (2. 8)
£~1
Sm,n
= i Qm / f
fCl=r (2.9)

1 ¥ () ¢ ¢Hmt) —
(”27?2 / () —9(t) t EDmD Cm—}-l___l Z Ck+1
|t|=r

From (2.7) and (2.9), we thus have an integral representation for Ay, ,(z; f) of
(2.2) as the difference of two double integrals.

For the Faber polynomials F, 41, it is known from [5, eq. (2.7)] that Fy(z) =1
and

[e o]
F, (¥(w)) = w" + Zan',,w"”, lw|>1, neN, (2.10)
uniformly on closed subsets of {w € C: |w| > 1}, where, from [5, eq. (4.9)],

lan k] S\/%, n,keN. (2.11)

From (2.11), it readily follows that

(e8]

-y
E Qn W
v=1

< Vi , lw| > 1, neN. (2.12)
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Next, as previously, we set
W (2) 1= " 41 (2).
From (2.10) and (2.12), it is easy to deduce that, for any t and ¢ with 1 < [t| < |(],

win ($(Q) = win (1)) _ ¢ — ¢! vm
wm (¥(€)) (mt <1+0(1)K‘"‘

uniformly on closed subsets of {¢ € C: || > 1} x {t € C : |t| > 1}. Choosing p
such that 1 < p < r < r’ < R and using (2.7), (2.9), (2.10) and (2.13), we obtain
(with z = ¥(w))

4
Anolzf) =589 (29)
o

V) v
27rz / F () 27rz/¢ ; m”lwct di | dc,

) , m— oo, (2.13)

[¢l=r
where
m+1 _ tm+1
Kr(,i)n’e(w,(,t) = CW-_‘—J—— (1 +0 ( )) ZZak JwTvETEl
k=1v=1
) (2.14)
¢ ¢Hmty) — 1 O —vpmke1
T @A) (o ZZ% I
k 1v=1
(2) . 1 yntl C C n+l _ gyntl C (m+1) __ 1
3) _}— Cm+1 _ tm+1 . tn+1 _ wn+1
Koo o(w, 1) = (,;m) e o) (2.16)
and
4 tm+1 tn+1 _ wn+1
Ar(n)n t(w’c’t) = —Cm-i-l ’ (t - w)t"“ : (2’17)

(1) Because 1 < [t] < [¢], then letting n tend to infinity gives

Ky(w,¢,1): = lim J’in(w ¢, 1)

o~ [y

[SSRNeS)
= E Zak,uw"”t"k—l—

k=1v=1

oQ o0

§ :§ : —vp—k~—1
ak,l/w VC )

k=1v=1
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where the two double series on the right side are convergent, uniformly on closed
subsets of {we C: |lw| > 1} x {teC: ]t{ > 1}. The residue theorem now implies

that /
o / ¥(Q) - ¥(1) w Kafw ¢, 1) dt =0,

|t]=r

for all ¢ € C with |[¢| > » > 1. Thus, hm Am ,2 (25 f) = 0, locally uniformly on
C

(ii) Again using the residue theorem, we see that for |w| > ¢/,

27” / "/)(C I/r(jnl( )C>t)dt I{r(nznl(wiclc)

Cn+1 — gt 1— C(E—l)(m-H) 0, L= 1,

= T we EeE e 1) - | 00) (k) £z 2

But, as r’ is any number satisfying 1 < r’ < R, it follows that lim A;Eiz e( ) =
o n-— oo

0, uniformly on G, for every 1 < yt < R'*9 when E > 2.

(iii) Also, it is obvious from the expression for K (W, C,t) that for |w| >,

Ix,(:)nl(w,c,t) =0(1) (M)" ,

rpd
so that lim A*®) (z; f) = 0, uniformly on G, for 1 < p < R,

nes m,n,£

(iv) Finally, in order to estimate Am( ,2 ¢ consider

Frn(w,(): 27”!/1/) — ne(w, (1) dt.
ti=r

Since, from [5, eq. (2.9)],

¢I(C) = o —kp~v—1
O~ 90 € +Z§3 w7 (2.18)

holds uniformly on closed subsets of {t € C: |t| > 1} x {¢ € C: |¢] > 1}, where
the coefficients a, x are defined by (2.10), it follows from (2.17) that

F n(w C)

- T om / Cm‘*‘z {ZZC thHmJ*ZZ

le|=r k=04=0 v=1k=17=0
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Since k+m —j = k+q(n+1)—1—7 > 0, the integral of the double sum
above vanishes and the triple sum gives a contribution to the integral only when
k=m+1—7, so that

1 e )
Fm,n(w,(') = ’mzzau,m+l—jch—u. (219)

v=13j=0

Again using (2.11), we obtain

1 oo n 7 o
P (w,€) = O(1) Zl > ,/m wl? (')

which implies that 1_i£n A:n(iz,l(Z; f) = 0, uniformly on G, for every 1 < u < RY.
On combining the above results of (i)-(iv), we have the desired result of (2.3) of
Theorem 1. N

Remarks. (1) We do not know if A = R? is best possible in (2.3). However,
we can improve our result if 9F is rg-analytic. In this case, we have from [5, eq.
(4.2)] that a,, = O(B"**), for every B such that ro < 8 < 1. Then (2.12) can be
improved by the bound

o0
Z an‘l/w—u
v=1
which leads, for 8 < |t] <[], to

B i G (D) R
(2.21)

An examination of the proof of Theorem 1 then shows that the estimates of
N (z; f) and AX? (z; f) remain unchanged. But from (2.16) we now have,

m,n, £ m,n, L

because of (2.21), that

=0(p"), |lw] > B, n €N, (2.20)

KD, w60 = 00 (L)

so that nlingo A:Eiz’l(z;f) = 0, uniformly on G, for every 1 < pu < R(R/ro)9.
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Finally, from (2.19) and |¢| = ', we have

Fon(w,0) = 0(1)(—,})7 SN gl (1)~

v=14=0
-0 (2) 5 () B (5) -om (%57)

Thus, li_)m AW (z;f) = 0, uniformly on G, for every 1 < u < ro(R/ro)d.
n—0o0

m,n,t
Combining all the above, we have

nan;o A:n,n,l(Z; f) =0, z € G,

where

A= { ro(R/ro)", £=1 (2.22)

min {ro(R/ro)%; RIT}, £> 2.
(2) A further improvement may be achieved in the case of an ellipse Es (where

d > 1 and where 0F; is the image of the circle {w € C : |w| = §} under the
map w — %(w + al«,), and is therefore ro-analytic with rog = 1/¢). Then, we have
Fy (¥(w)) = w" + 520, and an examination of the proof of Theorem 1 shows
that in this case

:{ ro(R/ro)207 1, (=1, (2.23)

min{R(R/ro)?7"1; R}, £> 2.
(3) The previous remark also applies to the case of the segment E = [—1, 1] (where

qu_l, Y
A=4q R, g
14

R+,

d = 1) and gives

L
1, (2.24)
2.

v

For £ = 1, this is Theorem 2 of Rivlin [9].

(4) The main reason for the different results in Theorem A and Theorem 1 (in
the case when OF is rg-analytic) may be explained as follows. If E is the closed
unit disk D, then the Fejér nodes coincide with the roots of unity while the Faber
nodes are all zero, so that L}, (z; f) = Sa(z; f).

3 HERMITE INTERPOLATION
In [2], we stated without proof a result analogous to Theorem A, after replacing

Lagrange interpolation with Hermite interpolation in Fejér nodes. For s € N and
f € Ar, we denote by Hy(my1)-1(2; f) the Hermite interpolation polynomial to
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£, f, ..., f¢ Y in the (m+1)** Fejér nodes on a compact set E. Then for p,¢ € N
with s¢ > p, and m = q(n + 1) — 1, we considered, as in [2], the operator
ALS(2 1) = Spman)=1 (25 Heman)-105 £)) = Spinany1 (25 £). - (3.1)

With the above notation and the notation that |¢| denotes the integral part
of the real number ¢, we state the following corrected form of:

Theorem B [2] Let F be an ro-analytic curve for some rg € [0,1), let f € AR,
let m = g{n+1) ~ 1 for a fixed ¢ € N, let s,p € N be such that sq > p, and let
AR2. (2 f) be given by (3.1). Then,

; Pos (5o ) —
nl‘l'}rrgo AR (5 ) =0, z € Gy, (3.2)
the convergence being uniform and geometric on every subset G, for 1 < p < A,

where
min{R/rg/P;qu/P/rgq/P)‘l; Ra}) if ¢ > p,

. { min{R/rg/”;qu/P;R"}, if ¢ < p,

where, if p=tg+ 7 witht e Ngand 0 < 7 < ¢, then ¢ := (gs+7)/p if0 <7 <p
and o :=q(s+ 1)/pifr = 0.

(3.3)

Here, we shall consider the Hermite interpolant to f, f',..., f~1 in the
(m + 1)** Faber nodes. We denote it by HYir)- (25 f). We set

AT (2 1) = Sp(ntr)- <23H:(m+1)—1('§f)>_Sp(n+1)~1(zif)a (34)

where Sp(n41)-1(2; f) denotes the (p(n +1) - 1)** section of the Faber expansion
of f.

We next establish:
Theorem 2 Let f € Ag, let m = g(n+1) —1 for a fixed ¢ €N, let s,p € N be

such that sq > p, and let AP (z; f) be given by (3.4) for the Faber nodes with
respect to a compact set E. Tben

lim AP3(z ) =0, z€Gh, (3.5)

n-—+00

the convergence being uniform and geometric on every subset G, for 1 < p < X,
where

X := min{ R'*9/7; R#9/P}. (3.6)
Proof: In analogy to (2.7) and (2. 6) it is easy to see that
SP(“-H)— ( s(m+1) 27m / F
I¢l=r!
o [ () — e 10 ”"*Z”” Fe(2) | g
2mi ) wh (¥(€)) gt ’
t]=r k=0

(3.7
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and
w/ C) CP("+1)-1 Fk(z)
S ) = 5 [ 10 (m [7—mt L wee)s

I¢|=r' It|=r

where 1 < r <7 < R.
Writing wy, (2) = ¢™ ! Fpup1(2), we use (2.10) and (2.12) to show that

w;, ($(()) — wy, (¥(1)) _ C’(m+1) — ¢s(m+1) ﬂ
ws, (¥(€)) - ColmtD) (1 +0(1) ICI’“) . (3.9

uniformly on closed subsets of {( € C:|¢|> 1} x {t € C: |t| > 1}.
Choosing p such that 1 < p < r <7’ < R and putting (3.7), (3.8), (3.9) and
(2.10) together, we obtain (with z = ¥(w))

4
Az ) =D AT (2 (3.10)
j=1
where
1 ¥ (¢)
*P,$ — . .
s =gz [ 1600 55 | g ggteeste o«
[¢|=r' Jtl=r
j=1234

The kernels K, » j(w,¢,t) (J = 1,2,3,4) are given explicitly as follows:
(n+1)-1 oo
Cs(m+1) - ts(m+1 1 P g
Amn 1(w Ct) Cs(m'*'l) 1+O p—m E Zw”tk'H

p(n+1)-1 oo

¢ v
) Z I/Z:wf/yék-{-l’

(3.11)
) tp(n41) _qpp(nt1) e ep(ndl) _gp(ntl)
Iim,n,Q(w; C) t) = (t _. w)t?(n+1) -_ 't— (C — w)CP(n‘“l) s (312)
) 1 Cs(m-{-l) _ ts(m-}-l) tp(n+1) _ wp(n+1)
Ixm,n,s(w,C,t) =0 (-p—;;) CS(’"”H) . (t — w)tp("+l) s (3.13)
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and
ts(m+1)  yp(n+1) _ 4 p(n+1)

I{m,n,ll(w) C? t) = mCs(m-i-l) ' (t — w)tp("+1)

(3.14)

As in the proof of Theorem 1, it can be shown that le AP (25 f) =0, locally
n [e e}

m,n,l
uniformly on C. Using the residue theorem, we can see, exactly as in the proof of
Theorem 1, that A;P2? ,(z; f) = 0. Moreover it is obvious that for |w| >/,

mn2

Kmons(w,C,t) = 0(1) (M) , (3.15)

quP
so that lim AP ,(z; f) = 0, uniformly on G, for 1 < u < RI+(9/P),
n-—0o0 L

Finally, in order to estimate AP} ,(z; f), we consider

1/)
Frun(w,€) ¢ 2m/w 75 Ko, C ) (3.16)

t—‘r

and recall from (2.18) that

P 1 o .
O — v = Tt T 2 et (3.17)

The integrand in (3.16), when expanded in powers of t and on using (3.17), becomes

1 oo p(n+1)-1 ) ]
T s mAD T Z Z (TRudgrrelmD=I=t g
k=0 j=0

p(n+1)-1

i i Z ayykc-uwjt—k+s(m+1)—-y-—1

Since k+s(m+1)—j—1=k+sqg(n+1)—7~1 > 0, the integral of the
double sum vanishes and only the triple sum gives a contribution to the integral
Frn(w,C) when k = s(m + 1) — j. Thus, we have

oo p(n+1)-1
Fonn(w,€) = (m+1)+1 Z Z Gy (mt1)- ¢ (3.18)
Again using the inequality of (2.11), we obtain
1 oo p(n+i)-1 =
Fm,nw,c = 0(1 - wjr/—u
( ) ( )(,{.l)sm; foerd s(m-{—l)——] l i ( )
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which implies that hm ArVn a(#z f) = 0, uniformly on G, for every 1 < pu <

R#4/P, Combining the above results then gives the desired result of (3.6) of Theo-
rem 2. |

Remarks. (1) We do not know whether A in (3.6) is best possible. However, if
OF is rg-analytic, we can improve our result. In this case we have for every g such
that rg < g < 1,

T e (ET )

Then, an examination of the above proof shows that in this case the estimates of
AP (2 F) and AP o(2; f) remain unchanged. But

m,n,2

Kmns(w, ¢ t) =0(1) (ﬂq|w|p> ’

rad+r

so that hm AP0 a(2; f) = 0, uniformly on G, for every 1 < pu < R(R/ro)9/?.

Fmally, from (3.18) (since now @, x = O(8"+*)), we obtain
oo p(n+1)—1
Fonn(w,€) = sz Z prtelm ) i (r)
sm o v p(ntl)~1 j PRsg=—p\ N
—on(z) 2(5) 5 (5) -ow(*5).
v=1 7=0

and this implies that hm A;f’n (2, f) = 0, uniformly on G, for every 1 < pu <

ro(R/1r0)*/P. Therefore, when the boundary curve 0F is an ro-analytic curve,

hm Afri(zf) =0, z € Gy,

sq/p q/p
A= min {ro (—Ii> 'R (ﬁ) } .
o o

(2) A further improvement may be achieved in the case of an ellipse Es (where
d > 1 and where 9Fjs is rg-analytic with 7o = 1/4). An examination of the proof
of Theorem 2 shows that in this case,

(25q/p)-1 2q/p
A := min {ro <~{2—) iR (—Ri> } .
To 7o

This also applies to the case of a segment E = [—1, 1] (where § = 1) and gives

A ‘= min {R(qu/p)—l; R1+(2q/19)} )

where
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4 MIXED HERMITE AND LAGRANGE INTERPOLATION

We next consider the case where Faber sections of Hermite interpolants are com-
pared with Faber sections of Lagrange interpolants. This is analogous to Theo-
rem C of [2] which was stated without proof. More precisely, for s,p € N with
s > max{p; 2}, we set

Dp,s,n(Z; f) = Sp(n+1)—1 (z; {Hs(n+1)-l(‘; f) - Ls(n+1)~1('; f)}) ) (41)

where Hy(nt1)-1(2; f) and Ls(n41)-1(2; f) are Hermite and Lagrange interpolants
in Fejér nodes with respect to a compact set E. The following theorem was an-
nounced in [2].

Theorem C [2] Let OF be an ro-analytic curve for some vy € [0,1), let f € Ap,
let s,p € N be such that s > max{p,2}, and let Dy, n(z; f) be given by (4.1).
Then,

lim Dy, (2 f) =0, z € Gy, (4.2)

n—r 00

the convergence being uniform and geometric on every subset G, for 1 < pu < A,

where
Rs+2 for p=1 and s even o= 0
A= RG+D/p. otherwise nre=5y

(4.3)
min{R/ry/?; R*/7}, if ro > 0.

We shall next prove an analogue of Theorem C, using Hermite interpola-
tion and Lagrange interpolation in Faber nodes. Let H;*(n +1)-1(Z3 f) be the Her-
mite interpolant to f in the zeros of (Fy41(2))’, and let L} (n41y-1(2; f) denote
the Lagrange interpolant to f in the zeros of Fy(,41)(2). As in earlier sections,
Sp(n+1)-1(2; f) denotes the Faber section of degree p(n + 1) — 1 of the Faber

expansion of f. Set

D;,s,n(z§f) = Op(n+1)-1 (z;{H:(n+1)—1('5f) - L:(n+1)-—1('3f)}> . (4.4)
We next establish:

Theorem 3 Let f € Ag, let s,p € N be such that s > max{p,2}, and let
D; . .(z; f) be given by (4.4). Then,

plsln

nli_)n;lo Dy, (2 f) =0, z € Gy, (4.5)

the convergence being uniform and geometric on every subset G, for 1 < p < A,
where

A= R1+(/P), (4.6)
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Proof: It is easy to verify that the following integral representation holds:

D;sn( )
p(n+1)-1
Fk(z)
271'1 / T 27m / TP(C Ksn(C 2 I;) th+1 di | dc,
[¢f=r -

(4.7)
where K, ((,t) is the difference between the kernels of Hermite and Lagrange
interpolants and where 1 < r < v’ < R. Then,

e W (0) =0 () _ Wi (50)) = ey (B0)
Ken(G1) = =220 000 w1 (B (0)

Ws(nt1)-1 (1)) w} ($(1)
Wsni1)-1 (V(C))  wi (¥(Q))

Using (2.10) and (2.12), we then have

ts(n+1) 1
Ken(C,t) = z‘;‘(ﬁmo (p”'H) ’

uniformly on closed subsets of {{ € C: |{| > 1} x {t € C : [¢{| > 1}, where p is
chosen such that 1 < p < r <7’ < R. Moreover (with z = ¢(w)),

(4.8)

p(n+1)-1 Fk(Z) ( 1 > ts(n+1) tp(ﬂ+1} _wp(ﬂ+1)

Ksn(¢,t) Z tk+1 n41 Cs(n+1) (t — w)tr(n+D)
k=0

1 t.s(n+l) p(nt1)-1 oo o1
Y
+0 ( n+1> C.s(n+1) Z Zaky‘/w t .
k=1 v=
(4.9)

Since |t] < |¢]| and because of (2.11), the second term on the right side of (4.9) is
bounded above by

|t| s(n—H) p(n+1)=1 o
o () (1) S VR Y
and this tends to zero as n — oo. The first term on the right of (4.9) can be

estimated by
lwl”\"
1) [ =
O(1) (pr” )

which gives the desired result of (4.6) of Theorem 3. |
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Remarks. (1) We do not know whether A of (4.6) is best possible. However, we
are able to improve our result if F is rg-analytic. In this case, we have

lim Dy, (2 f) =0, z € Gy,

n—00

with A := R(R/r)!/?.
(2) A further improvement may be achieved in the case of an ellipse Es (where

d > 1 and where 9F; is rg-analytic with ro = 1/8). An examination of the above
proof shows that in this case A is given by

X = R(R/ro)*".
This also applies to the case of the segment E = [—1,1] (where § = 1) and gives
M= RU*2/p,

5 PROOF OF THEOREM B

Since the proof of Theorem B was not given in [2], we outline it briefly here.
Observe that the formula for AL? (z; f) remains the same as the difference of
(3.7) and (3.8). We have to keep in mind that w, (¢(t)), based on Fejér nodes,
satisfies (from Lemma 3.1 in [4] where OF is a ro-analytic curve, with 7¢ € [0, 1))

wm (Y(w)) = ™ (@™ - 1) (1+0(8™)), (5.1)

for any 8 such that ro < 8 < 1, uniformly on closed subsets of {w € C : jw| > ro},
which gives

wm (Y(€)) — wm ($(1)) _ ¢mHl _ gmet
wm (1(C)) (mHl 1

(1+0(8™)), (5.2)

and

wy, (Y(C)) — wy, (¥(t) (™ —1)° — (tmFL — 1) N

w}, (¥(¢)) - o — 1) (1+0(6™),  (53)

uniformly on closed subsets of {¢ € C: || > 1} x {t € C: [t| > 1}. Here again, we
write

4

APE () =) Amn (2 ),

Jj=1

where for j = 1,2, 3,4 we have

o 1O
Srnslei =g [ e ] | T Kt at | e
Cl=r!

tl=r

(5.4)
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The kernels Ky, n j(w,(,t) are defined as follows:

(Cm+1_1)s_(tm+1___1)s p(n+1)-1 oo

G RN VR D=

I{m,n,l (wx C’ t) =

C p(n+1)-1 o0 ak
W

(5.5)
; gp(ntl) _qup(ntl) ¢ cp(ndl) _ qp(ntl)
Kinn,2(w, 6,1) = (t —w)p(+) L (= w)ernt]) (5.6)
. . (Cm-i-] _ l)s _ (tm+1 _ 1)" tp(n+1) _ wp(n+1)
I{m,n,3(w; C) t) . — O(,B ) (Cm’{"l — 1)5 . (t — w)tp(n+1) ; (57)
and +1 (n+1) (n+1)
tm — 1) ¢pn — app(n
I<m,n,4(w;Cst) = ( 1) od (58)

=1 (= w)pe

The estimate of Ay, n,1(2; f) is obtained as in the proof of Theorem 2, and we
obtain lim A, 5 1(z; f) = 0, locally uniformly on C. Further, using the residue
n—$00

theorem, we obtain

(¢
271 / ml\mnz(w o t)dt = Kopn 2(w,¢,¢) = 0

ft|=r

for all w,(, which yields li_)m Amn,2(z; f) = 0 for all z € C. For the estimate of
n Q.

Apons(z; f), we examine the kernel Ko, 5 3(w,(,t) and we see that for |w| > r,

Komma(w, ¢, 1) = O(1) (W> ,

PP

and thus lim Ap, »3(z; f) = 0, uniformly on G, for 1 < p < R/rg/p. To find the
n— o0

estimate of A, n 4(2; f), we use (2.18) to obtain
271'1 / 1/} — I\m’n,l}('(l), C,t) dt = Il(w,C) -} 12(11.),4-), (59)
ftl=r

where

hw,¢) = 5o [ ZopKmmalw G

It]=r
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and |
I(w,¢) := 5 / A(C, ) Kmon,a(w, C, t)dt
t|=r
[ee] [ee]
with A((,t) := Z }: a,,,kt_kc_"_l. Expanding the integrand in 1 (w, () in pow-
v=1k=1

ers of ¢, we obtain

1 I{ o s p(n+1)-1 ( 1)5—jwutk+_j(m+1)——v-—1
C—_t‘ m,n,4(w,C,t) Cm+1_lszz Z - <k+1 ’

k=0j=0 w=0 M

and its integral, with respect to t, will vanish except when k = v — j(m + 1) > 0.
On setting k = v — j(m + 1) > 0 in the above display, it follows, as s > p/q
and m+1 = ¢(n+1) from the hypotheses of Theorem B, that the above summation

. . . . . nt1)~1 | _
index j satisfies 0 < j < mln{ﬂm)ﬁ—- : s} = § - (n+1 . Thus,
1 G-gwml o pntl)-1 v
i=0 v=jq(n+1)

On writing p = ¢t + 7, where ¢ is a nonnegative integer and where 0 < 7 < ¢, it

follows that
P n
(xn<v%gﬁ) if 0<r<aq,

Li(w,() = . (5.10)

which implies that llm Al (z; f) = 0 uniformly on G for every 1 < pu < R,

m,n,4
where
95—;—1 if 0<r<q,
B g{s+1) o n_
B if 0=r.

In the special case when p < ¢, then p = t¢+ 7 impliest = 0 and 7 = p > 0, so
that the first display in (5.10) applies with 7 =p

In order to estimate I5(w, (), we again expand the integrand in powers of ¢
and obtain

A(Cy t)l<m,n,4(w> C) t)

-1 w oo s p(ntl)-1 s . |
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Then, all the integrals vanish except when k = j(m+1)—v > 1. Then, as s > p/q,

o p(n+1)-1 s (_1),_ja”’j(m+1)_ku
IZ(wvc) Cm+1 — 1 Z—: Z Z (.) C”+1 )

J

(n+1)>u+1
and using the known fact [5, eq. (4.2)] that ay, x = O(1)B#+*, we obtain

p(n+1)-1

1 ; lw]\”
(n+1) [ I}
('w C) sqn Z Z ,ng " < ﬁ )
Jq(n+1)>u+1
1 p—1 n s . |w] v4L(n+1)
= O(l) ,qu(n+1) (__)
GRS 7
Jq(n+1)>u+1+e(n+1)
e STILAY [wl? )"
=0(1)——F" Y |w[t(+D) <_> =0(1) ( ) )
( )(rl)sqn Z% 1;0 ,8 ( (T”)"q
(5.11)
since jg—£ > Kil which implies j¢ — £ > 1. Therefore, we obtain
Am)n4 K 27” /f )) Iz(w, {)d¢ — 0 as n — 0o,
[¢l=r

uniformly on C—?,, for every 1 < pu < R*9/P,
In the special case ¢ > p, we have jg(n+1) > jp(n+1) > v+ 14+ £4(n+1)
forallj=1,...,p,v=0,...,n,and £=10,...,p— 1 so that

Iy(w,¢) = 0(1) (%)"

which shows that hm A® (z;f) = 0, uniformly on G, for every 1 < u <

mn4

Realp fpg it Qombmmg the above results then gives the desired result (3.3) of
Theorem B. , |

Remarks. (1) For arbitrary p,g¢,s, as ro — 1, we obtain A — R. In the case
s = p and ro > 0, we obtain

{ min{RY9; R/ril?; Ry 47, it > p,
min{RY; R/rd/"}, if ¢ < p.

(5.12)

Ifro =0, i.e., E = Dy, we have A = R!*59/? for ¢ > p and A = R(+9/? for ¢ < p.
If in addition s = p and ¢ = 1, Theorem B gives a special case of Theorem 3 of [3].
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(2) We do not know whether A of (3.3) is best possible. However, we are able to
improve our result if F is the ellipse Es. An examination of the proof then yields
that Theorem B holds with

{ min{ R1+0/p; RIFolp 3002, Roit(tialp prf34alPy g5,

- ) (5.13)
min{ R1+4/? /¢29/7. Rsalp}, q<p.

(3) The previous remark also applies when § = 1, i.e., E = [—1, 1], and we obtain

{ min{ R1+9/7; Rls+1)a/p=1} q>p,

= 5.14
min{RH'Q/P; qu/p}y q < p. ( )

6 PROOF OF THEOREM C

As in the proof of Theorem 3 (Sec. 4), the form of the integral representation of
the operator Dy ; n(z; f) is given by (4.7) where the kernel K, ,((,1) is given by
(4.8). Since w, (1(t)) is based on Fejér nodes, we have

X B ts(n+1) -1 . o n (tn+1 _ 1)3 . o(g"
Csn (1) —m( +0(8 ))"m( +0(8")) 6.
= K¢ )+ KE(C,),
where

1 - ts(n-H) —~1 (tn—f-l _ 1).5
I<S(,Tz((’t) = Cs(n+l) — l - (Cn_‘,.l _ 1)5 (6'2)

and (1) (1 )
B e P IS (e I
K3(¢,1) = WOW ) - =)

Since JE is an ro-analytic curve, then 1 > # > ro and with z = ¢(w) for |w| > 1,
we have

o(p™). (6.3)

p(n+1)-1 p(n+1)-1 o

p(n+1) _ , p(n+1)
Fr(z) w Zak,uw_”t_k_l
v=1

Z th+l T (t_w)tp(n+1) + Z
k=0 k=1

=i Apni(w,t) + Apna(w,t).

Since
o [ee]
Hm Apno(w,t) =Y > w75

n-—00
k=1lv=1

uniformly on closed subsets of {w € C: |w|> 1} x {t € C: |t| > 1}, we obtain

lim K9 (C,t)Apnp(w,t)=0  (j=1,2), (6.4)

n—00
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uniformly for [¢| > [¢t| > 4, |w| > § for any d > 1. It is therefore enough to consider

{ K a(w, ¢, 1) = K¢, ) Apna(w, 1), 65)
K n(w, ¢, t) i= K¢ ) Ap ny (w, t).
‘We now set,
1
(4) CFY e (4)
P ,n(z’f)‘ 27”: / f(¢( 271'2 / w I{psn( )C’t)dt dC'
. - (6.6)
6.6

Estimate of D,(,}S),n(z; f)
From (6.3), we see that Ks(?,z(c,t) = O(p"), uniformly for |{| > |t] > § > 1,
so that for |w| > r, we obtain

Katw6.0 = o) (24)

rP

and thus hm DI() ) (2 f) = 0, uniformly on G, for every 1 < pu < R/ré/P‘ Note
that if 7o = 0, then D,(;,,),n(z;f) =0.
Estimate of D,(,?s)yn(z; f)
Since
¥'(<) Loy —kpmpm1
= + o, Kkt =t 6.7
AR ETRP I IL )

uniformly on closed subsets of {t € C : |t|] > 1} x {¢ € C : [¢|] > 1} where
apk = O(BHHF), we can write

T i (w60 = ZB(’ (6,8
where we have set

ps(ntl) _ 1 gp(ntl) _ p(n+1)
(w C) ) . CS S I . (C_t)(t_w)tp(n+1))

(tn+1 _ 1)3 tp(n+1) — wP(”‘H)
CF =1 C- g - weer  (68)

B};?,g)’n(w, C) t) =

o0 o0
B,(,ss),n(w, ¢, t) = K,g?s),,,(w, ¢,t) Z Z ay ptTFCTEL

p=1lk=1
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We now evaluate

Ii(w, ¢) = — / BY) (w,C,0)dt (5 =1,2,3).

oi
jtl=r

In order to find I (w, (), we note that (¢*(*+1) — I)Bf,f,),n(w,(,t) when expanded
in powers of ¢ yields

oo p(n+l)-1 oo p(ntl)-
Z Z C—k 1 utk+s(n+1 —-v~-1 Z Z C—k Lyvik-v-1
v=0

In the first sum, k4 s(n+1) —v —1 > 0 and so its integral vanishes. The integral
over the second sum gives a contribution only when & = v and so

p(n+1)—
(w C Z C-u 1 U/(C(s n+l) _ )
v=0 (6.9)

¢pintl) _ gp(ntl)
T = w) (G D el

The integrand in I(w,(), after multiplying by (¢"*! — 1)*, has the following
expansion in powers of ¢ :

s p(n+1)-1
_ZZ Z (j) (_1)s—jc—k—1wutk+j(n+1)—-u——1‘
k=0j=0 v=0

On integrating with respect to t on the circle |t| = r, all the integrals vanish
except when k = v — j(n + 1) > 0 (then v > j(n + 1) and thus j < p— 1) and
therefore

-1 p(n+1)~ s . .
0 = g i S () oo

J=0 v=j(n+1) J

wp(n-t-l)Z( ) "JCJ(n-H) CP(!H—I) Z( ) -Jwv(n+1)

j=0

(= W) = 1) gD

(6.10)
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From (6.9) and (6.10), we obtain after a slight rearrangement

wP(n+l) _ CP(n-H) (Cn-H —1) - (_l)s(cs(n+1) —-1)
(C — w)CP(n-H) . (Cs(n-H) _ 1)(<n+1 _ 1)3

Il(w,() + Iz(w,C) =

p—1
W) 3 (S) )= citnt) _ C”‘"“’Z( ) 1)#=3 i (n+D)

j=1
oG = e

=: J1(w,¢) + J2(w, ().

Since

QCs(n+1 (1 + 0 (<n1+1 >) if s is odd,

—s((s=D(n+1) (1 +0 (C'}H))’ if s is even,

(Cn-{—l_‘l)s__(_l)s (Cs(n+1)_l) —

it follows that

o) (J};’,ﬁ)n . sisodd,
Ji(w,€) = b, n (6.11)
o) (Z‘F,I)};i}jm\) , §lseven.

Furthermore, J3(w,{) =0 for p =1 and for p > 1,

P n
st ¢) =00 (5 ) (6.12)
Therefore combining (6.11) and (6.12), we obtain
27” / F (W(Q) 1 (w,¢) + Iz (w, )] d¢ — 0, as n — 00,
[¢l=r!

uniformly on G,, for every 1 < p < A, where

\ Rt for p =1 and s even,
RG+D/P - otherwise.

This proves the theorem for 7o = 0 because then I3(w, () = 0.
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Estimate of I3(w,()

In order to estimate I3(w, (), we expand (¢*("+1) —1)B,; 3) n(w,(,t) in powers
of t. Then we have

(Cs(n'*'l) )B(s ('LU ¢, ) S1 + So + S3,

where
oo oo p(n+l)-1
S :ZZ Z au,kc_ﬂ 1 t~k+s(n+1 —v—- 1
p=1k=1 v=
o oo p(n+1)-1
e 35S i,
p=1k=1 v=
1 o oo s p(n+l)-1 1) ) o
53::—(”0(4”“))2,;. Y (j>( )———@f{‘kw T
p=lr=17= v=

(6.13)

Since the power of ¢ in the sum Sy is —k—v—1 < —2, we have no contribution

from the integral of Sy. Term by term integration of the first term Sy is non-zero
only when k = s(n + 1) — v and so its contribution is

oo p(n+1)—

S = Cs(n+1 — Z Z Apys(nt1)—vC 4T
Similarly, the integration of S3 with respect to t vanishes except when k = j(n+1)
~— v (note that then j(n +1) > v +1 and then j # 0). This yields

oo p(n+l)-

S31 = (1 + O<Cn+1)> g n+1) -1 Z Z

S
s o i
> (')H) S jma)-C 0.
J=1 J
jn+1)>v41
Since @, = O(1)B***, we obtain

p=1 v=0
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and

1 oo ﬂ u s p(n+1)-1 ] w\?
Ss1 = 0(1)(7'1)m Z (F) Z Z gin+1) (E)

p=1 j=1 v=0
J{n+1)2v+l

- 0(1)(rll)m p(ni)_lﬂm (%)V = 0(1) <(|:fjl)p>n .

v=0

It therefore follows that
1
5 / F((Q) Is(w, ) d¢ — 0, as n — 0o,
[¢l=r

uniformly on G, for every 1 < u < R*/Pmin{1/r;'**/? 1} = R*/?. Combining
the above results then gives the desired result of (4.3) of Theorem C. |

Remarks. (1) For s = p and rg > 0, we have from (4.3) that A = R, so that
Theorem C gives no overconvergence. Also A — R as ry — 1 for arbitrary p and
5. If 0 < rg < &=, then A = R*/P,

(2) If ro = 0, then X from (4.3) is best possible as can be seen by the example
f(z) = 1/(R - z), but we do not know if this is the case when rq > 0. However, we
are able to improve our result if £ is the ellipse Es. An examination of the proof
shows that Theorem C holds with

A = min{ R1+1/P /2 2/?. Rs/PY}.
(3) The above remark also applies when § = 1, i.e., E = [~1, 1] and we obtain

\= R for s = p,
T | RYYP for s > p.
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