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SOME 2-PERIODIC TRIGONOMETRIC INTERPOLATION
PROBLEMS ON EQUIDISTANT NODES II:
CONVERGENCE

A. SHARMA, J. SZABADOS3! and R. S. VARGA

1. Introduction

Let n,p,¢> 1 be integers with

N:= n(p"’Q)’ M= [E]

2
and let
km
(1) xn:xk(n)::-;z—— (k=0,1,...,2n—1).
Let my =(mq,...,mp), My = (Mpy1,...,Mpyq) be two sequences of integers
such that
(2) O=mi<my<--<mp, 0Smpsy1 < < Mpyg.

The problem of 2-periodic trigonometric interpolation is to reconstruct the
unique trigonometric polynomial

M
(3) tm(z)=ao+ Z(ak coskz +bxsinkz) (apbpyr=0 if N is even),
k=1

from the data

tﬁ}"“)(xzk), tﬂ'}‘”)(xml) (p=1,...,pv=p+1,...,p+9),

for given sequences of integers m;, m; satisfying (2).
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Recently in [2], we gave necessary and (separately) sufficient conditions
for the regularity (or unique solvability) of the above problem. For studying
the convergence problem, we shall suppose that the sufficient conditions in
[2] are satisfied. We shall state these conditions for the sake of completeness,
but in a different form.

We shall say that a finite sequence of non-negative integers m = (my, my,
... ,my) such that :

(3) 0Smi<my<---<m, and m;+my is odd (i=1,...,p—1)

is EE, EQ,OF or OO according as my, mp are both even; m, is even, m,, is
odd; m; is odd, m,, is even or m4, my, are both odd, respectively. A sequence
with only one element will be either EE or OO0 depending on the parity of
the element. It is clear from this definition that EE and OO sequences have
odd cardinality while EO and OFE sequences have even cardinality. With
this definition we can now state

THEOREM A [2]. The 2-periodic trigonometric interpolation problem on
the nodes (1) corresponding to the sequences my, m, is regular in the following
cases:

my |my | n | Type of Ty

I FO | EE| odd —

n @ { EE|OE| odd —

111 FO | EO| ard. ap =0
v (b) EE |00 | odd ap =0
\% EE | EFE | arb. by =0
VI FO|OFE | arb. | ap=0
VII (c) EE|EO|even| by=0

REMARK. Since by supposition m; begins with an even number, there
are only 8 possible combinations of m;, m, in the table. The pair m; =
= FEO, and m; = 00 is not in the above table, because in this case even the
necessary conditions of regularity of Theorems 1 and 2 in [2] are not satisfied.
The conditions which are necessary for regularity as given in [2] imply that

(4) e—0=0,1 or 2

where e and o denote the cardinality of even and odd numbers in the set
m; Umy, respectively. But if my = FO, my = 00, then 0o —e = 1, which
contradicts (4).
These conditions are sufficient, but not necessary as can be seen by the
examples in [2] and also by the results in [4]. In [3] it was shown that if my:=
i=(0,mq,...,my) and if my = (my,. .., Myp), then the problem is regular if
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and only if p is even and then bps = 0. In this case no condition like m; +mipq
odd is needed.

The object of this note is twofold: First we want to construct the fun-
damental polynomials of interpolation in all the above cases. Secondly, we
want to examine the convergence of the interpolant.

In Section 2, we find the fundamental polynomials when 7 is odd and
p+q=2s+1 (cases covered in (a)). In Section 3, we find the fundamental
polynomials when p+ ¢ is even and n is arbitrary. This covers the four
situations listed in (b) in the Table. Lastly, Section 4 is devoted to the last

case (c) in the Table when n is even and p+ g is odd. Section 5 deals with
the problem of convergence.

2. Fundamental polynomials (n odd, p + ¢ odd)

Here n=2r+1, p+q¢=2s4+1 and M = ns+r. This case covers the
first two cases in the table. We shall denote the fundamental polynomials
by o.,(z) which are going to be determined by the followig conditions for
v=1,...,p:

21 { o (@ok) = brobgy G=1,..,p0 k=0,1,...,0—1
Ql(,mj)($2k+1)=0, J=p+1,...,p+q¢; k=0,1,...,n—1.

For v=p+1,...,p+ ¢, conditions (2.1) will be replaced by
(22) {gﬁ"‘l)(x%)ﬂ, j=1,...,p; k=0,1,....n—1
Ql(/mj)($2k+1)=6k0§?j, ]::p-l—l,,p-{-q, k::O,l,...,n-—l.

Putting z = e'®, we may set

2s n-—1
(23)  al@)=MY 2u(2), Qi)=Y a7
A=0 J=0

- Conditions (2.1) (equivalently (2.2)) give the following system of 2s + 1 dif-
ferential equations to determine Qua(z):
(2.4)
25 T 2t — ]
/\ZO(@_*‘An—M)m“QU)\(Z): 2 —1 6;11/, M:I,vp

n
i~y on g ]

z+1

2s
P(*l)*(®+)\n—M)"‘“QuA(2)=—~ Suv, b=p+1,...,p+q
=0
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d
where O = et If we denote the determinant of this system by A(®) and
the co-factor of the (v, A +1) term by A, 2+1(©), then we have

T Ay at+1(0) 2" — 1

dnd © AE) T v=1...p
vA — _Z_m” Au,)\-}-l(@) 2"+ 1 y=pt1 4
n AO) 241’ =p yeey P g
Since ©27 = j27, we see easily that
Ay r+1(0) b= L Duanley) ; I ks
A(O) n™  D(a;) 7
where
1 1 .. 1
(a0 — s)m2 (@—s+1)™ ... (a+4s)™
(25)  D(@)=| (a—s)™  (a—st1)™ ... (a+ts)ms
(a—s)mrtt —(a—s+1)mp+1 ... (a+ )™
Lfa<gmre —@esinmee = (s sl

and Dy »41(e@) is the cofactor of (v, A +1) terms in D(a). In the last g rows
in D(a) the columns have alternately positive, negative signs. :
Setting

Dy+1(ey) v=1,...,p+¢ A=0,1,...,2s
2.6 . ::.__....’_...._________
(2.6) ay;(v) D(a;) Pzl me
we see that

1 v .

Ttmy Yo @), v=1,...,p

—~
@) QuE={
' 1My . A
T it D (-1ayj(v)2!, v=p+1,....p+q
\ j=0

since n is odd.

It has been shown in [2] that under the hypothesis of Theorem 1 the
determinant D(a) # 0 for |a] < 1/2. Also, if e and o denote the number of
even and odd integers in the sequence m;, ..., Mptq, then

e—1=o
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is necessary for regularity. Multiplying the rows in D(—a) corresponding to

odd m,’s by (—1) and then doing s elementary column operators, we see
that

(=1)°D(-a)=(-1)"D(e)
which proves that

(2.8) D(—-a)=D(a).

Similarly, we can see that

(2.9) Dyst1(—a)=(=1)"Dy2s41-a(a), v=1,...,p+q.
From (2.6), (2.8) and (2.9), we have

(2.10) axj(v) =(=1)"azs-r2r-j(v), v=1,...,p+q.

Combining (2.7) and (2.10), we obtain

N A
ou(z) = itmy [asr(l/) + Z asr—5(v)cos jz+
J=1
(2.11) o
+2 Z Z as-xj(v)cos(An+r — ])a:]
A=135=0

when m, is even and 1 <v <p. When m, is odd, because of (2.10) we see
that p,(z) is a sine series. More precisely, we have

2(~1)™5 [ o
ou(z) = — T [Z Qg r—jSin jT+
(2.12) o =
+ Z Z as—x;(v)sin(An +r — ])x]
A=1 35=0 '

when m,, is odd and 1 v <p.
Forv=p+1,...,p+gq, o.(z) is obtained from (2.11) or (2.12) according
as m,, is even or odd, respectively, by replacing z by z — Z.

3. Fundamental polynomials (p + ¢ even)
Here p+¢=2s+4+2 and M =ns+n. So we set

2541

n—1
(3.1) g (z):=2"M [ Z 2"Qua(2) + C,,z(z"“)“] , Qua(z)= Z axi(v)2’.

A=0 7=0
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The conditions which determine p,(z) are given by (2.1) or (2.2) and lead
to the following systems of equations:

(2541 A e, |
2O+ An—M)™Qua(2) + C,M™s = O
A=0 n z-1
(/1 = 1a 23 Y ,‘p)’
3.2 2841 y—my ,n
B8 S CoMOtAn = My Q)4 C pmes T T g
A=0 n Z—w
(k=p+1,...,p+q),
\(SgQ,,o + (—1)1+€CV = 0,

where §p in the last equation is the point evaluation at 0 and w = exp T iz

The last condition is a consequence of the fact that the last term in g,,(x) is
ap cos(Ma + f), where e =0 or 1.

If we denote the determinant of this system by A*(©) and the cofactors
by A;(©), then we have v

AW (C) P |

n  A*0O) =z-1°
—me AY 3 11(0) 27— 1
n  A*0©) Z-1’

v=1,...,p
(33) Qu,/\(z) =

v=p+1l,...,p+gq

i

for A=0,1,...,2s+1, where we have put Z=2ze"n. Also C, is given by
formulae (3.3) when A =25+ 2.

Because of the point evaluation operator é, in the determinant A*(0),
it is easy to see that

. 1 Dyrsalay)
A7 41(9) A A=0,1,... ,25+1
(3.4) *Z:%(:)—)—_ZJ =<{ ™ D(ay) )

for j=1,2,...,n—1 where o = l(]——l .,n—1) and
1 1 1

(a—s—1)™ (a—s)™ e (ats)m

(35)  D(a)i=| (a=s—1)™  (a—s)™ ... (a+ts)m
(a—s=1)"rtt  —(a—s)m ... —(a+s)mr
(ams =Tyt (o yere L (s

and D, A+1(a) I8 a cofactor of D(a). The order of D(a) is 2s +2 and the last
q rows have alternating sign in the columns.
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When j =0, we see that

AT a1 (©) 0= 1 D:,A-i-l

(3.6) ) e A0, 2s42
where
1 1 1 1
(—s—1)m™ (—s)™ e s™ (s+1)™
(37) Dri=| (ms—Dm  (=sm ... sm o (st
(ms— 1)+t —(—g)mptt ... —sTet (s 1)men
1 0 0 (-1

and D:,,\+1 is the cofactor of D*. It follows from (3.3) and (3.6) that C, is
a constant given by

® e *
i=™ DY g3

. y = , =1,..., .
(3.8) C - B v p+q
If we now set
D, ;
—————————1’;?;(_)0[’), 0<a;s1
(3.9) ay);(v) = . J (A=0,1,...,25+2),
A +1 ,
-—-—D—:—, CIJZO

then we have

., N=1
g :
Qu(z)= P Zoa/\j(u)z’ - (A=0,1,...,2s+1),

S *
(i Du,23+3

Ci= n D*
so that
3.10) ufa)= s {Z+ 25 a3y 1)+ ang12 ()5
" A=0 §=0

From (3.5), we see easily that

D(a)=D(1-a) |
Du,)\+1 (Ol) = (—1)m”DV,23+2_)\(1 — a) (A = 0, 1, - .,23 + 1)

(3.11) {
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Similarly,
o1 =(=1)™ D7 5,45 5,
so that from (3.9) and (3.11) we have
a);(v)= (=1)™ageq2-an-j(¥), j=1,...,n—1
axo(v)= (=1)™ g5 5-an(v).
Thus we have from (3.10)

(3.12) ou(z)=
( my=1 s n=1
2(—1 ‘
—"—————(nl-zm: [Z > ax(v) Sin((8+1-/\)n—J)w], m,, odd
.y A=0 7=0
(_1)-’222 s n—1 .
iim [as+1,o(l/)+2 z Z ayj(v) cos((s+1=A)n—j )z], m, even.
\ A=0 7=0

4. Fundamental polynomials (n even, p+ ¢ odd)
In this case n=2r,p+¢=2s+1 and M = ns + r so that we may set

2s
(4.1) 0u(2)=2z"M D" 2"Qa(2) + CuzM,  Qua(2) € Tnor.
A=0
The system of differential equations as in Section 3 is given by
(& m I
D (04 An— M)™Q,x(2) + C, M™ = — 0w
A=0
(l’l' = 17 cee ’p)
(4.2) < T 2R 41
1 My Mh = —b
Z( (O +An—M)"Qux(2) + C, M™ = — T
(k=p+1,...,p+9q)
. 60Q1,,0(Z) + (-—-1)1+€CV - O

Then, as in Section 3, we obtain

4

? v :
. J —
WZGAJ(V)Z, l/—-l,...,p
§=0

n—1

Qw\(z) = 4

My

nltm, Z(—l)ja/\j(’/)zj’ v =p+1l,...,p+gq
N J=0
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where D (a) .
A+11Q J—r
aAj(V)-f—-——-—-—”D(aj)J , aj=T— (A=0,1,...,2s)

(v=1,....,p+¢ j=1,...,n-1),
the determinant D(a) being the same as in (2.5). However, for J=0, we

have
D*
(4.4) auo(z/).~..-——--”1-’)-*j—1 (A=0,1,...,2s),
where
(4.5)
1 1 . 1 1
(0p— 8)™ (0p+1—s)™ (q0+s)m1 (ap+s+1)™
D — (ap—s)™  (cp+1—s)™r (ao+s)™  (ag+s+1)™»

(co+s)™e+ —(ag+s+1)mee

o« e’

)
(ao— S)mp‘*'l -(a0+1~— S)mp"‘l e
)

(0’0" Sjmxﬁ-q “(040"}‘.1._ s)Mrta | (ao_l;;).mxﬁq _.(a0+.3._{._1)mp+q
1 0 0 (~1)He

and D7 , ., is its cofactor. From (4.2), we see, as in Section 3, that

O D:ZS 2
- b*+ (v=1,...,p+9).

As in Section 2, (2.10) is valid in this case also for v =1,.
after some simplification, we obtain

(4.6) C, =

..,p+¢q. Thus

[ (-1)% r |
nltm, {asr(’/) +2 Z asr—;(v) cosjr+
=1
s n-—1 ’
+2AZ ;)as-)\,j(v) cos(An+r — j)g;], m, even
(4.7) o, (z) = ¢ m”.l—"’

p—1 T
2(-1)"2 [Zas,r__j(y)sinjz+

i=1

n1+mu

n=1

-+ i 2 as—-)\,j(y) sin(,\n-i-r—j)l‘],

. A=135=0

m,, odd.

5. Convergence of 2-periodic interpolation

The definition of 2-periodic trigonometric interpolation suggests that in
order to prove a general convergence result for continuous 2m-periodic func-
tions, it is enough to consider the linear operator of the form
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n—1

(5.1) La(fiz):=) [f(z2x)01(e — zar) + b0,mp1 F(Z2k+1)0m,yy (2 — o))
k=0

which has the following properties:

ngmU)(f; z2’;):6ulf(z2k) (V=17"°,p)

(m) (k=0,1,...,n-1),
L™ (fi 22k41) = bu,p41 f (Z2k41)b0,mpyy, (V=1,. .., p4q)

The convergence properties of this operator depend on the order of mag-
nitude of the fundamental functions 0,(z) determined in the previous sec-
tions. We first prove a lemma on the fundamental polynomials..

LEMMA 1. Under the conditions of Theorem A in case (a) and (c) with
the additional assumption that mpt1 > 0, we have

2n-1

(5.2) “ Z lou(z - xk)l“ =0(n ™ logn), v=1...,p+q.
k=0

(Here and in what follows || - || means the sup norm.)

PROOF. Assume that m, is even. (The proof for the case m, odd is
similar.) Then g,(z) is given by the form (2.11) or (4.7). Since the coeffi-
cients a;(v) of this polynomial are obtained as the ratio of two determinants
where the determinant in the denominator is a, non-vanishing function of the

variable & in the closed interval [—1,1], we have

(5.3) |lax; (v)| =0 (1)

Hence separating terms corresponding to j = 0, we can write p,(z) in the
form

(~1)mu/2 s /n-—-l .
= [22 as—y,;(v) cos()\n—])m—’rO(l)],

A=0 j=1

(5.4) ov(z)

where Y’ indicates that when ) = 0, the factor 2 should be dropped. For
a fixed A, all the coefficients a,_) ;(v) are determined by the same formula
(e.g. (2.6) in Section 2 and Section 4). Therefore

Aas_»;(V) :=as-5;(v) — as-) j41(v) =0 (n7}),

J=1,...,7=1, ifA=0
h
were{jzl,,..,n-—2, if A=1,...,s.
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Using Abel-transform on (5.4), we obtain

1
as-x;(V)cos(An+r—j)z =
1

n

.
1l

n—2 J
:ZAas_,\,j(u) Zcos()\n—l—r—l)x-{-as An—1( Zcos (An+r—-Dz=
j=1 I=1 I=1
—0(n 1) n§—:2 ’ sin %x sin(An+r — %l)ml 1)Ism 2=lysin(An4r — 2z
sin £ sin § ’
whence again from (5.4), we have
2n—-1
> lov@—ai)|=
k=0
B _1-mu s _—1 n—22n-1 Sll’l‘z' IL‘—(IIk
=063 {0t Z;l o=
j=1 k=0
2ol sin 22l (z — zk)
T n=mvY) =
+0(1) :?;1 = ‘} My =

= 0("—1_"1"){0("-1)0(")0(” logn)+0(1)O(nlogn)} +0(n"™) =
=0(n~™ logn).
We can now state our convergence theorem.

THEOREM 1. Under the conditions of Theorem A in cases (a) and (c),
we have

1£(z) = La(f, 2)|| = O(Em (£) log n)+
(5:5) +0("BI) S (k4 121 E(f),

k=0

where

. { min(mg, Mpy2) i mpyq =0,
min(mz, Mp41) if mpyq >0,
n \

" (logn)1/p’

(5.6)
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and Ei(f) is the error of best trigonometric approzimation of order k to
f(z).
PRrOOF. Let p,,(z) be the trigonometric polynomial of best approxima-

tion of order m to f(z). Since in the cases concerned the problem of 2-peri-
odic interpolation is regular, we evidently have

pm(f,w) Ln(pms (E)—{— Z { Zp"flnv)(ch Qu(z - xzk)‘{"

v=2
p+q

+ Z "D (zak100(2 — szk)}

v=p+1

(5.7)

where and in what follows the prime on the summation indicates that the
term corresponding to v =p+ 1 should be omitted if mp4y =0.

According to Lemma 2 [5], we have

1) ()]l = 0 (3 (k+ 19 Eul 1))

k=0

Thus from Lemma 1 and the definitions of m and p in (5.6) we see from
(5.7) that

rt+q 2n—1

m = Lo )l = O (3 W7 3 e - o)) =
k=0

p+q

_O( logn Z(k+l m"”lEk(f))

ll

_ o(z'@-ﬁmmv*“ Z(k FLPUE(S))

= O(IZZIQO_g_n)______ Z(k+ 1)4- lEk(f)) _
o5 S i)

k=0
Hence it follows that

I1f = La(HI NS = Pmll + 1P = La(Prm)l| + | Ln(pm = FII £

O™ Sk 4 14 BL()) + O(En(Hlogn). O
k=0

§Em(f)+0( h
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6. Convergence (continued)

Theorem 1 shows that in order to have convergence in cases (a) and (c)
of Theorem A, we have to assume E,(f) = o(E%;—;l—). However, in some cases
this condition can be dropped. We shall now turn to these cases.

)

LEMMA 2. Under the conditions of Theorem A (in cases III, V, and VI),
with n even and myyq1 >0, we have

nmv

60 |3 lae-mi]=0m, |3 lae -l =o(E2)
k=0 k=0

(v=2,...,n-1).

PROOF. Set aj=;{‘ (j=0,1,...,n—1) and

Dyrti(ej) 0Sa; 1, v=1,...,p+¢q

2 i(v):=
(6.2) ax;(v) D(aj) A=0,1,...,25+1.

Then from (3.11) we get for v =1,

‘s n—1

(6.3) o1(z) = %[as,n_l(l)-}-QZ Za)\j(l) cos((s+1— )\)n—j)x} +0(%).

A=0 7=0
Since ayj(v) (A=0,1,...,2s+1) is an analytic function of @; in a domain

containing the interval [0, 1] and since a1 — aj_; = O(L), it follows easily
by the mean-value theorem that

1
Alax;(v) = ax;-1(v) = 2a0,(v) + ax42(v) + 0 ()

(6.4) v=1,...,p+q; A=0,1,...,25+1;
j=1,...,n—2.

From (3.4) we see that

(65) Dl,)‘+1(1) = 0, A ;é S

since the cofactor of (1, A+ 1) term in D(1) will contain a zero column (here
we use the fact that mp4; > 0). This together with (3.11) yields

(66) Dl,,\+2(0):D1’23+1_,\(1)=0, /\#S
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Therefore we have
laan-2(1) = 2a5n-1(1) + ar41,0(1)| £
Slaxn-2(1) = axn-1(1)| +|ar n-1(1) — ary10(1)| =
e Dy yt1(an-1) Dy ay2(0) .
o(3)+| - =

(6.7) n 3 D(an_l) D(O)
e Dy yy1(an—1) .
_O(g) +l Dlany) ' on using (6.6)
1
~0 (;) M.
Similarly, we have
1
(68) |a,\,n_1(1) - 204)\.{_1,0(1) -+ a,\+1,n(1)| = 0 (E) 3 A ;é S.
Thus if we write
1 (s+1)n
(6.9) o1(z) = [ 0+ 2 Z ,BJcos‘yz} +O( )
7=1

(notice that B(s41)n = ao,0(1) = D11 (0) _ =0 from (3.5)), then we see from (6.7)

D(0)
and (6.8) that

0 (—{2—) if 7 or 7+ 1 are multiples of n
n

(6.10) A%B; =
0 (-1—) otherwise.

n

We now apply a double Abel summation to (6.9) to obtain

(s+1)n-2
01z 1[ Z AzﬂJ(S;;%)2+
(6.11) 2
(s+1)n—2 9 1
+Aﬂ(s+1)n~—l(81n Sinz%': :E) ]'*‘0(;;)
Since
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we see from (6.10) and (6.11) that

2n—1 1 (s+1)n—
(6.12) Z lo1(z — zk) :—-[2n Z jA? ﬂj—{»Aﬂ(s“)n 10(n )]+0(1)___
i=1
=0(1).

Now assume that 2 < v < p+ ¢ and that m, is odd (the case where m, is
even is similar). Again, from (3.12) we have

lov(z)] S n™ 1™ Z Z axj(v)sin((s+1-=An—jz[+0(n~1"™) =
A=0 j=0
(s+1)n-1
=qp "My Z v;(v) sinja:‘ +0(n~ ™)
7=1

where, as in (6.7), we have

1 e . .
Anj =41 -7 = 0 (;) if 7 or j+1 are not multiples of n,
0(1) otherwise.

Using Abel transform once, we have

(s+1)n—-1
: —1=m, sin jrsin(j + 1
le(@) a7t 3 Ay 2RZ0 2
=1 2
sin(s + 1)nz sin(s + 2)nz
+ |7s+1)nl Sin% l‘
Since .
i: Isinj(:v —z¢) sin(j + 1) (z — z) ‘ =0(nlogn)
Pt sin 2572k
we obtain
2n—1 (s+1)n-1 »
Y le(z—ax)|=0(n7"™)0(nlogn) Y |A(y)|=
(6.13) k=0 1=1
log n
=0( = ).

The result follows from (6.12) and (6.13).
Now we are able to prove our main result on the convergence of some
2-periodic interpolation operators.



430 A. SHARMA, J. SZABADOS and R. S. VARGA

THEOREM 2. Under the conditions of Lemma 2 above, if we set

(6.14) Ldﬂw%=gff@uhd$~x%%

then we have B

619 )= L =0 (1) Y0+ D),
where -

) n
p=min(my, Mpy1), m= {W]

for all continuous functions f(x), where Ex(f) is the best trigonometric ap-
prozimation of order k to f(z).

REMARK. (6.15) implies that lim ||f(z)— Ln(f,z)||=0 and, in partic-
ular, if f(z)€ Lip a, then

17(2) ~ Latf; o)l = 0 (L2E2EY,

nH

The proof is the same as that of Theorem 1, but with a reference to Lemma 2
instead of Lemma 1.

In connection with Theorem A case (a), we do not have a general con-
vergence theorem similar to that of case (c), because condition (6.6) is not
always guaranteed. Nevertheless, in some special cases, it is still possible as
in the following example.

EXAMPLE. Let p=2,¢=1in the case of (0, m; m3) interpolation where
mg is odd and m3>2 is even. From the general formula (2.12), we obtain

r n—1
1 : .
o1(z)= - [al,r(l) +2 z air—;(1)cosjz +2 Z ao,;(1) cos(n+r — ])a:]
71=1 7=0

From (2.5), we see that

Dia(3) = e =Pa(~3)

so that aj o(1) = agn—1(0) and the method of proof of Lemma 2 works, yield-
ing the following estimate for the operator (5.1):

log n

1£(2) = La(f,2)l = 0 (== )§:w+1w*Eu>
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where g = min(my, m3) and m= [n;é‘;—)—,;]
The condition m3 > 0 in this example cannot be dropped, as the example

of (0,1;0) shows. Here the fundamental polynomials are easy to calculate.
Indeed we have

sin nz sin -’12-“3 cos % sin nz sin ﬂzﬂ

Ql(m): 27’L2Sin2% ’ 92(‘7"): nsin% ’
2 nx
sin COS -5~
93(1:) — 2 2
nsm =z

2
We see that

|5 ezl =0, | et -zwl] =022
k=0 k=0

but

“ZIQs $~$2k)|“ ‘.93 ———$2k)'

-1
> 1 2 T T nz: 1
— sin“ — cos — —
- 4k+1
n 4 4 g sin o
> clogn.

Thus in the case of (0,1;0), the interpolant

L.(f,z):= Z_: f(zak)o1(z — zok) + i f(@art1)03(z — z21)
k=0

k=0

cannot converge uniformly for all continuous 27-periodic functions.

7. Conclusion

Unfortunately, we do not have estimates for the fundamental polynomials
in cases III to VI in Theorem A when n is odd.

Finally, we mention that there is an error in the formulation of Theorem 3
in [4]. In the notation of the present paper there we considered the problem
of (0;my)-interpolation with p=1, ¢=1. It was proved there that if m;
is odd, then the problem of (0;m;)-interpolation on the nodes zx = %’1, k=
=0,1,...,2n — 1 is regular if and only if n is odd and ¢ = 1. Furthermore if
m; is even, then the necessary and sufficient condition for regularity is e =0
and where n could be even or odd. The correct statement of Theorem 3 in
[4] is then as follows:
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Let my,n and ¢ satisfy either of the conditions listed above. Then for

any f(z) € Car, we have

“f(“’) - "Z‘l f(za5)01(z - :czj)H —

=0 (0T BN 407 3 (k + )™ E(S)).

k=0

We mention that this statement when m; is odd is a special case of Theo-
rem A case IV, i.e., in this case the relation

2n—1

” > |91($—xk)|”=0(n) |
k=0

is proved. We suspect that this latter relation holds in all cases IV to VI (n
odd).
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