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In this paper, weighted uniform approximation by polynomials on the whole real
line is considered. In particular, results are sharpened here of Akhiezer and Koosis,
on the exact class of entire functions (with order one and type zero), which can
be uniformly approximated on the whole real line with arbitrary accuracy by
polynomials.
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The study of weighted approximation by polynomials on the whole real line is one of
the widely investigated areas of approximation theory. This topic was initiated by Bern-
stein, who obtained some fundamental results in this area. His work was then continued
by Akhiezer, Mergelian, Pollard, and others in the 1950’s. For more recent contributions
to this area, we refer the reader to the monographs of [4] and [6].

In the study of weighted approximation on R := (—o00,00), the starting point is
a weight function w(z) which makes it possible to introduce the uniform norm on R.
As usual, we set w(z) = e~ %), where it is assumed that Q(x) is positive, even, and
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continuous on R, and for all sufficiently large z > 0, @Q(z) is increasing to +o00 as & — +00,
with

Im 9—@ = 400
z—+oo log z

If C(R) denotes the collection of all continuous functions on R, then, given the weight
w, we consider the class of functions

Cq(R) = {f(z) € C(R): lim f(@)e=9® = 0},
x|-—+00
Then, for any f € Cq(R), the following approximation problem is well defined:

En(£,Q) = inf |le=9(f=p)llr  (n€Zy),
pell,

where II,, is the set of real algebraic polynomials of degree at most n, and || - ||r is the
supremum norm over R. Furthermore, let us introduce the set of functions

Mq(R) = {f € C(R) : lim En(£,Q) =0},

Thus, Mg(R) consists of those functions which can be uniformly approximated, with
arbitrary accuracy, by polynomials on the whole real line. This leads to the following
fundamental problem studied by Bernstein and his followers: What are necessary and
sufficient conditions so that Mg(R) = Cg(R)? This question was answered in different
fashions by Akhiezer, Mergelian, and Pollard (see [3] for detailed references). Essentially,
the solution to the above problem can be formulated as follows: In order that Mg(R) =
Cg(R), it is necessary and sufficient that

dz = oo.

g -

(It should be noted that the sufficiency of (1) is somewhat more delicate. Namely, it
also requires some additional regularity of @, but we do not include here such technical
details.)

An interesting question then arises: describe the set Mg(R) in the case when (1)
fails, i.e., when

* Q)

_ool+:c2d:n<oo.

2)

It was noticed by Akhiezer [1] that if (2) holds, then Mg(R) consists of entire functions.
Koosis [3] refined Akhiezer’s argument in order to show, whenever (2) is satisfied, that

MQ(R) C &o,

where & denotes the set of all entire functions of order 1 and type 0, and all entire
functions of order less than unity. In [3], one can also find an example of a weight e~ 9
satisfying (2) for which Mg (R) # &.
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In this note, we shall investigate further the associated class Mg (R) when (2) is valid.
It will turn out that, in order to describe Mg(R), a more delicate study of the rate of
growth of functions in Mg(R) is needed. This rate of growth cannot be described only
by the order and type of the entire functions; there is an intrinsic relation between the
growth of functions in Mq(R) and the rate of growth of Q at infinity. In order to describe
this growth, we shall use the following function:

3) uﬂzlw%gm: t > 0).

Clearly, as Q(t) is positive on R, then I(t) is positive and decreasing on (0, +c0), with
I(t) | 0 as t — oo, provided that (2) holds. Let us also note that lim;_.otI(t) = Q(0), so
that tI(t) is well-defined at the origin.

Now, we can state:

Theorem .1
Let Q satisfy (2), and consider an arbitrary f € Mg(R) such that ||le"9f||r = 1. Then,
f is a restriction to R of an entire function satisfying

(4) 1£(2)] < ae® D (z € ©),
where a := a(Q) depends only on Q.

If M;(r) = Irniax |f(2)| denotes the maximum modulus function for the entire func-
zl=r
tion f in Theorem .1, note that (4) implies that
log M (r) <loga+ 5r-I(2r) (r>0).

Hence as I(t) | 0 as t — oo when (2) holds, we directly obtain (cf. Boas [2, p. 8]) that
f € &, which gives us the following

Corollary .2
(Akhiezer-Koosis). If (2) is satisfied, then Mg(R) C &.

Moreover, the estimate (4) also shows that the set Mq(R) is essentially smaller than
&o. Indeed, we prove below the result of

Corollary .3
For every Q satisfying (2), there exists an f € & such that f ¢ Mg(R).

Note that in [3], the above statement is shown to be true only for a specially con-
structed @, while Corollary .3 holds for every Q satisfying (2).

PROOF OF COROLLARY .3
Consider the function S(t) := t1/I(t). Then,

, tr'(e) _ 20(t) - )
(5) S'(t) = V) + RN
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Since Q(t) is increasing for, say, t > to, we have

©) 20 [ F=% (2w

Thus, we have from (5) and (6) that S(t) is increasing (to o) for ¢ > to. In addition, by
(2) we obtain that S(t) = o(t), as t — oco. Consider now the function

() = Z(R()) =3 at

k=ko

where R := SI-1] is the inverse function of S, (i.e., R is the increasing function, on -
[S(to), +00), which satisfies S(R(u)) = u for all u > S(to) and R(S(t)) =t for all t > ),
and where kg is chosen so that kg > S(to). Since S(t) = o(t) as t — oo, then

- S(R(k))
Jim ke/* = lim 2 = e lim =or
from which it follows (from Theorem 2.2.10 of [2]) that ¢ € &. On the other hand, for

all £ > 0 sufficiently large, set k := k(z) = [[S(z)]] (where [[y]] denotes the integer part
of any real number y), so that

=0,

S(z) — 1< k < S(z) and R(k) < R(S(z)) = =.

Then, as the Taylor coefficients ¢ for g are all positive for k& > ko, we have

k
(7) M_q(:c) = g(:(:) >; (%) > efc > eS(:c)-l =& I(z)—l’

for all £ > 0 sufficiently large. However, as I(t) | 0 as t — oo, the growth rate of g, from
(7), is incompatible (larger) than the growth rate of (4), i.e., g ¢ Mg(R). The proof of
Corollary .3 is complete.

Evidently, if f € Mg(R), with f not a polynomial, then

f(z) —pn(f, z)
En(f,Q)

where p,(f, ) is the best approximating polynomial of f from II, (with respect to the
weight e~9). Thus, applying Theorem .1, with f, replacing f, leads to

Ja(z) = € Mg(R) (n=0,1,..),

Corollary .4
If Q satisfies (2), then for every f € Mg(R),

1£(2) — pa(f, 2)] < aBu(f, Q)L (z € C).

The above statement shows, for functions from Mg (R), that convergence on the real
line extends (with another weight) to convergence on the whole complex plane.
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We can also give a partial converse to Theorem .1, provided that @ satisfies the
following mild additional condition: for some for ¢ with 0 < ¢ < 1, there exists a constant
v(¢) with 0 < y(e) < 1, such that

;= limin Qle2)
(8) ¥(c) := lwﬂoof @) > 0.

It can be easily shown that if (8) holds with some ¢ in 0 < ¢ < 1, then it also holds for
every ¢ in 0 < ¢ < 1. We shall use this fact below by choosing ¢ = 1/e.

Theorem .5
If Q(z) satisfies (2) and (8), and if f is an entire function such that

9) If(z)] < vel=9R0D (€ ©),

with some v > 0 and some ¢ satisfying 0 < ¢ < 1, then f € Mg(R). Moreover, we have
in this case that

(10) lim sup (En (f, Q)™ < e=€7(1/2),

n - 00

Note that (10) gives the geometric convergence, of the errors E,(f, Q), to zero.

Let us compare our necessary condition of growth (4) with the sufficient condition (9).

146
Since the weight @ must satisfy (2), we shall assume, for some § > 0, that gﬁbﬂ;&f is
decreasing (as £ — 00). In our situation, this assumption may be considered “acceptable”,

since if QQ);ﬁ—w- were increasing, it would contradict (2). Under the above assumption,
we have

de _Q(t)logt
zlogtiz &

tI1(2t) < tI(t) = t/oo %(7””2 dz < Q(t) ]og1+6t/oo

Hence in this case, with this added assumption, the corresponding necessary and sufficient
conditions of (4) and (9) would differ only by a log factor. Moreover, if Q(z)z~? is
decreasing (as ¢ — o00) for some § with 0 < # < 1, a similar calculation leads to

(11) tI(2t) < tI(t) < Q(t)t*~* / P2 de = —19—(%;

; —
that is, even the log factor disappears! Moreover, as it can be verified that the assumption,
that Q(z)z " is decreasing (for all z sufficiently large) for some 8 with 0 < 8 < 1, implies
that both (2) and (8) are satisfied, then we obtain the following result. Assume that
Q(z)z P is decreasing, for all sufficiently large z, for some B with 0 < 8 < 1, and assume
that f is an entire function which satisfies
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(12) IF(2)| < d1e®2?0:D (2 € ©),

where d; and dy are positive constants. Then, for f € Mg(R), it is necessary that
dy < 5/(1 — B), and sufficient that do < 1. (These are direct consequences of (11) and
Theorems .1 and .5.)

Thus, under the above conditions, the rate of growth (12) characterizes the class
of functions Mg(R). Of course, the much more delicate question of giving the exact
constants dy and dj in (12) remains open here. The authors feel that the rate of growth
(12) might be in fact the general proper description of Mg(R) (that is, for every Q
satisfying (2)).

Now, we turn to the proofs of Theorems .1 and .5.

PROOF OF THEOREM .1
Assume that f € Mg (R), i.e., for the sequence of best approximating polynomials p,(f),
we have

En(£,Q) = lle™?(f = pa(N)llr — 0, as n—oo.

Since, by hypothesis, |le=?f||r = 1, we clearly have ||e=®p,(f)|lr < 2, ie., |pa(f, z)| <
2¢9(®) for any z € R. By Theorem 6.5.4 in Boas [2], we have, for any z = u + iv with
|z| = r, that

|pn(f,2)| |v|/+°°108(lpn(f,t)l/2)dt lvl/ ( __Q@)dt
< LT

(t — u)? + v2 (t — u)? + 02’

or,

lpn(f, Z)l [v] _ Q)dt
(13) {/t|<2r ~/|t|>2r} (t —u)?+0?

Recalling that Q(t) is increasing (to oo) for t > ¢, let t; > ¢p be such that
22x Q) =Q) (t2h)-
Then, the first integral in (13) can be bounded above, for r > ¢1/2, by
Ivl Q()dt v Q(27’) /

ltl<2r (t-u)?+ ”2 -

N m <Q(2r),
and this is further bounded above by
Q(2r) < 2r /200 Q—(ttz)—ﬁ =2rI(2r)  (r2>1t/2).
r
For the second integral of (13), we have, as 0 < |u, |v| < 7, that

2
(—ufP+0? > (220,
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from which it follows that
vl Q)dt _ 8r © Q(t)dt _ 8rI(2r)

T Jjypar @ —w)?+02 = 7 Jp £ m

Collecting these estimates and noting that 2 + —i— < b, we obtain
tog 28 copep sy (k12 ).
By the maximum principle, we further have that
og 2 < 5% gy = (1<),

where we note that b depends only on Q(t). Thus, we have

(14) logw <5|z|-I21z))+b (2 €C).

This yields, in particular, that the sequence {pn(f, 2)}5% is bounded on compact subsets
of C. Therefore, by the Montel theorem ([5], p. 293), it possesses a subsequence converging
uniformly in C (i.e., on compact subsets of C) to some function F'. Evidently, F' must
be an entire function, F' coincides with f on R, and in view of (14),

log-i—ligi)l <5lz|I2)z))+b. (2 €C),

which is equivalent to (4) with a := 2¢*. This completes the proof of Theorem .1.
We note that in the case Q(z) is increasing for every z > 0, we can take a = 1 in
Theorem .1.

PROOF OF THEOREM .5
Assuming that Q(z) satisfies (2) and (8), let

f(z) = Z ar2*
k=0

be an entire function such that (9) holds. Then, we obtain, by the Cauchy integral formula
for any r > 0, that

lrHO)_ 1

e

kT or

(1=-€)Q(r)
f () dz‘ Lve .
|2|=r

Pz "k

Using this estimate,

o]

%0 )
15)  B(h@< 3 lal et @l <v S e(l—sm(ﬂu.
k=n+1 k=n+1 "
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Suppose that

||z¥e=9@)||g = ke @) (for some z € Ry ).

We distinguish two cases.

Case 1: z;, < Q=U(k)/e. (Here, Q=1 stands for the inverse function of @, where
we assume that & > n is large enough so that this inverse is well defined.) Setting
r := QI=1(k), we have, as in the proof of Corollary .3, that

ke=Q
e(l-—-e)Q(r)”w € k(”)lln < e~ ck=Qan) L o~k
r

Case 2: z; > QI7U(k)/e. Now we set r := z;. Using (8), for arbitrary 4/ (where
0 < v <v(%) < 1) and for all k sufficiently large, we have

Qex) 2 7' Qlezs) > 7'Q (QI(K)) = 7'k
Hence,

k.-
e(1-e)q(r)||ac e Z("’)lln = =cQEr) < =o'k,
r
Since the estimate in Case 2 is weaker than in Case 1, we obtain from (15) that

oo
Ea(£,Q)<v Y, et =0 ™).
k=n+1
Hence, as E,(f,Q) — 0 as n — oo, then f € Mg(R). Moreover, as ¥/ was any number
satisfying 0 < 4" < y(1/e), we thus obtain (10), completing the proof of Theorem .5.

Examples.
The following weights provide typical examples for which the above results apply:

Q(z) = z* logﬁ(x+2),
where either 0 < a < 1, # arbitrary;ora =1, < -l;0r =0, > 1.

Remark 1

In [3], the author considers the class M}(R) consisting of those functions from Cq(R)
which can be approximated by entire functions of arbitrarily small type (as above, the
approximation is meant in uniform norm on R with the weight e~9). It is shown in [3]
that MZ(R) coincides with either Co(R) or Eo N Co(R). Then, the author addresses
the following question: Under what conditions on @ does the relation Mq(R) = M§(R)
hold? In view of Corollary .3, it is clear that Mg(R) either coincides with Cq(R), or it is
a proper subset of £. Thus, Mg(R) = ME(R) holds essentially only when both of them
equal Cqo(R).
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