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1 Introduction

oo
Given f(z) := Zakzk with lim |ag|'/* = 1, so that f is an analytic function
=0 k—00

in |z| < 1, it is natural to ask where the zeros of the partial sums of f, namely,
n
sn(z; f) i= Zakzk (n €N),
k=0

are located. (Here, N and Ny denote, respectively, the set of positive integers and
the set of nonnegative integers.) It was shown in 1917 by Jentzsch [6] that each
z of || = 1 is an accumulation point of the zeros of {8n(2; /)}nen. (A sharper
form of this can be found in Szegs [15].) But for an entire function, the behavior
of the zeros of its partial sums is quite different. In 1924, Szeg6 [16] made a
substantial first step in this area by considering the special entire function e?
and its familiar partial sums,

sn(z) == sz/k! (n € Np).

k=0

Specifically, an application of the Enestréom-Kakeya Theorem (cf. Marden [9,
p-137, Ex. 2]) to the above s,(z) shows that, for each n € N, all zeros of s,(2)
lie in the disk [z| < n. Calling s,(nz) the normalized partial sum, this implies
that

all zeros of {s,(nz)}nen lie in |z| < 1. (1.1)
This is clearly indicated in Fig. 1. Consequently, the infinite set of all zeros of
{sn(n2) }nen must have at least one accumulation point in |z| < 1. On defining
the simple closed curve

S:={z€C:|ze' | =1and |2] < 1}, (1.2)

which is called the Szegd curve, we next state the remarkable result of Szegé [16],
published in 1924.
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Theorem 1.1 [16]. A complez number ¢ is an accumulation point of the zeros
of the normalized partial sums {s,(nz)}nen if and only if ¢ € S.
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We remark that the Szegd curve S is also shown in Fig. 1. In addition, we

note from Fig. 1 that the convergence, of the zeros of {s,(nz)}nen to S, is

noticeably slower in the neighborhood of the point z = 1 of S, and this will have
subsequent interesting ramifications for us! We also mention that the curve

{z€C:|ze!7 =1}, (1.3)

of which the Szegd curve S of (1.2) is a part, is shown in Fig. 2, and this
divides the complex plane into three disjoint domains, i.e., G, Qq, and Qo , where
G denotes the interior of the Szegé curve S. (The significance of these three
domains, namely, G, Qg, and Qs will be clarified later.)

2 Weighted Polynomial Approximation by {e™*P,(2)}nen,

The introduction in Section 1 to the zeros of the normalized partial sums sn(nz)
of e* may seem remote from our goal of considering weighted polynomial ap-
proximation of analytic function in the complex plane, but, as was shown in
[16], there holds

NG
TV 21

e sp(nz) =1-

/z(CeI_C)”dQ (neN z €Q), (2.1)
0
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where, from Stirling’s asymptotic series formula (cf. Henrici [5, p.377]),

7, n! 1 L + 1 139 + as n —
= —_— — — e 00,
" nmeny/2mn 12n  288n2  51840n°
so that lim 7, = 1.
n—o0

(2.2)
We note that the function

o(2) 1= zel 2 (2.3)

already appears in the integrand of (2.1), and it also plays a significant role in

the asymptotic behavior of the zeros of {s,(nz)}nen. It is the case that o(2)

of (2.3) is univalent in |z| < 1, and ¢(z) = w conformally maps the open set G

onto the open unit disk {w € C: |w| < 1} in the w-plane, with the Szegd curve

S being mapped 1-1 onto the unit circle 7' := {w € C : lw| = 1}. But note also

that ¢'(1) = 0, so that conformality of this mapping is lost at the point z = 1.
Based on (2.1), the following can be established.

Proposition 2.1 [11] For the weighted normalized partial sums e " su(nz),
there holds

nz o 4 2 rai .
[e"sp(nz) — 1] < -——————W ] (ze G\{1};n e N). ' (2.4)
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We remark that the inequality of (2.4) of Proposition 2.1, which is in a form
useful for our subsequent developments, is closely related to similar results of
Szegd [16, eq. (5)], eq. and [2, eq. (2.13)], but is not implied by these results.

For the behavior of the weighted normalized partial sums {e7™5p(n2) b nen
outside of G, we also have the following result:

Theorem 2.2 [11] For the normalized partial sums of %, we have

lim [e™"*s, (n2)[''™ = |p(2)| (z € C\G). (2.5)
n—oo
The result (2.5) shows that e~"%s,(nz) diverges unboundedly in Q, (where
lo(2)] > 1), and converges to the identically zero function in Qg (where lp(2)] <
1), as the subscripts of these regions indicate. What (2.4) asserts is that the
special analytic function, f(z) = 1, can be uniformly approximated, on compact
subsets of G\{1}, by the weighted normalized partial sums {e7 s, (n2) }nen.
This then connects with the theme given in the title of this paper! Moreover,
Proposition 2.1 is the precursor of the following more general approximation
result for the weighted polynomials {e™"*Pn(2)}nen,- In what follows, all norms
used are the uniform (Chebyshev) norms on the indicated sets.

Theorem 2.3 [11] Let f be analytic in G and continuous on compact subsets
of G\{1}. Then, given any compact set E ¢ G\ {1}, there exists a sequence of
complex polynomials {Pn(2) }neng, with deg P, <n for alln € Ny, such that

Jim {le™™* Po(z) — f(2)||e = 0. (2.6)

Furthermore, if f is analytic in G, _and continuous in G with f(1) =0, then
there is a sequence of polynomials {P(2)}nen,, such that

Jlim [le™* B, (2) - f(2)llz = 0. (2.7)

The difference between (2.6) and (2.7) is in the behavior of f at the sole point

z =1 of G, the point which is exceptional in Proposition 2.1, and for which we

know that ¢’(1) = 0. We believe that the second part of Theorem 2.3 cannot be
further strengthened, in the sense that we make the following:

Congecture [11] There exists an f, analytic in G and continuous in & with F() #
0, such that for no sequence of polynomials {Pn(2) }nen,, with deg P, < n for
each n € Ny, it is true that

: —nz _ -
Jim [l Pa(z) - f(2)llg = 0. (28
Let us examine Theorem 2.3 more closely. Obviously, any polynomial_ Qn(z)
can itself be locally uniformly approximated (i.e., on compact subsets of G \{1})
by weighted polynomials {e™™*P(2)}neno. Then, by Mergelyan’s Theorem (cf.
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Walsh [19, p.367]), any function which is analytic interior to a given compact
set £ C G\{1} and is continuous on E, is itself uniformly approximable by
polynomials, if E has a connected complement. This gives us the result:

Corollary 2.4 [11] If E is a compact set, such that E C G\{1} and such that
its complement C\E is connected, then there exists a sequence of polynomials
{Prn{2) }nen,, with deg P, < n, such that

Tim [le™"*Pa(2) — £(2)]|5 = O. (2.9)

Many questions naturally arise from Theorem 2.3. For example, one can ask if
it is possible to give rates of convergence in (2.6), of these weighted polynomial
approximations to a given f. This is done below, and is reminiscent of the
classical Bernstein—Walsh overconvergence results (cf. [19, pp. 75-78]). To state
this result, we use the notation

Sp={2€C:lp(z) =z *|=r]2|<land 0 <r < 1}, (2.10)

so that S, is a level curve of the mapping ¢. We also set

Gr:=int S, (0<r<1), (2.11)
so that G = G;.

Theorem 2.5 [11] Let (r, R) be a pair of numbers satisfying 0 < r < R < 1.
Then, a function f is analytic in Gg if and only if there ezists a sequence of
polynomials {Pp(2) }nen,, with deg P, < n, such that

T lle ™ Pa(z) — SIE" < £ < 1 (2.12)

We remark that the last inequality in (2.12) implies the geometric convergence
of the sequence {€™"*P,(z)}nen to f(2) in S, for 0 <r < R < 1.

It also turns out that the case of equality in (2.12) can be studied more
carefully. For notation, if f is analytic in Gg, where 0 < r < R < 1, set

EYPCO(1,G,) = inf e Pa(2) — f(2)]ls,. (2.13)

nERn

where 7, denotes the collection of all complex polynomials of degree at most n.
Thus, EE&PC) (£,G,) is the best uniform weighted polynomial approximation,
from m,, of f in G,, with the weight function W(z2) := e™?, for each n € N,. We
then have:

Corollary 2.6 [11] The function f(z), which is analytic in Gg, has a singu-
larity on Sg if and only if

T (B9 (f,Gy = 4. (2.14)

n—o0
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We next consider the possibility of uniform approximability of functions by
{7 Py(2) }nen,, in sets other than those such as compact subsets of G\ {1}, or
G, already treated in Theorem 2.3. This includes the following shift-invariant
property of weighted polynomial approximation, when the weight function is
Wi(z) =e 2.

Theorem 2.7 [11] Let E be a compact set in C which has the property that any
function, analytic in E and continuous on E, can be uniformly approzimated on
E by the weighted polynomials {e~™* P,,(z) }nen,- Then, the same is true for the
translated set ( + E :={(+z:z € E}, for any ( € C.

Using the above idea, we give the following negative result which shows,
up to translations (as considered in the statement of Theorem 2.7), that the
open set G, the interior of the Szegd curve S, is the largest universal domain of
this shape in the complex plane for which locally uniform weighted polynomial
approximation, of the form {e™"*P,(z)}nen,, to arbitrary analytic functions is
possible.

Theorem 2.8 [11]. If a domain H, or any of its translations, contains G, then
no analytic function in H (except the identically zero function) can be approxi-
mated, locally uniformly in H, by weighted polynomials {e™™* P, (z)}nen, -

We next show that the weighted polynomials {¢™"*P,(2)}nen, can give rise
to locally uniform approximation of analytic functions in domains having shapes
different from G or its translations. As an example, consider an open disk in C
having a radius r, where r > 0. Our next result incorporates the shift invariant
property of the weighted polynomials {e™"*P,(2) }nen,-

Theorem 2.9 [11]. Any function, analytic in an open disk of radius 1/2, can be
approzimated by weighted polynomials {e™"*P,(2)}nen,, uniformly on compact
subsets of this disk. Furthermore, if H is a domain containing a closed disk
of radius 1/2, then no analytic function (except the identically zero function)
in H can be approzimated locally uniformly in H by such weighted polynomials
{e7™* Py} nen, -

We note that Theorem 2.9 determines the largest disk in which such weighted
polynomial approximation, to arbitrary analytic functions, is locally uniformly
convergent. In Fig. 3, we similarly show, as in the case of Fig. 2, the case r = 1/2
of the curve, defined by

2
{zeC: log ]z] (ﬂz_ - 1) -Rez =0, and |z| > r}, (2.15)

which divides the complex plane into three disjoint domains, |z| < 1/2, g, and
Qoo . These three domains play exactly the analogous roles, in the convergence of
{e7™* P (2) }nen,, as did @, Qg, and Qq, for {e™™*s nz)}neNo, (cf. Proposition
2.1 and Theorem 2.2.)
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FiG. 3. The extremal disk D, /2 and the associated domains

3 General Weighted Polynomial Approximation

173

In the previous section, we have seen how weighted polynomials, of the form
{e7"* Pn(2) }nen,, stemming from the work of Szeg8 [16], can locally uniformly
approximate analytic functions in the domain G, defined as the interior of the
Szegd curve S of (1.2), or in any of its translations, as well as in the open disk
{z € C: |2] < 1/2}, or in any of its translations. But, the broader theoretical

question that can be investigated is this. Given the pair

@ w),

where

(i) G is an open bounded set, in the complex plane C, which
can be represented as a finite or countable union of disjoint

o
simply connected domains, i.e., G = U Gy (wherel <o <

=1
00 );
ii) W(z), the weight function, is analytic in G with W (z) # 0
\ for any z € G,

(3.1)

(3.2)

when is it the case that this pair (G,W) has the approximation property,

ie.,
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for any f(z) which is analytic in G and for any compact subset

E of G, there exists a sequence of polynomials {Pr(2)}2,,

with deg P, <n for all n € Ny, such that (3:3)
lim [|f - W"P,||g =0.
n—rod

The material of Section 2 corresponded to the specific choice of the weight func-
tion W(z) :=e~=,

Given a pair (G, W), asin (3.1) , we state below our main result, Theorem 3.1,
which gives a characterization, in terms of potential theory, for the pair (G, W)
to have the approximation property. For notation, let M(E) be the space of all
positive unit Borel measures on C which are supported on a compact set E, i.e.,
for any 1 € M(F), we have u(C) = 1 and suppu C E. The logarithmic potential
of a compactly supported measure y is then defined (cf. Tsuji [18, p.53]) by

1

Uk(z) = /log t—-—t' duft). (3.4)
= —

Theorem 3.1 [12] A pair (G, W), as in (3.1), has the approzimation property

(3.3) if and only if there exist a measure w(G, W) € M(OG) and a constant

F(G, W) such that

UG (2) —log |W(2)] = F(G,W), for any z € G. (3.5)

Remark It is well known that any open set in the complex plane is a finite or
countable union of disjoint domains, and this is more general than the assumption
on the open set G in (3.2(i)). However, we note that the approximation property
(3.3) cannot hold, even in the classical case where W (z) =1lforal z €@, if
G = Up; Ge, when some Gy is multiply connected (cf. Walsh [19, p. 25]). In
this sense, our initial assumptions on G in (3.2(1)) are quite general.

Remark The condition that W(z) # 0 for all z € G cannot be dropped, for
if W(z) = 0 for some zy € Gy, where G = Us—, Gy, then the necessarily null
sequence {W™(z)P,(20)}or, trivially fails to converge to any f(z), analytic in
G, with f(zp) # 0; whence, the approximation property fails. Even more decisive
is the result, to be proved in Section 9, that if W(zg) = 0 for some 2, € Gy, then
the sequence {W"(z)P,(2)}oo, can converge, locally uniformly in @, to f(z),
only if f(z) = 0in G,. In this sense, the assumptions on W(z) in (3.2(ii)) are
also quite general.

Remark In the case W(z) = 1 of Theorem 3.1, the result that the approxima-
tion property (3.3) holds is a known classical result in complex approximation
theory (cf. [19, p. 26]). This also follows from Theorem 3.1 because the measure
(G, 1) exists by Theorems IT1.12 and IIL.14 of Tsuji [18], and is the classical
equilibrium distribution measure (in the sense of logarithmic potential theory)
for G.
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The topic of weighted approximation by {W"(2)P.(2)}2,, on the real line,
has been extensively and thoroughly treated in the recent books of Saff and Totik
[13] and Totik [17]. Here, we emphasize weighted approximation in the complex
plane, which has received far less attention in the current approximation theory
literature, with the exception of the recent papers by Borwein and Chen [1] and
Pritsker and Varga [11, 12].

We shall present in Section 4 a number of applications of Theorem 3.1 to
special pairs (G, W). The proofs of some results and remarks on weighted ap-
proximation, stated in Sections 3 and 4, are given in Section 5. Finally, we
conclude this chapter with Section 6, where further remarks, open problems,
and a discussion of possible generalizations are given.

4 Applications

Finding the measure w(G,W) of Theorem 3.1 or verifying its existence is a
nontrivial problem in general. Since UH(GW)(2) in (3.5) is harmonic in C\
supp (G, W) and, since it can be shown from (3.5), if log |W (2)] is continuous
on G and if G is a finite union of Ge, 0 =1,2,..., 4, that UHG.W) (z) is equal
to log |W(2)| + F(G, W) on supp (G, W), then UMW) (2) can be found as the
solution of the corresponding Dirichlet problems. The measure (G, W) can be
recovered from its potential, using the Fourier method described in Section Iv.2
of Saff and Totik [13]. This method has already been used successfully by the
authors in [11] to study the approximation of analytic functions by the weighted
polynomials {e™"*P, (z)}o2 . i.e., when W(z) :=e 7,

In contrast to the above procedure, we next consider a different method,
dealing with specific weight functions, which allows us to deduce “explicit” ex-
pressions for the measure u(G, W) of Theorem 3.1, and to treat some important
cases of pairs (G, W). With @, as defined in (3.2(1)) with o finite, we denote the
unbounded component of @_\C’— by . Let v; and v5 be two unit positive Borel
measures on C with compact supports satisfying

suppr; C C\G  and suppry C C\G, (4.1)
such that

v1(C) = 1,(C) = 1. (4.2)
For real numbers o and 8, assume that W (z), satisfying

log|W(2)| = = (aU"(2) + BU™2(2)), z€ G, (4.3)

is analytic in G. Then, we state, as an application of Theorem 3.1, our next
result as

Theorem 4.1 [12] Given any pair of real numbers o and 3, given an open
bounded set G = J;_, Gy as in (32(1)) with o finite, and given the weight func-
tion W(z) of (4.3), then the pair (G, W) has the approzimation property (3.3) if
and only if the measure
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= (14 a+ Bw(oo, -, Q) — aiy, — By (4.4)

is positive, where w(oo,-, Q) is the harmonic measure at 0o with_respect_t_o Q;
here, 0y and v, are, respectively, the balayages of vy and vs from C\G to G.
Furthermore, if u of (4.4) is a positive measure, then (cf. Theorem 3.1)

WG W) =p and supp u(G, W) C 8G. (4.5)

We point out that the harmonic measure w(oo, -, ) (cf. Nevanlinna [10] and
Tsuji [18]) is the same as the equilibrium distribution measure for G, in the
sense of classical logarithmic potential theory [18]. For the notion of balayage
of a measure, we refer the reader to Chapter IV of Landkof [7] or Section 11.4 of
Saff and Totik [13].

In the following series of subsections, we consider various classical weight
functions and find their corresponding measures, associated with the weighted
approximation problem in G by Theorem 3.1.

4.1 Incomplete Polynomials and Laurent Polynomials

The incomplete polynomials of Lorentz [8] are a sequence of polynomials of the
form

{Z"ORw @)} degPyy <n(i), @)@ eN),  (46)

P
. . m(i)
where it is assumed that lim -
ivoo n(i

question of the possibility of approximation by incomplete polynomials is closely
connected to that of approximation by the weighted polynomials

=: a, where a > 0 is a real number. The

{z°"Pa(2) )52y, degPn <n. (4.7)

n=0 ">

The question of approximation by the incomplete polynomials of (4.6) was com-
pletely settled by Saff and Varga [14], and by Golitschek [4] on the interval [0, 1]
(see Totik [17] and Saff and Totik [13] for the associated history and later devel-
opments). We consider now the analogous problem in the complex plane. Since
the weight W (z) := 2 in (4.7) is multiple-valued in C if o ¢ Np, we then restrict
ourselves to the slit domain S) := C\(~o00,0] and the single-valued branch of
W(z) in Sy satisfying W(1) = 1.

For the related question of the approximation by the so-called Laurent poly-
nomials

>
T ydeg Py < n(i), (m(i),n(i) € No), (4.8)
Zm() |
=0
. m(i) . .
where lim (i) = a,a > 0, we are similarly led to the question of the approx-
11— 00

imation by the weighted polynomials
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{z"“"Pn(z)}oo deg P, < n, (4.9)

n=0"
with the only difference being in the sign in the exponent of the weight function.

Thus, we can give a unified treatment of both problems by considering weighted
approximation by {W"™(z)P,(z)},2, ,deg P, < n, with

W(z):=2% ze€ S5 :=C\(~c0,0], (4.10)

where « is any fixed real number and where we choose, as before, the single-
valued branch of W(z) in Sy satisfying W (1) = 1.

Theorem 4.2 [12] Given an open set G as in (3.2(i)) with o finite, such that
G C 51, and given the weight function W (z) of (4.10), then the pair (G, W) has
the approzimation property (3.3) if and only if

p=(1+ a)w(oo,-, Q) — aw(0,-, Q) (4.11)

is a positive measure, where w(oo,-, Q) and w(0,-,Q) are, respectively, the har-
monic measures with respect to the unbounded component Q of C\G, at z = oo
and at z = 0.

In some cases, when the geometric shape of G is given explicitly, we can
determine the explicit form of the measure of (4.11). This is especially easy to
do for disks.

Corollary 4.3 [12] Given the disk D,(a) := {2 € C: |z — a| < 1}, where a €
(0, +00) and where D,(a) C S; = C\(~00,0], i.e., r < a, and given the weight
function of (4.10), then the pair (D,(a), W) has the approzimation property (3.3)
if and only if

a, a € [-1,0],

T < rmax(a, @) = { e oo, 1 (4.12)
Bat 1]’ a € (—00,—1) U (0, c0).

Furthermore, if (4.12) is satisfied, then the associated measure p(D,(a), z%) (see
Theorem 3.1) is given by

a? —r?\ ds
dﬂ(Dr(G),Za) = <1+C¥‘“QT;1-2——> '2‘—7;7:, (413)
where ds is the arclength measure on the circle |z — a| = r.
4.2 Jacobi and Jacobi-Type Weights

We continue along the same lines by considering weighted approximation with
Jacobi weights, i.e., we set

W(z):=(1-2)*1+2)°, z€8,:=C\{(~00,—1]U[1,00)}, (4.14)
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where a, 8 € R are any numbers, and where we choose the branch of weight
function in (4.14) such that W(0) = 1.
An analogue of Theorem 4.2 in this case is the following result:

Theorem 4.4 [12] Given an open set G as in (3.2(1)) with o finite, such that
G C S3, and given the weight function W (z) of (4.14), then the pair (G, W) has
the approzimation property (3.3) if and only if

n= (1 +a+ ﬂ)CU(OO, " Q) - C\f&)(l, E Q) - ﬁw(—l, R Q) (415)
8 a positive measure, where Q) is the unbounded component of C\G.

We next state a corollary of Theorem 4.4, which deals with the explicit for-
mula for the radius of a largest disk D, (a), centered at a € (—1,1), for which
(Dr(a), W) has the approximation property.

Corollary 4.5 [12] Given the disk D,(a) == {z € C: |z — al <1}, with a €
(=1,1) and with D,(a) C Sy, and given the Jacobi weight function W (z) of
(4.14), then the pair (D,(a),W) has the approzimation property (3.3) if and
only if

(1—a)? -2 (1+a)? -2

l+a+p-a PESTE - PERTE

>0onlz—al=r. (4.16)

In particular, if « > 0 and 8 > 0, then the approzimation property (3.3) holds if
and only if

T S 'r'max(a,a,ﬁ) =

\/[a—-ﬁ+a(1+a+ﬁ)]2+(1~a2)(1+2a+2ﬂ)—|a~ﬂ+a(1+a+ﬁ)l

1+ 2a+28
(4.17)
Furthermore, if (4.16) is valid, then
dpt (Dr(a), (1 - 2)7(1 + 2)°)
4.18)
_ (1-a)?—1r2 (I+a)?-r2\ ds (
—(1+a+5 “ |z — 12 =8 [z + 12 27y’

where ds is the arclength measure on |z —a| = r.

Both weight functions introduced in (4.10) and (4.14) are special cases of the
following Jacobi-type weight function:

W(z) =[] (z = t:), (4.19)
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where {a;}7_ are real numbers and where {¢; }2_, € Cis a fixed set of distinct
points. For a given open set G (as in (3.2(i)) with o finite) such that ¢; ¢ G, i =
1,...,p, we assume that there exist p cuts, connecting each t; with co. Then,
we can define a single-valued branch of W(z) in the p-slit complex plane Wthh
contains G in its interior. (It is not possible to specify in advance these cuts, as
they necessarily depend on each preassigned open set G.)

Theorem 4.6 [12] The pair (G, W), defined in the previous paragraph, has the
approzimation property (3.3) if and only if

P P
W= <1+Zai) w(o0,+, Q) —Zaiw(ti,-,ﬂ) (4.20)
=1 =1

is a positive measure, where §) is the unbounded component of C\G.
Furthermore, if G = Dy(a) := {z € C: |z — a| < 1} where a € C, then the
pair (Dr(a), W) has the approzimation property (3.3) if and only if

—al? =2
1+ Z o — Z a2 a| >0, lz—al=r (4.21)
4.3 Exponential Welghts
Let .
W(z):=e*, meN. (4.22)

The special case m = 1 of the weight function (4.22) was considered in Section
2. To avoid technical complications, we shall study only the weighted approxi-
mation, with respect to the weight function W(z) = e~#", in disks centered at
the origin. Our next result generalizes Theorem 2.9 of Section 2.

Theorem 4.7 [12] Given D,(0) := {z € C: |2| < r} and given the weight func-

tion W(z) of (4.22), then the pair (D,(0), W) has the approzimation property
(3.3) if and only if

7 < Pmax(m) = 2m)~Y™, meN. (4.23)
Moreover, if (4.23) holds, then

du (DT(O), e“‘m) = (1 — 2mr™ cosmb) fl—e, (4.24)

2w
where db is the angular measure on |z| = r and where z = re®® .

5  Some Proofs

Proof of Proposition 2.1 Let z € G\{1}, where G is defined as the interior of the
Szegd curve S of (1.2). Following Szegd [16], we make substitution w = (e!~¢ in
(2.1), which gives

ity oy = Y [P (w)
l1-e sn(nz)_Tnm | w lmdw' (5.1)
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Our goal is to bound above the modulus of the right side of (5.1). Denoting
the integral in (5.1) by I, then an integration by parts and use of the relation
w(¢) = (e'~¢ give that

[T Cw)dw
P 1= ((w)
zel™*? —/zel—z ’U)—_n CI(U))dlU
0 0 n (11— ¢(w))?

W' ((w)

_ (Zel-z>n 2 1 z (Cel—g)n

T Tz n ), a-or®
S S G RN A (i

= ad =7 (Z( ey | (1-c>2d<>'

To bound above |I|, assume that z = (z + iy) € G\ {1}, and choose the path of
integration in the integral of I to consist of the two intervals [0, z] and [z, z +iy].
Then, as |z| < 1 and |ze!~*| < 1 for all points of G,

1 Jz] dt Iyl dS
M= o= {”'Z’”(/o ot <1—|x1>2>}
IR SO vl
= a7 {”' 1'(1—1m|+<1—1x1>2)}

< (e (e i) -

Then, it can be verified that the square, with vertices =1 and 44, contains G.
(This is shown in Fig. 4 below.) This geometrically implies that

[yl 1~ |z and 1~ Ja < |1 — 2| < V2(1 - a]).

AN

Inserting these inequalities into the upper bound above for |I] yields

]I1§n|11—z| {1+2[Z_”}g 1 {1+2¢§}§—f1——

1—|z] n|l — z| n|l - z|’

for any z = z + iy € G. This bound, applied to (5.1), then gives the desired
result of (2.4) of Proposition 2.1. O

Proof of Theorem 2.8 First, fix a small § with 1 > § > 0 and consider the domain
Gs = G\ {z: ]z — 1| < d}. It follows immediately from (2.4) that

—nz - 4 _i_ —_ -._.._4 n
He Sn(TLZ) - 1“(;'5 _<_ \/57—;-“— -1 _G_J - \/%(S ( < N):
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1.5

FI1G. 4. The Szeg6 domain G and the covering square

so that
lle™™ sp(nz) — lz, = 0, as n — oo. (5.2)

Multiplying (2.4) by e~**  we similarly observe that, for any fixed k = 0,1,2,...,

4
—(n+k) —kzy__ —kz|__
He " zsn(nz) —¢€ ZHGJ < \/ﬁ(sﬂe HG5 (n € N)a
50 that
le=("tR)z5 () — e"'”H@—J — 0, as n — oo. (5.3)

This means that e=**, for any &k > 0, can be uniformly approximated on G5 by
the weighted polynomials {e™"*s,_ ((n — E)z)}o. .. Therefore, any complex
m

polynomial in e, say Qp(e™?) = Z cje’jz, can also be uniformly approxi-
=0

mated on G5 by such weighted polynomials e™™# P, (). In fact, it is easy to see

from (5.3) that these polynomials Py, (z), in this case, can be chosen to be

P.(z):= Z cisn—j((n~7)2), n>m.
7=0

If we show that any  function f(z), which is analytic in G ‘and continuous on
compact subsets of G\ {1}, is uniformly approximable on Gs by polynomials
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@m(e™*), then (2.6) of Theorem 2.3 will follow. Indeed, as dG5 is a Jordan
curve (with interior Gy), so is its image, OH; (with interior Hy) in the t-plane,
under the conformal mapping ®(z) ;== e * =t. As can be readily verified, for
any 0 with 0 < 4§ < 1, the image of G, under ®(z) = t, lies in the open right-
half plane of the t-plane, and is symmetric about the positive real axis. Hence,
on cutting the ¢-plane along the negative real axis, then f(—logt) is analytic
and single-valued in Hj and continuous on OHs. Thus, by Mergelyan’s Theorem
(cf. Gaier [3, p.97]), f(—logt) can be uniformly approximated on Hj by the
polynomials Qp,(t). But this means that f () can be uniformly approximated
by Qum(e™?) on Gj.

To prove the second assertion of Theorem 2.3, we note, on multiplying (2.4)
by (z — 1)e™*#, that

le™ 02 (2 = Dsn(n2)) - (2 ~ De ||z <

which implies that any function of the form (z—1)e™** k> 1, can be approxi-
mated by weighted polynomials €7 "* P, (z), uniformly on G. It follows, for any
polynomial Q,,(t) with Q,,(0) = 0, that (z = 1)Qm(e™?) is uniformly approx-
imable by weighted polynomials e " Py(z) on G. Now, assume in addition that
f(z) is analytic at z = 1. On defining the function

f(z)e?

z—1

v(z) = ;
it follows, since f(1) = 0 by hypothesis, that v(z) is analytic in G and continuous
on G. Then, by the previous argument (with Gs and H being replaced, respec-
tively by G and H) and with the same mapping ®(z) := e™* = ¢, it similarly
follows that v(—logt) can be uniformly approximated on H by the polynomials
Qm_1(t), so that

L g

_=llv(~logt) = Qm-1(t)|l7 — 0,
€
asm — 00. On setting Q, (t) := tQm_l(t) so that Q,,,(0) = 0, the above display,
after multiplying through by (z — 1)e~2, gives that
1£(z) = (z = )Qm(e™)|lz = 0 as m — oo,

which shows that f(z) is uniformly approximable on G by weighted polynomials
e "*Py(z). To complete the proof, we now drop the hypothesis that f(z) is
analytic at z = 1. Let P,(z) be the best uniform approximation from 7, to f(z)
on G. By Mergelyan’s Theorem again,

Jlim [1£(2) = Pa(2)llg = 0.
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For each n > 0, define ﬁn(z) = Py(z) — P,(1), so that P,(1) = 0. Because
f(1) = 0, we see that

[Pa(Df = 1£(1) = Pa(V)] < [If ~ Pallg,
which implies that

If = Palle < 1If = Pallg + [Pa(1)] < 21 — Pallz,

Le., f(z) can be uniformly approximated in G by ]Sn(z) But as our previous
proof can be applied to each P,(z), it follows that f(z) can be uniformly ap-
proximated on G by the weighted polynomials. 0

Proof of Theorem 2.5 Given the pair of numbers (r, R) with 0 < r < R <1,
n+1

suppose that f(z) is analytic in Gg. For each n > 0, let z{nﬂ) ben+1
p 2 k L

. . (n+1) "1
points (to be specified below) such that {zk }k C Gpr. Then, from the
1

Hermite interpolation formula, the polynomial Pn(zj,zwhich interpolates e f(z)
n+1

in the n + 1 points {z,(c"+l)}k » is given (cf.[19, p.50]) by

b1

Wnt1(2) f(t)emtdt
e f(z) — Pp(z) = =212/ — 5.4
f( ) ( ) i Sh-. (t _ Z)wn+1(t) ( )
n+1
where wpy(2) 1= H (z - z,gn+1)) and where z € Gg_.; here, € > 0 is chosen
k=1

n+1

sufficiently small so that {z,(cnﬂ)} . C GRr-.. Dividing by e"* in (5.4) gives

k=

cnrp () = €W () oL
A M ==

for z € Gr_..
Let v, (wy,) be the normalized counting measure of the zeros of w,(z), i.e.,

1 k(]
Vp(wn) = m }:azin) (n €N, (5.6)
k=1

where §; is the unit point mass at z and where all zeros are counted according
to their multiplicities. Then, from the definition in (3.4),

wn(2)] = exp { «nU""(“’")(z)} (neN. (5.7)

For each 7 with 0 < r < R, we now choose an interpolation scheme in (5.4)
which satisfies

{zf;‘)}::l S, (meN), (5.8)



184 Pritsker and Varga

and for which

Un(wn) 5 w(0,,G,),  asn — oco. (5.9)
(Here, w(0,-,G,) is the harmonic measure; see [10] and [18]. In addition, the
convergence in (5.9) of the discrete measures is in terms of weak* convergence
of measures, i.e., a sequence of Borel measures {tn}nen on C converges to a
measure (i, as n — o0, in the weak® topology (written p, = ) if

Jim [ fau, = [ i

for any continuous function f on C having compact support.) As an example of
an interpolation where (5.8) and (5.9) are valid, one can take the preimages of
equally spaced points on |w| = r under the conformal map w = p(z) = ze! 7%,
ie., for ¢ := =1 we define

2nk

2 ::w(rei—r) (1<k<n, neN. (5.10)
It follows from (5.7)~(5.9) that

lim ()" = lim exp {~U*(n)(z)}

e (5.11)
= exp {-U“OG ()}

which holds locally uniformly in C\G,. Taking any e small enough so that
7+e < R —¢, we estimate the difference in (5.5) by
1£(2) =™ Pa(2)llg, < MIf(2) — e ™ Pal(2)llg,.,.

I|e~nzwn+l (z)llSr+ellf{|SR—e
T 27dist(Syqe, SR—c) - min e ™w, 4 (8)]
tESRp

Thus, we obtain, by (5.11), that (for details, see Pritsker and Varga [11])

1/n < elog(r-{—e)—l _ r+e

: _ ,—nz
hg_ljgp“f@) € Pn(z)“Sr = glog(R—0-1 ~ R _ ¢’

Letting € — 0, this gives (2.12) of Theorem 2.5.

To show that the converse part of Theorem 2.5 is valid, suppose that (2.12)
holds true for » with 0 < r < R < 1. Then, the rest of the proof is a classi-
cal converse theorem argument (see [19, p.81], for example). By the uniform
convergence on G, the function f(z) can be represented, in a telescopic series,
as

J@) = e Pa(e) + 30 (e P () - e R(2)) 2 €T (5.12)

k=n
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Thus,

(@) = e Pl < 30 |e" 6 P () - e Rue)|. (5.13)

k=n

For any € > 0, we have from (2.12) that

1) - Pall, < ()

€
if £ > n is sufficiently large. This gives that

le=®+D2p L (2) — e“’”Pk(Z)HZ?,

<) = e Pil2)llg, + 1f(2) — em B0 Py (2) .

k
,
< >
_C1<R~_€) ; k2m,

where C is a constant, independent of k. Using the result of (11, Corollary 4.2],
it is known, for any polynomial P,(z) with deg P, < n, that

R < e Pl - (EEL) (5.14)

for any z € C\G,,n € Ny, and 0 < r < 1. Applying this to the previous display

gives . L kN & M k
le Pei(z) —e Pk(z)lsCl( ) ( )

R—¢ r
Y

If |p(2)] = R — 2¢, ie., 2 € Sp_s, then the telescopic series (5.12) converges
to the analytic continuation of f(z) in Gr_s.. Thus, from (5.13) and the above
inequalities,

- €

1f(z) —e ™ Pu(2)llz,_,. <Cs (1;* 26) , (5.15)

for any sufficiently large n. Hence, the sequence {e~"*P, ()}, converges to
the analytic continuation of f(z), uniformly on G g_s.. Since € > 0 can be taken
arbitrarily small, then f(z) must be analytic in Gg. O
Proof of Corollary 2.6 If f(z) is analytic in Gg, then by Theorem 2.5,
) — 1/n
lim sup [E,‘?pr(“z) (f, Gr)]

n—o0

< (5.16)

r
R’
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where 0 < r < R < 1. However, strict inequality in (5.16) is equivalent to the
analyticity of f(z) in G,, for some p with R < p < 1, by virtue of Theorem 2.5.
Thus, f(z) has a singularity on Sg if and only if equality holds in (5.16). O
Proof of Theorem 2.7 Suppose that f(z) is analytic in the interior of ¢+ E and
continuous on {¢ + £}, where E is a compact set. Then, g(t) := f(t + () is
analytic in the interior of £ and continuous on E, which implies by hypothesis
that g(t) can be uniformly approximated on E by {e ™ P,(t)},~,. Thus, with
z =1+, f(2) can be approximated on {¢ + E} by the weighted polynomials

e‘“(Z“C)Pn(z —()=e ™ (e"CPn(z - C)) (neNy). O

Proof of Theorem 2.8 Because of Theorem 2.7, we may assume that the domain H
is such that G C H. Further, assume to the contrary, that, for some f(z)#0 which
is analytic in H, there exists a sequence of polynomials {Pn(2)},, deg P, <,
such that

lim () — e ™ Pu(2)|| 5 = 0. (5.17)
It follows that
Jim e P (2) [l = (| fllg # 0. (5.18)

But (5.14), for the case r = 1, and (5.18) immediately give that

lim |e7"Py(z)| =0, for any z € Qq, (5.19)

nN—r00
where the convergence in (5.19) is locally uniform in Q. Thus, the convergence
of {e7™* Py(2)}nr, to f(2)%0, locally uniformly in H, is impossible because
HnNQOQy # 0. 0
Proof of the Second Remark after Theorem 3.1 To prove the second statement in
this remark, suppose then that W (z) = 0 with 2o € Gy, where W(z)#0 in Gy,
and suppose, given an analytic function f(z) in G, that polynomials {Pu(2)}2,
can be found such that {W"(2)P,(2)},., converges to f(z), locally uniformly in
G. As W(2)#£0, we can choose R > 0 such that Dg(z) = {z € C: |z — 2] < R}
satisfies Dg(z0) C G and that

M := min |W(z)|>0. (5.20)

|z~—zo|:R

Then, by the locally uniform convergence of {W"(2)Pn(2)}oey to f(2),

| flloDg(z0) +1
Mn ’
(5.21)
for all n € N sufficiently large. Since W (z) = 0, we can find an r € (0, R) such
that

IEallBg(z0) = I1Pallonaza) < IW " Pallonn(zo) IW ™ l0Dx (o) <
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m = Wlip, ) <M. (5.22)
Using (5.21) and (5.22), we obtain

mA\"
HWnPnHE,(ZO) < IIWH%r(zO)lanHBr(zO) < (‘M’) (Hf“aDR(ZO) + 1) =0,
as n — 0o.

But because of the locally uniform approximation of f(2) by {W"(2)P,(2)}°

Col =0
it follows that f(z) = 0 for any 2z € D, (zp), which implies, by the uniquegess
theorem, that f(z) =0 in G,. ]

6 Further Remarks and Open Problems

Theorem 3.1 gives a rather complete answer to the question on weighted ap-
proximation by W"(2)P,(z) in open sets of the complex plane. It is then very
natural to consider the uniform approximation by such weighted polynomials on
compact sets, aiming at an analogue (generalization) of Mergelyan’s Theorem
(see [19, p. 367]). Let E C C be a compact set with connected complement C\ E.
We denote the set of all functions, analytic interior to F and continuous on E,
by A(E). Let W € A(E), with W(2) # 0 for any z € E.

Problem Give a necessary and sufficient condition for the pair (E,W) to have
the following approzimation property:

For any f € A(E), there exist polynomials {Pu(2)}ory, with deg P, < n,
such that

lim ||f = W"P,||g = 0. (6.1)

n—0o0

Obviously, the classical uniform approximation by polynomials (Mergelyan’s
Theorem) corresponds to W(z) = 1, z € E. We observe that (3.5) of Theorem
3.1, holding with G = IntE, is a necessary condition for (6.1). Let us also remark
that this problem is open even in the case when E is a subset of the real line,
such as an interval (see 13, 17] for background and general results).

An even more general approach is to consider the approximation problem in
(6.1) with polynomials replaced by rational functions. Certain results concerning
such weighted rational approximation have been obtained by Borwein and Chen
(1] in the complex plane.
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