S,

LINEAR ALGEBRA
R
%@g AND ITS

% APPLICATIONS

ELSEVIER  Linear Algebra and its Applications 302-303 (1999) 33-43
www.elsevier.com/locate/laa

Hardy’s inequality and ultrametric matrices
John Todd *!, Richard S. Varga ®*

* Department of Mathematics, California Institute of Technology, Pasadena, CA 91125-0001, USA
b Institute Jor Computational Mathematics, Kent State University, Kent, OH 44242-0001, USA
Received 22 June 1998; accepted 4 August 1998
Submitted by U. Rothblum

Abstract

For any p > 1 and for any sequence {aj}jf'i, of nonnegative numbers, a classical in-
equality of Hardy gives that

” Zk a P p pn
Z i=1 i < ) Za’k’ foreachn € N,
k -1/

k=1

unless all a; = 0, where the constant [p/(p — 1)}’ is best possible. Here, we investigate
this inequality in the case p=2, and show how it can be interpreted in terms of sym-
metric ultrametric matrices. From this, a generalization of Hardy’s inequality, in the
case p=2, is derived. © 1999 Published by Elsevier Science Inc. All rights reserved.

N

1. Introduction
In 1920, Hardy [2] established the following inequality.

Theorem 1. If p > 1 and if {aj}jf'_il is any sequence of nonnegative numbers, then
n k ) P P n
Z _Z_:a_a_, < <—p—> Zaf, foralln € N, (1.1
k=1 k p-1) 43
unless all a; = 0. The constant [p/(p — 1)}” is best possible.

" Corresponding author. E-mail: varga@mcs.kent.edu
! E-mail: johntodd@cco.caltech.edu

0024-3795/99/$ - see front matter © 1999 Published by Elsevier Science Inc. All rights reserved.
PII: S0024-3795(98)10168-4

ot




34 J. Todd, R.S. Varga | Linear Algebra and its Applications 302-303 (1999) 3343

This inequality of Eq. (1.1) arose in the course of attempts to simplify the
proof of Hilbert’s Double Series Theorem. Initially, Hardy [2] was not able to
fix the best constant, [p/(p — 1)I¥, in Eq. (1.1), and this (called an “imperfec-
tion” in cf. Ref. [3], p. 240) was later determined by Landau [5]. A complete
proof of Theorem 1, including the sharpness of the constant [p/(p — 1), can
be found in Ref. [3], pp. 240-242.

Our interest here is in linear algebra connections of Theorem 1 in the case
p=2, as was recently considered by Wang and Yuan [12]. In this case, the
inequality in Eq. (1.1), for any sequence {a;};Z, of nonnegative numbers, re-
duces to

A I
Z(Zi;lai> <4§ a%, foralln € N, (12)
=1

k=1

unless all a; = 0, and this inequality of Eq. (1.2) can be interpreted, via matrix
theory, as follows. For any n € N, consider the real symmetric matrix
B, = [b;;(n)] € R™", whose entries are defined by

~ 1 .
biyn) = Y & (1<i j<n). (13)
k=max(i j)
(The matrix B, is given explicitly in Eq. (2.5) for the case n =4.) Then, it can be
verified that if a = [a;, a3, .. ,a,,]T is any vector in R", the quadratic form a’B,a
is given by
n n Zk 2
TB,a =) b(n)aa; = Lzt %)
a UZ=1 j(n)aia; ; %

Asa’a= 3 a}, the inequality of Eq. (1.2) then reduces to

a'B,a<4a’a, foralla#0inR", allneN,

or equivalently, the associated Rayleigh—Ritz quotient for the matrix B, sat-
isfies

a'B,a
aTa

<4, foralla#0in R, allneN. (1.4)

If, for a real symmetric matrix C, we use the notation

omax(C) := max{4;: 4 is an eigenvalue of C}, (1.5)
then as Eq. (1.4) is valid for any a # 0 in R”, it follows (cf. Ref. [4], p. 176) that
Omax(Bs) <4, forallneN. (1.6)

The real symmetric matrix B, of Eq. (1.3) turns out to be nonsingular for
any n € N, since its inverse can be verified, by induction, to be the following
n X n tridiagonal matrix.
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B,A,l = [.Bi,j(n)] =

. . ]
-1 (12 + 22 -2
-(n -2y’ [(n = 2)" + (n-)*] —(n -1y’
I ~(n -1y [(n = 1)" + 7]
(1.7)

It is then easy to see, using the following simple linear algebra properties from
Eq. (1.7) for B;!, that B;', and hence B,, are real symmetric and positive
definite for all n € N.

(i) B;! is real and symmetric;

(ii) the Gerschgorin disks for B!, namely,

n

{zeC: |lz- B (n)|< i |B;;(n)|}, only intersect the nonnegative
i
real axis; more precisely, all eigenvalues of B;‘ lie in the interval
[0,n% 4+ 2(n —1)?], and B;" is thus nonnegative definite.
(iii) B;' is irreducible (i.e., its directed graph is strongly connected
(cf. Ref. [10], p. 19);
(iv) all the Gerschgorin disks for B;' pass through z = 0,
except for the final Gerschgorin disk. (1.8)

Of course, as B, and B;' both exist, then z= 0 cannot be an eigenvalue of B!,
so that (cf. 1.8 ii) B;', and hence B,, are both real symmetric and positive
definite. This can also be deduced as follows. If z=0 were an eigenvalue of B,
it would be a boundary point of the union of its Gerschgorin disks, and, by a
famous result of Olga Taussky (cf. Refs. [9], [10, p. 20]), all the Gerschgorin
circles would, because B;' is irreducible from 1.8 iii, necessarily have to pass
through z = 0. As this is not the case from 1.8 iv, then z =0 is not an eigenvalue
of B;!, and B;' and B, are thus positive definite.

Actually, B;! is a Stieltjes matrix, since B;' = [B, (n)] is real symmetric and
positive definite with (cf. Eq. (1.7)) B,;(n) < 0 foralli # j. We will make use of
this in the next section.
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To conclude this section, we first remark that there is a very rich literature
on generalizations of Hardy’s inequality (1.1), and this can be found in the
books by Bennett [1], Hardy et al. [3], Opic and Kufner [7] and Wilf [13]. Most
of the results on Hardy’s inequality are established using real analysis tech-
niques, and what caught our attention was the sole use of linear algebra
techniques in the recent paper by Wang and Yuan [12]. In particular, it is
shown in Ref. [12] that the constant 4 in Eq. (1.2) is best possible by equiva-
lently showing that B;' — 11, is symmetric and positive definite for each n € N,
and that, for any 4> i, B;' — A, fails to be positive definite for all n € N.
(This can be used to show that, for each n > 1, there is a positive diagonal
matrix X, in R such that (cf. 18 iv) the left real boundary point of each of the
first n — 1 Gerschgorin disks for X,B;'X, is the point x =}, while the left real
boundary of the final Gerschgorin disk exceeds 1.)

2. Ultrametric matrices
We begin with a definition from Ref. [11].

Definition 1. A real symmetric matrix 4 = [a;;] € R™" is called a symmetric
ultrametric matrix if it can be represented, in terms of a binary rooted tree, as
the following sum of rank-one matrices:

A= ngu[uf, (21)

where the 7,’s are nonnegative numbers, the vectors u, in R” have only com-
ponents of zeros and ones, and

span{u;: 7, >0} =C". (2.2)

We remark that a symmetric ultrametric matrix of Definition 1 is a gener-
alization of the original concept of a symmetric strictly ultrametric matrix of
Martinez et al. [6].

A result of Ref. [11] is as follows.

Theorem 2. Let A = [a; ;| € R"™" be a symmetric ultrametric matrix in the sense
of Definition 1. Then, A is positive definite and its inverse, A~ := [0; ;] € R™", is
a diagonally dominant Stieltjes matrix, i.e., a;; <0 for all i # j and

o = E loijl  for all 1<i<n, (2.3)
=1
i

with strict inequality holding for at least one i. Moreover,
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a;; =0 implies o;;=0 (but not necessarily conversely). (2.4)

As an example of a symmetric ultrametric matrix, consider the matrix
B, = [b;;(n)] of Eq. (1.3) for the special case n = 4.

| IR TN W RTINS AT A Y AT T B I
1+Z+9+l6 4+9+l6 9+l6 16

T J A AT T B AN U I
itotys itstie | 9t | 16

B, = (2.5)

1, 1 1, 1 AN T B

5T 16 51 16 5t | 16

1 L L 1

16 16 16 16 |

It can be verified that B, can be expressed, as in Eq. (2.1), as the sum
S, Tl where

Tl=1i6; ul=[]717171]T TZ:O; u2=[0,0,0,1}T
1 T . T
== =[(1,1,1,0 =0; uw=1[0,0,1,0
% ) u = | o 4= ] (2.6)
s =g; us={1,1,0,0]" 1=0; wus=1[0,1,0,0]
,=1; u,=11,0,0,0]"

and its associated binary rooted tree is shown in Fig. 1. (The root of this tree, is
the vertex {1,2, 3,4}, at the top of Fig. 1. If we call the vertices {1}, {2}, {3},
and {4} the leaves of the tree, then the tree is a binary tree since each vertex, not
a leaf, determines exactly two subsequent arcs in the graph.) It can also be seen

{ 1 ’2,3 ,4 }

{4)

{1}

Fig. 1. Associated binary rooted tree for B, of Eq. (2.5).
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from Eq. (2.6) that condition (2.2) of Definition 1 is valid. As such, Theorem 2
gives that B! is an irreducibly diagonally dominant Stieltjes matrix, with strict
diagonal dominance holding for at least one row of B;'. These properties B;'
can be directly seen from the explicit form of B;' in Eq. (2.7).
1 -1 0 0
-1 5 -4 0

0 -4 13 -9

0 0 -9 25
The example above explicitly shows that the matrix B4 of Eq. (1.3) is a

symmetric ultrametric matrix, in the sense of Definition 1, but this can be easily
seen to be true for all n € N.

By'= 2.7

Theorem 3. For each n € N, let B, € R™" be the matrix defined in Eq. (1.3).
Then, its inverse B! of Eq. (1.7) is a symmetric ultrametric matrix.

Proof. This is the special case {r, := 1/k*};_, of Theorem 4, to be given
below. O

The actual eigenvalues of B, of Eq. (2.5) are 0.03337, 0.09580, 0.33543, and
1.61871, all truncated to five decimal digits, so that (cf. Eq. (1.6))

Tmax(Ba) = 1.61871 < 4. (2.8)

This last inequality is hardly sharp, and sharpness, it turns out, can be es-
tablished only on letting n, the order of B,, tend to infinity. We remark that it is
evident from Eq. (1.4) and Eq. (1.6) that, for a fixed n € N, the sharpest in-
equality in Eq. (1.2), for this value of n, is evidently obtained by replacing the
constant 4 in Eq. (1.2) by oma(B,). But, this also raises the related question:
can one similarly add a term to the left side of Hardy’s inequality (1.1), for this
value of n, so as to obtain a sharper inequality in (1.1)? Such a term is given in
Theorem 2 of Wang and Yuan [12] for the case p=2, while a similar (but
different) result appeared earlier in Ref. [8], p. 688, line-6 for the general case
1 <p<oo.

For readers who may be interested in learning more about ultrametric
matrices and their applications, we have added a list of papers on this topic,
namely [14-19].

3. A generalization

. . P
Consider any n positive numbers {r;} =1, 1€

r>0 (1<j<n), 3.1
J




J. Todd, R.S. Varga | Linear Algebra and its Applications 302-303 (1999) 33-43 39
and consider its associated real symmetric matrix 4 = [a;;(n)] € R™", defined
by

]
ayn)y= > = (I<i, j<n). (3.2)

k=max(i) ¥

Then, for the matrix 4 = [a;;(n)] € R™" defined in Eq. (3.2), its associated

quadratic form, for u = [u;, uy,..., u,,]T e R", satisfies
2
n Z}‘{—l u,-) .
T ( =
Au = el 3.
=y = (3.3)

k=1

so that the quadratic form, in Eq. (1.2) of Hardy’s inequality, corresponds to
the case {ry :=Kk*};_,.
We then establish the following result.

Theorem 4. With the assumption of Egq. (3.1), the associated n x n matrix
A =[a;;j(n)] of Eq. (3.2) is a symmetric ultrametric matrix, in the sense of
Definition 1, and is hence positive definite. Its inverse, A™!, is a positive definite
Stieltjes matrix which satisfies the conditions of Theorem 2.

Proof. If suffices to show that the matrix A of Eq. (3.2) satisfies conditions (2.1)
and (2.2) of Definition 1. For the expansion of Eq. (2.1), the following choices
of nonzero 1,’s and their associated vectors u, (in R"), defined by

T = —, U|—[l,l, 71711Ta
Vn
1 T
T2 = s llz—-—[l,l, ')1’0] 3
ot (3.4)
1 T
Tn = —, un“[l)o" 7090] )
n

directly give Eq. (2.1). Then from Eq. (3.4), we see that
span{u, : 7, > 0} = span{uy, u, ..., u,} =C", (3.5)
as required in Eq. (2.2) of Definition 1. O

For the matrix A4 of Eq. (3.2), we know that its inverse is a positive definite
diagonally dominant Stieltjes matrix, with strict inequality, in the diagonal
dominance, holding for at least one row of 4~'. But, this inverse, 4~', has the
explicit tridiagonal form




40 J. Todd, R.S. Varga | Linear Algebra and its Applications 302-303 (1999) 33-43

o o i
—F (r+r) —r
A= (3.6)
~Fn-2 (Fa—2 + 7no1) —Fn—t
i —Fu-1 (a1 +7a)
Note that the choice of ry =1, = --- = r, = 1 in Eq. (3.1) gives in Eq. (3.6) one

of the best known matrices in all of numerical analysis!
To extend the above results, consider now an infinite sequence {r;}72, of
positive real numbers, i.e., (cf. Eq. (3.1))

r;>0 (all jeN). (3.7

We seek now a generalization of the special case p =2 of Hardy’s inequality
(1.2), which similarly holds, as in Eq. (1.2) for alln € N. Foreach n > 1, let 4,
denote the n x n matrix of Eq. (3.2) for the first n terms of the sequence {r;}7,
and consider the associated sequence {4,},., of matrices. From Theorem 4,
each 4, is a symmetric ultrametric matrix, and each is therefore positive defi-
nite. Next, observe from Eq. (3.2) that, for any n > 1, we can express 4, in

terms of A4,_;, using bordered matrices, by means of

+rlg,,g§, where &,: = [1,1,...,1]" € R". (3.8)

The matrix &,£], the rank-one matrix in R"*" having all its entries unity, has all
eigenvalues zero, except for one eigenvalue n. Thus, the matrix (1/r,)E,E} is
real symmetric and nonnegative definite, since r, > 0 from Eq. (3.7). If we
denote the bordered n x n matrix in Eq. (3.8) by 4,, then 4, = 4, + (1/r,)&,&T
is the sum of two real symmetric and nonnegative definite matrices. Assuming
that the eigenvalues of 4,, (1/r,)&,E, and 4,, respectively called {Aj(ff,,)};’:l,
{41 /r,,)}’;,,E_,I)};:1 and {4;(4,)}}.,, are all arranged in increasing order, then it
follows from Weyl’s Theorem (cf. Ref. [4], p. 181) that

i)+ 2 (R ) <and) <) + (08 ).

Thus, as 4;((1/r,)&,E)) = 0 and 4,((1/7,)&,E]) = n/r, we have, with the defi-
nition of Eq. (1.5), that

n
amax(An—l) < amax(An) < amax(An-l) + 'r— . (39)
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The first inequality of Eq. (3.9) can be sharpened as follows. Note from
Eq. (3.8) that

R 1
Ay = (An +izn) +B,, where B, i= 8,8 — 1,
¥y F r

is a nonnegative matrix with positive ofl-diagonal entries for all n = 2. It fol-
lows from the Perron-Frobenius Theorem (cf. Ref. [10], p. 22) that

Omax (An-1) + —]— < Omax(4,) forallm > 2.
7,

n

Thus, Eq. (3.9) can be sharpened to

1
O'max(An—-l) +;‘ < amax(An) < O'max(An-l) + 1 (310)

n

AS 0max (A1) = 1/ry, it follows by induction from Eq. (3.10) that
n 1 n j
— < Omax(dn) £ =~ foranyn =2, 3.11
Z - < Oman () Z - (3.11)

where equality holds throughout in Eq. (3.11) when n = 1.
Returning to Eq. (3.10), it is evident that there is a unique positive number
s, with 1 < s, < n, for each n = 2, such that

Sn
0'malx(An) = Omax(An—l) + s (312)

n

and, with s; := 1, we deduce from Eq. (3.12) that
Cmax(An) = Z-Srl, where 1 < 5;< forall j > 2. (3.13)
=t
In particular, it follows that {omax(d4.)},o, is a strictly increasing sequence of
positive numbers. Thus, set

y := lim omax(4n), (3.14)
so that either y is finite and positive, or y = +o0. Note that when 7 is finite and
positive, it follows, from Eq. (3.14) and the definition of 61ax(4,), not only that

aTd,a
aTa

<y, foralla#0in R", alln €N, (3.15)

but also that the above inequality is sharp, i.e., y in Eq. (3.15) cannot be re-
duced because of Eq. (3.14).

This naturally brings us to the question of when the infinite sequence {r,}%,
of positive numbers in Eq. (3.7) results in a finite and positive y in Eq. (3.14).
This is considered in
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Theorem 5. Let {r,},o, be any infinite sequence of positive numbers. Then, y of
Eq. (3.14) is finite if and only if 32, s;/r; is convergent, where s;, defined in
Eq. (3.12), satisfies 1 <s; < jfor all j = 2. In particular, y is finite implies
Y21 1/r; < co. Conversely, if

o

Zi =:w < o0,

j=1 ¥

then y € w.

Proof. The first part follows directly from Eq. (3.13) and Eq. (3.14). If y is

finite, the Y72, s;/r; is convergent, and as j > s; > 1, then 372, 1/r; is also

convergent, and if Y72, j/r; is convergent, then so is y = 372, 5;/r;. O

As a consequence of Eq. (3.15) and Theorem 5, we have the result of the
following generalization of Hardy’s inequality (1.2).

Theorem 6. Let {r,}.., be any infinite sequence of positive numbers for which
Zf__l s;/r; < co. Then, y of Eq. (3.14) is finite and positive, and for any sequence
{u;}72, of nonnegative numbers,

n (Zk u->2 n
Z—‘—:-:(—i-—<y2uf foralln € N, (3.16)
i=

k=1

unless all u; = 0. The constant y is best possible.
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