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On Zeros of Polynomials Orthogonal over
a Convex Domain

V. V. Andrievskii, L. E. Pritsker, and R. S. Varga

Abstract. We establish a discrepancy theorem for signed measures, with a given
positive part, which are supported on an arbitrary convex curve. As a main application,
we obtain a result concerning the distribution of zeros of polynomials orthogonal on a
convex domain.

1. Introduction and Main Results

Let G C C be a bounded Jordan domain, and let 4(z) be a weight function on G,
i.e., a function which is positive and measurable on G. Next, let Q,(z) = Q,(h,z) =
M+, Ap > 0,n=0,1,..., bethe sequence of polynomials orthogonal in G with
respect to the weight function A (z), that is,

S— 1 ifk=1,
fG Qk<z)Ql<z>h<z>dm(z>={O et

where dm(z) denotes two-dimensional Lebesgue measure (area).
With L denoting the boundary of G, we assume that

a.n h(z) > c(dist(z, L))", z€G,

for some constants m > 0, ¢ > 0.

Recently, Eiermann and Stahl [9] made computations and raised some conjectures
about the distribution of the zeros of the orthogonal polynomials Q,(z) := Qn(h, z), in
the special case where £(z) = 1, on convex domains G having polygonal boundaries.
In particular, N-gons Gy, N = 3,4,..., which have their vertices at the Nth roots
of unity, were also considered in [9]. It was previously shown in [5] that for some G
and some n, the distribution, of zeros of the associated orthogonal polynomials Q,,, is
governed by the equilibrium measure ug of G. The main purpose of this paper is to
prove a discrepancy theorem for a special measure t,, which is closely connected with
zeros of @, and “es for all convex domains G and n € N.
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In what follows, we assume that G C C is always convex. It is known (see Stahl and
Totik [21, p. 31]) that the zeros z,, 1, . . . , Zn,n Of Oy belong to G, foranyn € N.

Let w(z,J,G),z € G,and J C L := 3G be the harmonic measure of J at z with
respect to G. We extend this notion to the boundary points z € L, by setting

1, zel,

w(z, J,G) = {0 e )

Next, we associate with @, the measure
1 n
T,(J) == — w(zn i, I, G), n €N.
)=~ ; @nj» I, G)

We will compare 7, with the equilibrium measure u = ug of G (see [19]), which has
a simple interpretation using the conformal mapping ¢ of Q := C\G onto A := {w:
|w| > 1}, normalized by the conditions

[}
®(00) = 00 and d'(c0) := lim 2@ > 0,
z>00 7

where we define W := @1, Namely, ® can be extended to a homeomorphism & : Q-
A and, for any subarc J C L:

1
p(J) = 2—|<1>(J)I,
b4
where |y | denotes the length of y C C.

Remark. It is known that the measures 7, converge to ug in the weak™* topology, as
n — 0o, for any Jordan domain G (see Theorem 2.2.1 of [21, p. 42] and its proof).

We define the discrepancy of a signed (Borel) measure o, supported on L, by
Dlo] := sup o (J)],

where the supremum is taken over all subarcs J C L. With this definition, our new result,
for the asymptotic zero distribution of polynomials orthogonal over a general convex
domain, is stated as:

Theorem 1. Let G be a bounded convex domain, and let h(z) satisfy (1.1). Then for

eachn =2,3,...:
/logn
D[ME—'Tn]fC. }’gl )

for some constant ¢ > 0, which is independent of n.

The main idea of the proof of Theorem 1 is in its potential theoretical interpretation.
Namely, let cap G be the (logarithmic) capacity of G. We consider the logarithmic
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potentials of u and 7, in Q:

U, z) = —/loglz—s“ldu({)
= —log|®(z)| — log(cap G),

Ut 2) = —/log|z~z|drn<c)

L0,
=~ [1oglz— ¢ldvg, ) = — 1og 122,

n

(where we have used the fact that 7, is the balayage of the zero-counting measure vg,
which associates the mass 1/n with each zero of Q, according to its multiplicity), and
their difference

Ulp —14,2) = U, 2) —U(ty, 2)
. 100 (2)]
An(cap GY*| @ ()|

1
T on

Itis proved in [5] that the inequalities

(1.2) 1Qnllg :=sup|Qn(2)| < c1n?,
726G
(1.3) As (capG)" > c3n7?,

hold for some constants ¢; > 0, j = 1, 2, 3, which are independent of n. This implies
that, for any n > 2:

logn
U(M_Tmz)fc4_g—; z2€R, >0,
n

where ¢4 is also independent of 7.
Theorem 1 is actually a consequence of our result given below, which is a new Erds—
Turén-type theorem (its proof will be given in subsequent sections).

Theorem 2. Let G C C be a bounded convex domain, and let v be a unit Borel measure
supported on L := 3G. If

e=e(r):=supU(ug—7,2) (=0),
2€9
then
(1.4) Dlug — 1] < co/e,
for some constant ¢ > 0, independent of .

For G =D := {7 : |z] < 1}, the result of Theorem 2 is due to Ganelius [11], which in
turn generalized results of Erds and Turén [10], concerning the distribution of zeros of
polynomials with given uniform norms on the unit disk. Further results and bibliographies
of papers devoted to this subject can be found in [7], [8], [23], [3], and [19].

The following example shows the sharpness of Theorem 2:
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Examp_le 1. Let G = D and let us, 0 < & < 1, be the equilibrium measure of
V; := D U1, 1+ §]. Consider the measure 75, supported on the unit circle T := oD,
which is defined for any Borel set B C T by the formula

15(B) := ws({z € C\{0} : z/lz| € BY).

It is easy to see that

capVs =~ (34864 ——) =1+ &
PV =7 1+5)" Tau+o

Therefore, for z € T, we have

62
U(p —15,2) < U(u — ps,z) =logeap Vs < T

At the same time an elementary computation, involving the transformation z — (z+
1/z)/2, shows that

8
Dip — ] = [(n — w)(Dl = ps(([1, 148D = —.
This implies that

2
Dlp —15] = -3—\/ &(ts),
T

which shows the sharpness of Theorem 2.

Note that statements similar to Theorem 1 can also be proved (by making use of
Theorem 2) for other systems of polynomials. All that is needed for this purpose is to
establish the analogues of (1.2), (1.3) and to have the property that

(1.5) all zeros of the corresponding polynomials belong to G.

We cite three examples of well-known polynomials suited for such applications of
Theorem 2. In all of them, G is a convex domain and # € N.

Example 2. Let F,(2) := (cap G)™"z" + - - - be the nth Faber polynomial for G (see
[20]). Then, (1.5)is valid by [14, Theorem 2]. In addition, we have, by the same Theorem 2
of [14], that

I Fullg < 2, neN.
Example 3. Consider the derivatives F] +1(2) of the above Faber polynomials. For
these polynomials, condition (1.5) is then proved in [24]. At the same time, by the

Markov-type inequality for complex polynomials, which is a simple consequence of
Léwner’s distortion theorem (see, €.g., [2, p. 581), there holds

IF g <ct+ 12 c=c(G)>0.
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Example4. Let 7,(z) = 2" + -+, be the nth normalized Chebyshev polynomial for
G. Condition (1.5) is then well known (see [20]). The corresponding estimate for the
uniform norm on G follows from the extremal property of the Chebyshev polynomial

I Tnliz < (cap G)"|| Fullg < 2(cap G)".

In what follows, we denote by c, c1, ... positive constants, and by &y, €1, ... suffi-
ciently small positive constants (different each time, in general), that are either absolute
or depend on parameters not essential for the arguments; sometimes such a dependence
will be indicated. For a > 0 and b > 0 we use the expression a < b (order inequality)
if a < cb for some ¢ > 0. The expression a < b means thata < b and b < a hold
simultaneously.

2. Some Facts from Geometric Function Theory

Each convex curve is known to be quasiconformal (see [15, pp. 63, 87]). It is further
known (see [1, Chap. IV]) that the conformal mapping ® can be extended, in this case,
to a quasiconformal mapping of the whole plane onto itself. We keep the same notation
for this extension. Note that the inverse function ¥ := ®~! will be quasiconformal too.

The following result is useful in the study of metric properties of the mappings @
and W:

Lemma 1 ([2,p. 97]). Let w = F(¢) be a K -quasiconformal mapping of C onto itself
with F(o0) = 00, ¢ € C, w; := F({), j = 1,2,3, and |wy — wy| < ¢i|lw; — wsl.
Then |&1 — &| < 3|81 — &3| and, in addition,

K
wy; — W3

11— 3
H—&

where c; = cj(c1, K), j =2,3.

<c

3

w; — w2

The convexity of G implies some special distortion properties of the function .

Lemma2. Letz; € L, 25,23 € S, and T = @), j = 1L,23 If|ti — | <
|ty — 13| < 1, then the inequality

22— 21
3—2

-7

@.1)

=1

73— 171

holds with ¢; = ¢1(G) > 0.

Proof. Without loss of generality, we assume that
lza—z1l < lzs —z21l < %diamL

(otherwise (2.1) follows easily from Lemma 1). Next we introduce the following nota-
tions. Denote by y (x) = y(z1,x) C @,for0 < x < % diam L, the subarc of the circle
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{€ : |& — z1| = x} that separates the point 2, from oo in 2. Let Q(8, 1) = Q(z1,6,1),
forO0<é<t< % diam L, be the quadrilateral bounded by the arcs y(8), y (¢) and the
two subarcs of L joining their endpoints. Denote the family of all locally rectifiable arcs
in Q(8, t), which separate the sides y (8) and y (¢), by T'(8, t), and the module of I" (6, 2)
by m(8, t) (see [1], [16]). By the comparison principle

1 t
m(8,t)5——10g3, 0<8<t<%diamL.
i1
For any triplet of points £;, &, &3 € Q with |, — &| = | — &, we have, by Lemma 1,

that
|® (&) — @62 = [@(§) — )l
Hence, according to [6] (see also [2, p. 36]):

73— 11 23— 21

= exp(mm(|za — z1l, 123 — 211)) =

T— T 2 — 11

Lemma 3. The inequality

1— |z
dist(z, 1)

(2.2) w(z,l,D) <8
holds true for any z € D and any arcl C T.

Proof. Using a rotation with respect to the origin, we can reduce the situation to the
case when 0 < z < 1andl = {€? : 6; <6 < 6,},0 < ) < 6, <27 + 6. Moreover,
we can assume that 8, < 27 (since, in the other case, (2.2) is trivially valid). Set

L:={¢el:Im¢ =0}, b = I\.
We assume that /; # . A simple geometric reasoning shows that, for { = el el

1 .
1§ — 2l = —(0 =60, t—zl>lz—z1], z1=e"

Therefore, by the Poisson formula,

1—Jz? ld¢| 1

0,11, D) = <Lla —lzl)f ¢
It
6

|
I —zf?

2r Sy lg =z T

IA

T d
4 (1 —|zD) fel P Py
< 41 —|z) < 41 — lZD.
lz —zi] T dist(z, )

Writing the same estimate for w(z, l2, D), and taking their sum, we obtain (2.2). ]
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3. Auxiliary Results

In this section we discuss the results needed in the proof of Theorem 2.

The concept of a regularized distance to an arbitrary compact set £ C R" is described
in [22, pp. 170-171]. It is based on the decomposition of open sets into cubes and the
partition of unity, which is due to Whitney. It is enough for our purposes to assume that
E is a continuum in the complex plane, with the simply connected complement U. In
this case, the notion of a regularized distance can be explained by making use of the
properties of a conformal mapping of U onto the unit disk.

Namely, let U C C be a simply connected domain, E := C\U # @, with oo € E.
Denote the distance from z to E by d(z) := d(z, E). This function is, in general, not
smoother on U than what the obvious Lipschitz-condition-inequality

ld(z) —d()| <1z —¢l, 2, €C,

indicates.

It is desirable for several applications to replace d(z) by a regularized distance p(z),
which is infinitely differentiable for z € U. In addition, this regularized distance should
have essentially the same behavior as d(z).

Letg: U — H; = {w: Imw > 0} be a conformal mapping. Set u(z) := Im g(z).
The function

u(z)
3.1 p(z2): 7@ zeU,

is called a regularized distance from z to E.

Lemma 4 ({4, Lemma 1)]. For each z € U, we have

1 u(z) , u(z)
(3.2) P % <lg@l= @)
Moreover, if 1§ — z| < d(2)/2 then
1
(33) T S~ 21 < 186) - 8 <16 30 — 2.

Applying (3.2) we have
ld@) < pl) <4dx), zeU.

We note the following fact about the smoothness properties of p(z). Let f(z), z =
x 4+ iy, be a nonvanishing analytic function in U. A simple calculation shows that, for
any z € U:

7

G4 Ifl; = |fldog|fD), = |fIRe(og f), = | fIRe =%,

f
| f1dog | 1), = | fIRe(i log £), = —| f,Im_J%;

i

35 171,
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whence, we conclude that
(3.6) Iflel <Ifl  with E=x or &=y.

Formulas (3.4) and (3.5) imply that p(z) € C*°(U). Differentiating them once more, we
obtain for j + k =2, j, k > 0, that

A |2
T

Next, we claim thatforz =x +iye U; j,k=0,1,2;1 < j+k <2

3.7 < |fel+2

oxJ ayk| —

3j+k

3.8 -
S dxJ dyk

<cp(@) 7k,

p(@)

for some absolute constant ¢; > 0.
Indeed, inequality (3.8) follows immediately from (3.6), (3.7), and (3.2) after a twice
repeated differentiation of formula (3.1) with respectto §; =xor§ =y, j =1,2:

ap

FIP 'lz( ALARIEA
3%p
36 06, | z|4{(”s1s2|8£|+uéllg;|;2

- ugz |gzigl —u |g;|glgz)‘g;|2
AT AT I AB AN ARS

if we know that, for k = 2, 3:

(3.9 1Y@ < u@ p@*,  zel,

with an absolute constant ¢; > O.
In order to prove (3.9), we put d := d(z)/32 and note that, by (3.3):

lg(¢) — g(@)] < 3u(),

for any ¢ with [¢ — z| = d. Therefore, we have, according to (3.2), that

u@ _ g%k
<4—<10—-,
18" =< d(;) =175
for such ¢. Next, we apply Cauchy’s formula and (3.2) to obtain that, for k = 2, 3:
® (] — (k—l)' U LACOI
59| R
_ -1 u(@)
< 10(k — 1)1 32 s

This completes the proof of (3.9) and, consequently, of (3.8).
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The second topic concerns the “body-contour” properties of harmonic functions. Let
G C C be a bounded convex domain, and let f(z) be a real-valued function, which is
continuous on G and harmonic in G. Let z € L := 0G,{ € G,and § := |z — ¢|. We
next estimate the quantity | £(¢) — f(z)| in terms of the local modulus of continuity of
f on L, that is,

Vi@ = s |fE) = F@I 1> 0,

1§ —z|=<t

Let zo € G be a fixed point. We assume that 28 < dist(zg, L) =: do. For 0 < ¢ < do,
denote by ¥ (t) = y(z, 1) a crosscut of G, i.e., an open Jordan arc in G with endpoints
on L, which is a subarc of the circle { : | — z| = ¢} and has nonempty intersection
with the interval [z, zo]. The endpoints of y(¢) divide L into two subarcs. Denote the
subarc containing z by I(z).

Since L is quasiconformal, Ahlfors’ geometric criterion (see [1]) gives the inequality

(3.10) min{diam L', diam L"} < ¢ |z; — 23] forany zi,z, €L,

withc = ¢(L) > 1, where L' and L” are the associated two arcs of L\{z1, z5}. Therefore,
the quantity

diam I (¢
M = M (2o, L) := sup sup M
zeL O<t<dy t

is finite. Moreover, it is easy to prove that M < My, where M, depends only on the
constant ¢ from (3.10) and, consequently, only on the constant of quasiconformality
of L.

Let

v(t) == w(, L\I(2), G), 0 <t <dy,

be the corresponding harmonic measure. Next we fix a number s, satisfying 28 < s < dy,
and define a natural number k such that

Y
—<2%5 <.
5 = <5

By the maximum principle for harmonic functions, we have

k—1
FO =S @ = 0pn(M8) +) 0. 11 (M2 907 8) + 2111 (5)
j=0

s 2M¢t t
< 0,1 (M8) + 2/ N ACLN (_) dr+21 1. (3).
5 t 2 2

Our next goal is to obtain effective estimates of the harmonic measure v(t). Let
I'=T(,1(t),G),8 <t < dp, be a family of all crosscuts of G that separate point ¢
from L\I(¢). We note that

1 4
.11 m(T) < ;log ;(—5
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Indeed, taking into account that both module and harmonic measure are conformal
invariants, we introduce the conformal mapping g : G — D such that

g(¢) =0, g(L\I(@)) = (€% : —a < 6 < a}, a:=v(@).

According to [13, pp. 319-320] (see also [12, p. 6]), we have
-1 -1 _ T _ ra
m()" =m(g)™ =2T (sm 3 (1 a)) = 2T (cos 3 ) ,

where we set
K((1 —kHY?

T (k) := <0

and
K(k) := /01(1 —x)712(1 - K2x?) V2 dx,
for 0 < k < 1. Hence
2m(n) =T (sin ).
By [16, p. 61]:
2 4 2. 4
T (sin%g) =< ;logm < ;log;

Thus we obtain (3.11) by comparing the last two equations.
On the other hand, comparing the families I and I'y := {y (#)}s<u<s, We have

1 t
m() =2 mTy) = —log <.
4 8
Therefore, it follows from (3.11) that
8
v(t) <4 r

and that

s 2M )
G12) 1f©) — f@I < @,7,.(M8)+168 / %_”dwmnfh;.
8

4. Proof of Theorem 2

Leto := u — 7. We can assume that 0 < ¢ < g9, where g9 = &9(G) is small enough for
our constructions below. Let J C L be an arbitrary subarc. In order to prove (1.4), it is
sufficient to show that

@1 —o(J) < c/e,
for J small enough.
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We set

y = o) ={e:0, <6 <),
y(r) = {?:6,—r <6 <6,+r}, r>0,
J(r) == ¥(y(r)), r>0.

Next, we introduce a curvilinear sector based on J. Let 7o € G be a fixed point. Denote
by w = ¢(z) the conformal mapping of G onto D with the normalization ©(z0) = 0,
¢'(zg) > 0. Set ¥ := ¢!, Since L is quasiconformal, the functions ¢ and ¥ can be
extended to the quasiconformal mappings of the extended complex plane C onto itself
with oo as a fixed point (see [1, Chap. IV]), where we keep the same notations for these
extensions.

Letting

o(J) = ("’ : 6, <6 < 6},
we set
B(J) = {{ €Q:6; <arg ®(¢) < 65}
U {£eG:6 <argol) <6).

Set ¢ := /¢ and consider the function

1 ifz € B(J(1)),
h(z) = [

0 otherwise in C.

Let p(z) = p(z, B(J)), z € C, be aregularized distance to B(J) (see Section 3),1e.,a
function with the following properties:

“.2) 7 dist(z, B(J)) < p(z) < 4dist(z, B(J)),  z€C,
(4.3) p(z) € C=(C),
3j+k .
(4.4) ——px + iy)} < cp(x +iy)=/7*, J+k=1,2
dxJ ay*
Next, we average the function 4 in the following way:
64 8(¢ —2) .
—_ V f B
@) = p(z)Z/ch(g) ( o )dm({) if z € C\B(J),
1 if z € B(J),

where V(¢) is an arbitrary symmetric averaging kernel, i.e., V(z) € C 0,

V@) =V(z) = 0, z€C,
V) =0, lzl = 1,

/V(z)dm(z) = 1
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Note that g € C*(C) by virtue of (4.3). Set

L, ={zeQ:|®)|=1+¢},
V(®(2)/|P(2)D, z € Q\{oo}.

L -
By Lemma 1, there exists a sufficiently small constant £; > 0 such that
dist(z, B(J)) < dist(z, C\B(J (1)),
for z € L., with z;, € J(2¢1t). Therefore,
gx)=1, zelL,, 7L € J(2e1t),

according to (4.2). Further, by the same Lemma 1, there exists a sufficiently large constant
¢; > O such that

dist(z, B(J)) < 2dist(z, B(J (1)),
for z € L, with z;, € L\J(c1?). Therefore, we have for such z that
p(z) < 4dist(z, B(J)) < 8dist(z, B(J(2))),
by (4.2), and we obtain
g(z)=0, zelL,, z1, € L\J(¢11).

Ifz=x+iyand £ = X +i§ € L, with z;, & € L(Z3, (1), where & := W(e™),
& = W@y and L5, &) = {¢ = W(e”) : 6 — 3c1t < 6 < 6}, then we
obtain by Taylor’s formula that

4.5) g(@)=g@)+AE)(x —X)+ BE(y —y) +r(z,§),
where we have
(4.6) IA®)| + 1BE)| < o1 — &)™
and
lz — &2
4.7 , <
@7 @l =

according to (4.4).
The same relations are valid for z, & € L, with zz, & € L({2, {&4), where &, =
W(e'®?), &4 1= W( @), and L(&2, 84) i= {¢ = W(e") : 6, < 6 < 6, + 3cut}.
We denote the harmonic extension of g from L, to C\L, by f(z). Set

fw) = f(¥w), weA,

Then the following estimate holds:

Lemma5. Letl <|w| <1+ 2¢. Then

4.8) Ifw) = Fwol <2ty wei= %(1 +e).
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The proof of Lemma 5 will be given in the next section.
Further, we average the function f in the following way. Let V(z), z € C, be an
averaging kernel as above. Consider the function

16 [ - 4t — w) ‘
i(w) = Q_Z/f(’)v (——8—) dm(t) if1+3e <|w|<1+3e,

f(w) elsewhere in A.
Note that u € C®(A):
4.9) 0<i(w) <1, w e A,
and that the Laplacian of # satisfies
t
(4.10) lAdw)] < =,  1+3e<|w| <1+3e,
&
by (4.8). Let us introduce the function
u(®(z)) ifz € €,
u(z) := _
f@ ifz € G,
which obviously belongs to the class C*(C). It follows that

“.11 /Au(z) dm(z) =0,

by Green’s formula. Applying the techniques of [7], we can establish the inequality

/uda

U(o, w) := U(o, ¥(w)), weA,

and, using the representation of the function u by means of Green’s formula,

(4.12) <t

Indeed, on setting

(@) = 1(o0) + f Au@)loglz — ]dm(),  zeC,
we obtain that

fre

by (4.10) and (4.11) (see [7] for details).
Equations (4.8), (4.9), and (4.12) imply that

1
- ‘ / (- U, ;))Au@)dm(;)‘
s

< i/(e—ﬁ(a, )| Ad(w)| dm(w) <1,
2w

—o(J) < —/uda—{—,u(](cﬁ)\])—i—f udp

L\J(c1t)
+f(1—u)dr§t,
J

which is the assertion of (4.1). on
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5. Proof of Lemma 5

Let w = re'?. Applying Lemma 3, we easily obtain (4.8) for the case

l1+e<r <1+42e

6 —e1t <0 <6,+ et or Gy +2c1t <0 <2m 4+ 6 — 2¢yt.
If
l+e<r<1+42¢ 01 —2cit <0 <0, — e,
we set £ = ¢, := W(w,) and write the function g in the form of (4.5).
Lemmas 1 and 2 imply that
{ =4 L — &
&1 — 8 L—&

Define the harmonic extension of the function appearing in (4.5) to ext L.\{oo} by the
formula

£
<-=t

(5.1) < = -

rz,§) = f(z) — g — AE)x — %) — BE)(y — s

and set
7(r) :=r(¥ (1), &), lt] > 1+e.
Note that for z € L, with z; € L({3, £1), we have that
_ ®d(7) —
5.2) z—§ < |P(2) u&l.
&1 =8 t

Indeed, without loss of generality, we assume that |z — 1] > |z — {3/, and therefore

& =&l =z =&,

D) =7 =(1+¢e)é", 16; — | < t.
If |6 — 5| > /32, then (5.2) follows from Lemmas 1 and 2, because
z2—§ 2L —§ <I‘P(ZL)—(I’(E)
1— &3 ze =8| | PzL) — P

Now let |6 — 5| < &/32. Then, by the analogue of Lemma 4 (see [4, Lemma 1]) for the
conformal mapping ®, we obtain that

- |r_wsi
Tt

~
—~

Iz — & < 4 dist(z, L),

and, consequently,

z—§ -z || -z
& — &3 Zp— 81 12— 2
Tl =1 |t —we| [T — wgl

-t lt]—1 ¢t
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Hence, (5.2) and (4.7) give

IT—welz

(.3) (o) < e ltl=1+¢, |t —we| <t

Relation (5.3) remains true for 7 such that |z| > 1+¢, |t — w,| = c,t, by the definition
of the function 7(r) and (4.5)—~(4.7).
Further, a direct computation shows that

5.4 [F(w)| < t.

Indeed, let us introduce the auxiliary function Ié(r), which we define to be the harmonic
extension of the function

ﬁ(t) _JF@ it =1+e, |t —we| <2t
e otherwise for |7 = 1 + ¢,

to |7] = 1 + ¢. Itis clear that we have, for sufficiently large cs:
F(®)] < R(x)
on the boundary of the domain
{tiltl>14¢6, |t —we| <cyt}.

Therefore, by the maximum principle for harmonic functions, the Poisson formula, and
(5.3), we obtain that

[F(w)l < R(w) = R(re”)
1 17 . : r2—(1+4¢)?
= — R((1 n
2 /0 (@ +e)e ) —2r(14+¢)cos(@ —n) + (1 +¢)? dn
1 /6+czt 6+ d'] 6—cat dn )
<el dn + / ——+ / =<
(12 B—cyt O+cyt (77 - 9)2 6—m (77 - 9)2

Comparing (4.5), (4.6), (5.1), and (5.4), we get the desired inequality (4.8) by (2.1).
The same reasoning gives an analogue of (4.8) for the case

~ | m

=1.

1+e<r<1+2e¢ )+ &1t <60 <6y + 2c1t.
Next we assume that
5.5) l<r=|wl <1+eg, ¢ = WV(w), e = W(w,).

Notethat L is convex (see [17, p. 47]). Moreover, since ® has aquasiconformal extension
to C each L, is K -quasiconformal with K > 1, independent of &. Therefore, we have,
by formula (3.12) for any 2|¢ — ¢&| < s < &, and any function «(z), continuous on
int L, and harmonic in int L, that

(5:6) (@) ~ k(&) = wg . (calt — &)
tle—gl [ Leerln)
& =] r

dr+ 5= ‘“E’n eI,
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where ¢4 > 0 is independent of ¢ and ¢.

It is easy to prove (4.8) if, in addition to (5.5), {1 & J (2c1)\J (¢1¢). Indeed, now let
k= f,s5 = ¢3|{L — ¢}|, where ¢ = W (e'"®(¢1)) and the sufficiently small constant
€3 is chosen such that w, . 1. (c4s) = 0. Therefore, we obtain (4.8) by (5.6), Lemma 1,
and the obvious inequality

;L‘{a
‘L —¢7

I

)
< - =1
t

which follows from Lemma 2.

The situation is more complicated if, in addition to (5.5), {;. € J(2cit)\J (e1¢). For
definiteness, let &7 € L(¢3, ¢1). In this case, we represent the function g in the form of
(4.5)with § := ¢, and setk () := r(z, &) (i.e., k (z) is the harmonic extension of r(z, &)
from L, to intL,), s := &4]|¢1 — &3|, where &4 is chosen to be so small that the function
k(z) satisfies (4.7) for z € I(s). Since

k@l =<1, zey(),

by (4.5) and (4.6), we have, on setting § := |{ — ¢], that

82 5 [ B
6.7 r@ 9l = —+—f dr+°
s2 0 52 J; s
- éf ;L—é‘s ’
s &1 — 8

by (4.7) and (5.6). Comparing (5.7), (4.5), (4.6), and applying Lemma 2, we get

fL_Cs
(=43

{L_Cs
iL—&6

~—
—~

~<

[f(&) — f{l = =, n

&
t
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