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We extend results of Szegd (1924) and Kappert (1996) on the location of the zeros of the
normalized partial sums of cos(z) and sin(z), and their rates of convergence to the associated
Szegd curves.
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1. Introduction

With

z!
sq(2) = —, n=1, (1.1)

.‘7
=07

denoting the familiar nth partial sum of the exponential function ¢, it was shown in
1924, in a remarkable paper by Szegd [5], that the zeros {Zni )i, of the normalized
partial sum s,(nz), tend, as n — o0, to the Jordan curve D, in the closed unit disk,
where

Dy = {z e C: !zel”zl = land|z] < 1}. (1.2)

This Jordan curve is referred to in the literature as the Szegd curve. Now, it is known
(cf. [2]), as a consequence of the Enestrom—Kakeya theorem, that the zeros {z,.})—, of
5, (nz) all lie in the closed unit disk for every n > 1, and Szegd’s result is, more precmely,
that each accumulation point (in this closed unit disk) of all these zeros {Znitizt, ne o)
must lie on D, and, conversely, each point of D, is an accumulation point of these
7eros!

Subsequently, the rate of convergence, as a function of n, of the zeros {z, i

to the curve Do, a topic not considered in [5], was first studied by Buckholtz [1] who
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showed, with the notation

dist [{zn}i—1; D] == max (dist [z, ; Dal),

KRN
that
. . 2e
dist [{zai)f_;s Do ] < NG alln > 1, (1.3)
which of course implies that
lim {/n - dist [{z, 1 }{_1: Doo]} < 2e = 5.43656. (1.4)
n—0o0
To complement this result of (1.4), it was later shown in [2] that
lim {+/n - dist [{z, 4}{—5 Do} = 0.63665, (1.5)
n—0oo

where the constant in (1.5) is related to the complex zero, in the upper half-plane, of the
complementary error function erfc(w), which is closest to the origin. The result of (1.5)
states that the exponent, —1, of n in (1.3), is thus best possible.

It was also shown in [2] that a quantitatively faster convergence, of the zeros of
sp(nz) to Dy, takes place if one stays uniformly away from the point z = 1. Specifically,
with the notation

Asa) :={ze€C: |z—a| <8}, anyaeC, anys >0, (1.6)

then on covering the point z = 1 with the disk As(1), it was shown in [2, theorem 2]
that, for each fixed § with0 < § < 1,

dist[{za i j_ \As(1); Do = o(l"f ”) n s oo, (1.7)

where the constant, implicit in the big-O term, is dependent only on §. In other words,
the rate of convergence, as n — o0, of the zeros {z, ;};_, not in the disk As(1), to the
Jordan curve Dy, is O((logn)/n). It was also shown in [2] that this convergence rate,
O((logn)/n) as n — 00, is best possible.

For a more precise location of the zeros {z,«};_, of s,(nz), consider the arc D,,
defined by

—Z

. 1
D, = {z e C: [zel*4|n = T,V 2nn ’, |z] <1, and

|arg z| Zcos“](nm?‘)}, (1.8)

n

for each n > 1, where 7,, from Stirling’s formula, is given by the asymptotic series
(cf. [3,p. 377])

n! 1 1 139

A — S Y _
K nte "A/2mn + 12n  288rn%  51840n3 +

n — oo. (1.9)
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It was shown in [2, proposition 3] that D,, is a well-defined Jordan arc in A;(0), for each
n > 1, and it was also shown in [2, theorem 4] that, for each fixed s with0 < 6 < 1,

dmuhﬁgﬂAﬂnﬂ%]:o@g) n — 0o, (1.10)

so that the arc D, more closely approximates the zeros {z,};—; of s, (nz), than does
the Szegd curve Do,. It was shown in [2] that the rate of convergence in (1.10), namely,
O(1/n?) as n — oo, is also best possible.

For the reader’s benefit, it may be useful to indicate how these curves Dy and Dy,
of (1.2) and (1.8), arise naturally in the study of the zeros of s, (nz). Starting from the
following identity of Szeg6 [5] (which can be verified by differentiation):

1 Z
e s,y =1- ;,] t"efds, zeC;nel, (1.11)
n.Jo
then replacing ¢ by n¢ and z by nz gives, with (1.9), that

-'il\,

sp(nz) = F9"dg, zeCineN, (1.12)

N
Tn N2 Jo

and it was shown in [2] that

. _ (Zel——z)n z l
s, (nz) = 1_-““\/%(”1%){”0@)}’ n— 00, (1.13)

uniformly on any compact subset of A (O\{1}. (We remark that Szeg6 [5] had ob-
tained (1.13) with the slightly weaker result where O(1/n) in (1.13) was replaced by
o(l), asn — oo. ) Recalling that the zeros of s, (nz) must all lie in the closed unit disk
A, (0) for every n > 1, then on taking any convergent infinite sequence {zn; }°° , of zeros
of {s,(nz)}>° |, not converging to z = 1,1e.,

Sn; (njz,) = 0, lim z,, =2 withZ # 1, and lim n; = 0o,
’ ’ j—ooo j—o0
it is evident from (1.13) that % must satisfy [2e! 7| = 1, with || < 1, which defines

the curve Dy, of (1.2). (The converse result of Szeg®, i.e., that each point of Dy, is an
accumulation point of zeros of {s,(n2)},en is more difficult, and depends on the use of
conformal mapping theory.) Similarly, on deleting the term O(1/n) in (1.13) and on
assuming that s, (nz) = 0, one obtains that a solution of

(zel_z)n =1, 27m(1 — Z) (1.14)

Z

in A, (0) is an approximation to this zero, and on taking absolute values, this essentially
gives the definition of the curves D, in (1.8).

We now turn to the discussion of the behavior of the zeros of the normalized partial
sums of cos(z) and sin(z), a topic also inaugurated by Szeg6 [5] and recently advanced
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by Kappert [4]. (With his results for the zeros of s, (nz), Szegd stated! in [5] that, for
his study of the zeros of the normalized partial sums of cos(z) and sin(z), “hardly any
further calculations are necessary”.) For any even positive integer n (written n € 2N),
let

n/2

cos,(2) i= ) CU=E N a 1;)
n i< = AT s -
= (20!

denote the nth partial sum of cos(z), and similarly, for any odd positive integer m (written
m e 2N — 1), let

(m~1)/2 (_l)kZQkJrl
in,, (z) = — 2N —1, 1.16
sin,, (z) k};) kD! me ( )

denote the mth partial sum of sin(z). Next, with
AL ={ze€C: |-ize'™| =1, |z] < 1, Imz > 0}, (1.17)

i.e., AL is just that part of the Szeg6 curve Dy, of (1.2), when rotated by 7 /2, which lies
in the upper half-plane, we set

A =ALU{ZeC:ze AL} (1.18)

Szegd [5] showed that the set of accumulation points of the zeros {Z, x}_, of the nor-
malized partial sum cos, (nz), for all n € 2N, as well as the accumulation points of the
zeros {wy, i}, of the normalized partial sums sin,, (mz), for all m € 2N—1, is precisely
the following set of points in the unit disk:

I 1
AU [——,—I——]. (1.19)
e e

(The zeros of cosg(60z), shown as x’s, are given in figure 1 along with A, and the
zeros of sing; (61z) are similarly shown with A, in figure 2.)

What is particularly interesting in considering the function cos(z) is that, unlike
the case of e which has no zeros in the complex plane C, cos(z) has infinitely many
(real) zeros. Moreover, given any compact set G in C, it follows, from the uniform
convergence in G of {c0s,(2)},can to cos(z) and Hurwitz’s theorem (cf. [6, p. 119]), that
€08, (z) must now “inherit” zeros in G of cos(z), as n — o0, if G contains a sufficiently
large real interval. (This is why the closed real interval [—1/e, 1/e] is included in (1.19).)

For notation, given an ¢ with 0 < ¢ < 1, define the rectangle R, by

R ={zeC: -1 <Rez<land —e¢ <Imz < &}. (1.20)
Then, a result of Kappert [4], in a slightly different form, is

1 “Hierbei sind kaum weitere Rechnungen notig.”
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Figure 1. Zeros of cosgn(60z) and Acc.
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Figure 2. Zeros of sing) (61z) and Aco.
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Theorem A. Let {Z,;}]_,, n € 2N, denote the zeros of cos,(nz) of (1.15). With the
definitions of A, of (1.18) and R, of (1.20) and with fixed positive ¢ and § with 0 <
&+ 6 < 1/8, there holds

n

dist [{2, o V(B () U Ag(—) U R); A = 0<1°g ") (1.21)

as n — oo. Similarly, if {w,, }i_,, m € 2N — 1, denotes the zeros of sin,, (mz) of
(1.16), the result of (1.21) holds with m replacing n and {w,, (}7_, replacing {Z, ;}7_,.

For any positive ¢ and § with 0 < ¢ 4§ < 1/8, itis a consequence of the results of
Szegd [5, equation (8)] that the set of points {2, 1}, \(As (DU As(—) UR,) in (1.21) is
nonempty for all n sufficiently large (n € 2N), as is the set of points {w,,. e \(As(DH U
As(—1) U R,) for all m sufficiently large (m € 2N — 1).

Next, as an analogue of the set D, of (1.8), set, for any n € N,

Al = {z € C: |—ize!t™ 57| lel <1, Im 2 >0, and
—zZ

n 1+ 2
=Tn\/2ﬂ’n{ <

n—2

n

— —argz

;

1
>§cos”1< ) O<argz§7r}. (1.22)

As shown in [4], A consists of two well-defined (Jordan) arcs in Imz > 0. Then on
setting

A= AfU{ZeC: zeAf), (1.23)

another result of Kappert [4], again in a slightly different form, is

Theorem B. Let {Z, (}}_,, n € 2N, denote the zeros of cos,(nz) of (1.15). With the
definitions of A, of (1.23) and R, of (1.20) and with fixed positive ¢ and § with 0 <
e+ 8 < 1/8, there holds

. Fia oam . . 1
dist [{Zuibiey \(As() U Ag(=) U R,); A,] = O ) (1.24)
asn — oo. Similarly, if {w,, ¢ }7_,, m € 2N—1, denotes the zeros of sin,, (mz) of (1.16),
the result of (1.24) holds with m replacing n and {w,, ¢ }}"_, replacing {Z, ¢} _,.

To illustrate the result of theorem B, we have included figure 3, showing the zeros
of cosen(2) and Agp, and figure 4, showing the zeros of sing; (61z) and Ag;.

One objective of this note is to first extend, in section 2, the results of theorems A
and B to higher-order cases, much as was done for the partial sums of ¢¢, at the end of
section 3 of [2]. With this extension, we also establish in section 3 that the results of
theorems A and B are best possible.
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Figure 3. Zeros of cosgp(60z) and Ag.
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Figure 4. Zeros of sing; (61z) and Agj.
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2.  The higher-order curves D,(Lj )

It was shown in [2, equation (2.13)] that e "*s,,(nz) has the following representa-
tion for z #~ 1:

e—nzs(n):l_(zell( z ){1___;_
T oA\ — 2 n+ D1l —2)?

2(4—2) B 72227 — 14z + 229 L ] :
n+Dr+20 =20 m+Dn+2n+3)(1 —z2)56 ’
(2.1)

for any n — oo. Though this is not clearly stated in [2], the series representation in (2.1)
is rigorously an asymptotic series, in the usual sense (cf. [3, chapter 11]) where one takes
a finite Taylor’s expansion of the integrand of the integral in (1.12), about the point z,
and bounds the integral remainder term appropriately. This means that, on any compact
subset T of A; (O)\{1}, we can write, on keeping the first two terms in braces in (2.1),
that

B (Zelfz)n z 1 1
nz ; _] "7 TV ) 2 ’ 2.2
¢ =1 znm(l —z>{1 (n+ (1 —2)? +O(n2)} =

uniformly on 7 as n — oo. Thus, if z is a zero of s, (nz) of (1.1), then, on deleting the
term O(1/n?) in (2.2) and on taking moduli, we arrive at the following new arc D{? in
lz] < 1, where

D(2)._{Z€@.M < ‘ 7—1__1 andiz[<l} (2.3)
" Cn2rn| -2 (D1 =22 ST

(The superscript (2) of D,, in (2.3) means that the first two terms in braces in (2.1) are

kept, so that D'V would then essentially correspond to D, of (1.8).) We can similarly
define high-order arcs D,ﬁj ), j > 2,1in |z| < 1, upon taking more terms in (2.1). The

following was stated without proof in [2].

Theorem C. Let {z,};_,. n € N, denote the zeros of s,(nz) of (1.1). With the de-

finition of D (cf. (2.3)) for any fixed positive integer j, and with any fixed § with
0 < & < 1, there holds

. " ; 1 ‘
dist [{Zn,k}kzl\Ag(l); D,(/)] = O(m) as n — 0. (2.4})

3.  Connections with s, (nz)

From (1.15), it can be verified that

2cos,(nz) = 5,(nz) + s,(—inz), z¢e€C; n e 2N, 3.1
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which we can express as
2cos,(nz) = ™ [e s, (inz)] + e e[ s, (—inz)]. (3.2)

Applying the result of (2.2) to each of the above bracketed terms, it follows that

’ ) N ‘ _ (ize)" —27? B 327 i)}
2 cos,(nz) = 2cos(nz) rn\/—2n—n(1 +22){1 w i Da —|—Z2)2+O(n2 , (3.3)

as n — oo, uniformly on any compact subset of A O\ ({i} U {=i}). Next, as we also
have that

2cos(nz) = e pe . 7 e C; ne2N,
whose only zeros lie on the real line R, then dividing the expression in (3.3) by 2cos(nz)
gives, for any z ¢ R,
. 3-2° 1
cos,(nz) - (—ize)" ( —272 ) {1- wrarar T O(n'f)}
COS(I’lZ) Tnﬁff_n 14+ ZZ (ein; + efinz)

uniformly on any compact subset of A\ ({i} U {—i} UR). This can be equivalently
expressed as

: (3.4)

. ~ 322
cos,(nz) [—ize! ™) [/ —227 {1- (n+1)(lz+22)2 + O(n%)}
—_— =1 . . (3.5)
cos(nz) 2 \1+22 (1 + e?inz)
Butif for 0 < o < 1, we define
A ={z=x+iy: z|<landy >0 >0} and
(3.6)

AT = {z=x+iy: lz| < land y > 0},

it follows that z € AF implies that [e2"?] < e7", where e 2" = o(1/n), as n — 00,
for any fixed o > 0. Then (3.5) gives us that, for n € 2N,

Cos,, —ize!tiey /=272 3—z? 1
cosulnz) _y [=ize 7 ( - ){1— : 27+O(—)}, (3.7)
cos(nz) 1,4 2mn \ 1+ 22 (n+ D1 +2%)* n?
asn — oo, uniformly on any compact subset of AT\ {i}, with a similar statement holding
for the reflection, in the real axis, of the set AT\ {i}.

It is apparent from (3.7) that if there is a convergent infinite sequence {Z, i of zeros
of {cos,, (nz)},eon in the upper half-plane, not converging to a real number or to i, i.e.,

cos,, (n;2,,) =0, ImZ,, >0, lim Z,, =2,  withZnotreal and Z # i,
Jo0
and lim; .o n; = oo, then it is evident from (3.7) that )——iZe”iﬂ = 1, which defines
the curve AL of (1.17). As this argument also similarly applies in the lower half-plane,
one sees that the conjugates of the points in A, must also appear in the definition of A
of (1.18), and, as previously mentioned, the closed interval [—1/e, +1/¢] in (1.19)is a
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consequence of the Hurwitz theorem. Then on deleting all but the constant term unity in
the braces in (3.7) and assuming that cos,(nz) = 0, one obtains that a solution of

i 1422
[wize““’] =1, 27711( _—;ZZZ ) (3.%?)

is an approximation of this zero z, and, on taking absolute values, this essentially gives
the definition of the curves A" in (1.22). )

The connection of the zeros of sin,, (mz) with the partial sums of e® is very similar,
as the zeros of sin,, (mz), again from the Enestrom—Kakeya theorem, liec in A (0) for
every m € 2N — 1. Next, from (1.16), we similarly have (cf. (3.1)) that

2isin,, (mz) = s, (imz) — s, (—imz), ze€C, m € 2N —1, (3.9)

and, on using (1.13) and (2.1), it can be verified (cf. (3.7)) that, form € 2N — 1,

o3 s o altHizym 2 2

snlme) oy 1miee 7 ( - ) {1 S bk SN o(i)}, (3.10)

sin(mz) T, 2mm \1+ 22 (m + (1 + z%)? m?
as m — oo, uniformly on any compact subset of AT\{i}, with a similar statement
holding for the reflection, in the real axis, of the set A™\{i}. Note that the right sides
of (3.7) and (3.10) have the same form, except that (3.7) holds for n € 2N, while (3.10)
holds for m € 2N — 1.,

It is evident from the derivations of (3.7) and (3.10) that a higher-order curve Aff) in
A1(0), for approximating the zeros of cos, (nz) or sin,, (mz), can be defined in an obvious
way by taking the first two terms in the braces, of (3.7) or (3.10), and then taking absolute
values. Other higher-order curves A, J > 2, can similarly be derived on using the first
J terms in the braces of (2.1).) Moreover, based on the result of theorem C for j = 2,
the following result can be established, in analogy with theorems A and B of Kappert.
(This will be used below for theorem 3.)

Theorem 1. Let {Z, ;}{_,. n € 2N, denote the zeros of cos,(nz) of (1.15). With the
definition above of A'® and of R, of (1.20), and with given fixed positive ¢ and § with
0 <&+ 6§ < 1/8, there holds

1
dist] (Zax}i \(As(D) U As(—=D U R, ); AP ] = O(;{?)’ (3.11)

asn — oo. Similarly, if {w,, «}i__,, m € 2N—1, denotes the zeros of sin,, (mz) of (1.16),
the result of (3.11) holds with m replacing n and {w,, x};"_, replacing {Z, ;}{_,-

To establish the sharpness of (1.21) of theorem A, consider the point Z of AL, in
the first quadrant, where the tangent to A7) at this point is vertical. It can be easily
verified from the definition of A in (1.17) that

Z=X+1iy, wherex = 0.40237 and y = 0.20319. (3.12)




R.S. Varga, A.J. Carpenter / Zeros of the partial sums of cos(z) and sin(z) 373

(The point Z of (3.12) is shown, for the reader’s convenience, as a small solid disk in the
first quadrant of figure 1.) Then for n € N, consider the unique point wj of AT, in the
first quadrant, where

) w, =Z+38. 6, >0. (3.13)
Because A has a vertical tangent at Z, it follows by definition that
dist{w,: AL] =8, > 0. (3.14)
To determine §,, we have that w, € A}, so that, from (1.22),
\——iwne”iw”[" = 1,V 27n 1;:); )

Write ¥ = |?|el¥, where ¢ = tan~!(y/X), so that cos ¥y = 0.89264. Then because
7 =X +iy € AL, the above expression reduces, with (3.13), to

2
< /L

s,e "
1z

i

After some easy calculations, it can be verified that

51 |
_ [cllogn 0(—), as 1 — oo, (3.15)
2n cos n

Next, for each n sufficiently large, n € 2N, let z,, be the closest zero (in the first quadrant)
of cos, (nz) to w, of (3.13). We note that this zero z, will, for all n sufficiently large, lie
outside of the set (Az(i) U Ag(—i) U R,), so that (1.24) of theorem B is applicable. Thus,
theorem B implies that

1 v
dist[z,; w,] = O(——z-) as n — oo. (3.16)
n

Hence, as the triangle inequality gives
dist [w,; Ajo] — dist [zn; w, | < dist [z,,; A;] < dist [zn; wn] -+ dist [wn; AL,

and as §, = dist [w,,; Ajo} is dominant from (3.15), over dist [z,,, w,] of (3.16) for all n
sufficiently large, then

Z1?

lim {
n—>00 ]ogn

Moreover, since dist [z,; AT T < dist [{Z, )72, \(As(D) U As(—1) U R.}; Axo] for all n
sufficiently large, we have the result of

: IZ] .
dist[z,; ALY = = - = (0.25249. 3.17
ist[2 OO]} 2cosy  2Rez ’ @17

Theorem 2. Let {Z,};_,, n € 2N, denote the zeros of cos, (nz) of (1.15). Then, with
the definition of A, of (1.18) and of R, of (1.20), the result of (1.21) of theorem A is
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best possible, in the sense, that, for given fixed positive ¢ and § with 0 < ¢ + 8§ < 1/8,
there holds

. n . v n . . IZ!
IIII[ dlStI In A 1 UA 1 URE 7lioo| >
nm:oo I(Jgn { ’k}k*—l\( 8() 5( ) ) } 20057’”
; . . .

Similarly, if {w,, ¢ }7,, m € 2N —1 denotes the zeros of sin,, (mz) of (1.16), then (3.18)
holds with m replacing n and {w,, r};., replacing {ﬁn,k}zzl.

The key idea in the proof of theorem 2 was to use the result of the higher-order
approximation of theorem B to obtain sharpness in theorem A. But this idea can be
also applied to theorem B, where the higher-order approximation now comes from us-
ing the new curves A?, on taking the first two terms in (3.7) or (3.10), to determine,
from (3.11) of theorem 1, an O(1/n>) approximation of the zeros of cos,(nz), or an
O(1/m?) approximation of the zeros of sin, (mz). Without going through all similar
(and lengthy) details, we simply state the result of:

Theorem 3. Let {2, (};_,, n € 2N, denote the zeros of cos,(nz) of (1.15). Then, with
the definitions of A, of (1.23) and of R, of (1.20), the result of (1.24) of theorem B is
best possible, in the sense that, given fixed positive ¢ and § with 0 < ¢ + 8 < 1/8, there
is a positive constant 8, defined from z of (3.12) by

R B R O B A
B = Re{ aq (2)2)2} ReT = 106805, (3.19)
such that
lim {n® dist [{z, 1)1 \(As () U As (=D U R.); A, ]} = 8. (3.20)

n—>0C

Similarly, if {w,, i };"_,, m € 2N—1, denotes the zeros of sin,, (mz) of (1.16), then (3.19)
holds with m replacing n and {w,, x}]-, replacing {Z, ¢};_,-

We point out that the technique of proof for theorems 2 and 3 can similarly be
applied to deduce the higher-order generalizations of theorems A and 2, and theorems B
and 3. Starting with the asymptotic series for ¢™"%s,(nz) in (2.1), use (3.1) to generate
an asymptotic series for 2 cos, (nz), n € 2N, and divide this expression by cos(nz), for
z not real. Then for a fixed positive integer j with j > 1, take the first j terms of this
resulting asymptotic series, which, on taking absolute values, serves to define the curves
A,(/) in |z| < 1, forall n € 2N. (This can be seen in (3.7) for the case j = 2.) We remark
that the same curves A,(,’ ) are obtained for sin,, (mz)/ sin{mz), m € 2N — 1 and z not
real, as can be seen from (3.10), again for the case j = 2. Without giving proofs, we
state the final result of
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Theorem 4. Let {Z,}]_,, n € 2N, denote the zeros of cos,(nz) of (1.15). With the

above definition of A,(lj ), for any fixed j > 1, and of R, of (1.20), and with given fixed
positive ¢ and § with 0 < ¢ 4+ 8 < 1/8, there holds

dist [{Zoe )7\ (As() U As (=) U R:); AV ] = o( ) (3.21)

i+l
as n — oo, and this result is best possible in the sense of the previous theorems. Sim-
ilarly, if {wy, )i, m € 2N — 1, denotes the zeros of sin,, (mz) of (1.16), then (3.21)
holds with m replacing n and {w,, ;}7_, replacing {Z, ;};_,, and this result is best possi-
ble in the sense of the previous theorems.

In a subsequent paper, we will carefully study the location and density behavior of
all real and complex zeros of cos,(nz), n € 2N, and of sin,, (mz), m € 2N — 1.
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