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Abstract: In this note, we introduce the singular value decomposition Geršgorin set, ΓSV (A), of an
N ×N complex matrix A, where N ≤ ∞. For N finite, the set ΓSV (A) is similar to the standard Geršgorin
set, Γ(A), in that it is a union of N closed disks in the complex plane and it contains the spectrum, σ(A), of
A. However, ΓSV (A) is constructed using column sums of singular value decomposition matrix coefficients,
whereas Γ(A) is constructed using row sums of the matrix values of A. In the case N = ∞, the set ΓSV (A)
is defined in terms of the entries of the singular value decomposition of a compact operator A on a separable
Hilbert space. Examples are given and applications are indicated.
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1. Introduction. The well-known Geršgorin Circle Theorem, stemming from the paper of S. Geršgorin
in 1931 (see [2]), allows one to obtain, by means of easy arithmetic operations on the entries of a given finite-
dimensional N ×N complex matrix, a collection of N closed disks, in the complex plane C, whose union is
guaranteed to include all of the eigenvalues of the given matrix. The beauty and simplicity of Geršgorin’s
Theorem has undoubtedly inspired much subsequent related research in this area, and many aspects of this
topic are covered in the new book [11]. However, extensions of the Geršgorin’s Circle Theorem to infinite
dimensions have received far less attention; see however [4], [9], and [10].

The singular value decomposition of a finite square complex matrix, which produces the associated singular
values of the given matrix, is now a valued tool for mathematicians and scientists, which has important
applications in statistical computations and data compression schemes (which are based on approximating
a given matrix by one of lower rank). There are currently robust and well-developed computer programs
to carry out this decomposition; for examples, see [1] and [5]. Similarly, it is the case that there are robust
computer programs for numerically determining the eigenvalues of a given square complex matrix, where
this information is generally vastly different from the information gained from its singular values. Our goal
here is to combine these different approaches, thereby producing a Geršgorin-like extension of a singular
value decomposition of a compact operator on an infinite dimensional separable Hilbert space.

As background, let H denote the Hilbert space C
N , where the dimension N can be finite or countably

infinite. In the case N = ∞, H is `2, the vector space of sequences of complex numbers which are absolutely
square summable. In this case, we will denote the elements of H as “infinite length” N -tuples. Define the
inner product on elements x = (x1, · · · , xN )T and y = (y1, · · · , yN )T in H by

< x, y >:=

N
∑

k=1

xkȳk. (1.1)

Let ||x|| :=
√
< x, x > = (

∑∞
j=1

|xj |2)1/2 denote the norm on H, induced by this inner product. This norm
induces an operator norm on linear maps, A : H → H, namely, ‖A‖ := sup‖x‖=1

‖Ax‖. Let L(H) denote the
set of all linear operators from H to H which are bounded with respect to this norm. An operator B ∈ L(H)
has finite rank if and only if there exists a choice of bases on its domain and range spaces H, with respect
to which the non-zero entries of B form a finite dimensional matrix. Finally, an operator B is compact
if and only if it can be expressed as the norm limit of a sequence of finite rank operators. Let Com(H)
denote the set of all compact operators in L(H). We remark that an operator in L(H) has a singular value
decomposition (defined below) if and only if it is compact.

First, let N be finite, with, say, N = k. Then L(H) is the set of all k × k complex matrices, i.e., C
k×k.

In this case, every element of L(H) is of finite rank and therefore compact. Hence, our singular value
decomposition Geršgorin method, to be defined below, applies to every finite dimensional square complex
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matrix. Now, let N = ∞. Then, H is a separable infinite dimensional Hilbert space. By the Riesz-Fischer
Theorem, we can assume, without loss of generality, that H = `2, (see [6], p. 47). In particular, this gives
us a canonical representation of the elements of H as “infinite length” N -tuples, and hence, the elements
of L(H) are naturally represented as infinite dimensional matrices. In the infinite dimensional case, the
compact operators, Com(H), form a norm closed proper ideal in L(H).

Let A ∈ L(H). By definition, a complex number λ lies in the spectrum of A, σ(A), if and only if the
operator A − λI is non-invertible. In the finite dimensional case, this is equivalent to the existence of a
vector x ∈ H, with ||x|| > 0, such that Ax = λx. In the infinite dimensional case, the operator A− λI can
fail to be invertible, even when no corresponding eigenvector exists. However, this is not true for compact
operators. If A ∈ Com(H) and N = ∞, then the non-zero elements of σ(A) are isolated eigenvalues of finite
multiplicity and zero is a limit point of eigenvalues of σ(A).

The adjoint of an operator A is the operator A∗ defined by the equation < Ax, y >=
< x,A∗y > for all x, y ∈ H. As we know, the matrix A∗, which satisfies this equation, is the conju-
gate transpose of A. An operator A is called normal if AA∗ = A∗A and self-adjoint if A = A∗. An operator
is non-negative if < Ax, x > is non-negative for all x in H. Clearly, every self-adjoint operator is normal,
and a non-negative operator A is necessarily self-adjoint since < Ax, x >= < Ax, x > =< x,Ax >. The
operators which are compact and normal have an important characterization, given by the following Spectral
Theorem, ([3], p. 183).

Theorem 1.1. An operator A ∈ L(H) is compact and normal if and only if H has an orthonormal basis
of eigenvectors of A, and a corresponding sequence of eigenvalues converges to zero, in modulus, if N is
infinite.

The importance of having an orthonormal basis of eigenvectors is that it allows us to diagonalize a compact
and normal operator. More precisely, let Aγk = λkγk, where γk ∈ H with ||γk|| = 1 and with λk a scalar, for
k = 1, 2, · · · , N . If U is the unitary matrix whose k-th row is γ̄T

k and Λ is the diagonal matrix with diagonal
entries λ1, · · · , λN , then A = U∗ΛU . Moreover, U∗U = UU∗ = I, so that

UAU∗ = Λ. (1.2)

In other words, when the range and domain of A are given the orthonormal basis {γj}N
j=1

, the operator A is
diagonal. This diagonalization allows us to define functions of the operator A. For example, we define the
square root of a non-negative operator A as

√
A := U∗

√
ΛU, (1.3)

where
√

Λ is the diagonal matrix with entries
√

λj .

Every operator B ∈ L(H) has a non-negative absolute value operator, defined by |B| :=
√
B∗B. The

operator B∗B is non-negative since < B∗Bx, x >=< Bx,Bx >= ‖Bx‖2 ≥ 0 for all x ∈ H. If B is
compact, then B∗B is too, and

√
B∗B is defined as above. If B∗B is not compact,

√
B∗B can still be

defined, but this requires some sophisticated techniques which will not be necessary for this paper (see [6],
[8]). The operator |B| is used to define the following decompositions of B.

For any bounded operator B on H, one can define a unique polar decomposition of B. A polar decompo-
sition of B is an expression of B as

B = Q|B|, (1.4)

where Q is a partial isometry on H . That is, Q is an isometry from the closure of the range of |B|, denoted by
Ran(|B|), to the closure of the range of B, Ran(B). The additional constraint, Ker(Q) = Ker(B), uniquely
determines Q.

If (and only if ) B is compact, it also has a Singular Value Decomposition (SVD) which is defined as:

B = V ∗ΣW =





| · · · |
φ1 · · · φN

| · · · |











σ1 0 0

0
. . . 0

0 0 σN













− ψ̄T
1

−
...

...
...

− ψ̄T
N −






, (1.5)
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where V andW are unitary operators on H, and Σ is a diagonal operator on H whose diagonal entries {σi}N
i=1

,
are a sequence of non-negative, non-increasing numbers are called the singular values of B. By definition,
|B|ψj = σjψj and σjφj = Bψj . The sets {ψj}N

j=1
and {φj}N

j=1
are orthonormal bases for the Hilbert spaces

Ran(|B|) and Ran(B), respectively. The singular value decomposition of an operator B is never unique. In
particular, if the collections {φj}N

j=1
, {σj}N

j=1
, and {ψj}N

j=1
define a singular value decomposition of B, then

for any set of complex rotations {eiθj}N
j=1

, the collections {eiθjφj}N
j=1

, {σj}N
j=1

, and {eiθjψj}N
j=1

also define
a singular value decomposition of B.

For a compact operator, B, we can calculate its polar decomposition B = Q|B| from a singular value
decomposition B = V ∗ΣW . Specifically, by definition, the operator W has rows ψ̄T

j where {ψj}N
j=1

is
an orthonormal basis of eigenvectors of |B|. The Spectral Theorem tells us that |B| = W ∗ΣW . Hence,
Q = V ∗W . In particular, this implies the relationship Qψj = φj or, equivalently, Q∗φj = ψj . We use these
identities when it is helpful to express B in terms of a single orthonormal basis.

It will also be useful for us to note that the singular value decomposition allows us to define an inner
product notation for compact operators. Specifically, let Bψk = σkφk, for k = 1, · · · , N , define a singular
value decomposition of a compact operator B. Then, we can express B in inner product terms as

B =
N

∑

j=1

σj < · , ψj > φj . (1.6)

The right hand side is interpreted as follows: For each j, σj < · , ψj > φj is the rank one operator on H
which maps x ∈ H to the vector σj < x,ψj > φj , and the sequence of partial sums on the right hand side of
(1.6) converges in the operator norm to B.

Definition 1.2. To each B ∈ Com(H), we associate the collection, B, of singular value decompositions
of B,

B := {
N

∑

l=1

σl < · , ψl > φl : B =

N
∑

l=1

σl < · , ψl > φl}, (1.7)

where if N is infinite, convergence is in the operator norm. If B is not compact, we set B := ∅.
2. Our Singular Value Decomposition Geršgorin Set. We are now ready to introduce our Singular

Value Decomposition Geršgorin Set, ΓSV (B), of an N × N complex matrix B, where N ≤ ∞. When H is
infinite dimensional, an operator has a singular value decomposition if and only if it is compact. In fact,
the singular value decomposition of B is an expression of B as a norm limit of finite rank operators. In
particular, the SVD Geršgorin method only yields a meaningful eigenvalue inclusion for compact operators.

Definition 2.1. Assume B ∈ Com(H) and let B = V ∗ΣW =
∑N

l=1
σl < · , ψl > φl be a fixed singular

value decomposition of B. We define the SVD matrix values {b̂`,k}`,k=1,··· ,N of V ∗ΣW to be

b̂`,k :=< Bφ`, φk >= σk < φ`, ψk > ∀`, k = 1, · · · , N. (2.1)

We define the k-th SVD column sum of V ∗ΣW to be Ck(V ∗ΣW ) :=
∑N

`=1,`6=k |b̂`,k|, the k-th SVD Geršgorin

disk to be ΓSV
k (V ∗ΣW ) := {z ∈ C : |z − b̂k,k| ≤ Ck(V ∗ΣW )}, and the SVD Geršgorin set of V ∗ΣW to be

ΓSV (V ∗ΣW ) := ∪N
k=1

ΓSV
k (V ∗ΣW ). Define the SVD Geršgorin set of B to be

ΓSV (B) := ∩{ΓSV (V ∗ΣW ) : V ∗ΣW ∈ B}. (2.2)

If B is a non-compact operator, then B = ∅, and we define the SVD Geršgorin set of B, ΓSV (B), to be the
entire complex plane C.

We remark that ΓSV (B), defined in (2.2) as the intersection of all ΓSV (V ∗ΣW ) where V ∗ΣW ∈ B,
is similar to the finite-dimensional concept of a minimal Geršgorin set, treated in [11, Chapter 4]. The
intersection property of (2.2) will be used in Theorem 2.3 below.

Given a B ∈ Com(H) and given a singular value decomposition V ∗ΣW of B, where V ∗ΣW ∈ B, then
an important fact (cf. Theorem 2.2 below) is that ΓSV (V ∗ΣW ) contains the spectrum, σ(B), of B. It is
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interesting to note that the proof of this is essentially the same as the proof for the standard Geršgorin set
in the finite dimensional case. (See, for example, [11], p.4.)

Theorem 2.2. For any B ∈ Com(H) and for any singular value decomposition set V ∗ΣW from B, then
σ(B) ⊆ ΓSV (V ∗ΣW ). As this holds for any V ∗ΣW of B, then (cf. (2.2)) σ(B) ⊆ ΓSV (B).

Proof. The result holds trivially if B is a non-compact operator in L(H), as ΓSV (B) = C in this case.

Let B ∈ Com(H) and fix a singular value decomposition B :=
∑N

l=1
σl < ·, ψl > φl. Recall from (2.1) that

b̂j,k = σk < φj , ψk > . Suppose λ ∈ σ(B). Then, there is an x in H such that Bx = λx and ||x|| = 1. Using
Parseval’s identity, we calculate

Bx =
N

∑

l=1

σl < x,ψl > φl =
N

∑

l=1

N
∑

j=1

σl < x, φj >< φj , ψl > φj =
N

∑

l=1

(
N

∑

j=1

b̂j,l < x, φj >)φl.

On the other hand, λx =
∑N

l=1
λ < x, φl > φl. Since ||x||2 =

∑N
l=1

| < x, φl > |2 = 1, there exists a k such
that | < x, φk > | is a non-zero maximal element of the set
{| < x, φl > |}l=1,··· ,N . Fix such a k and equate the coefficients on φk in the above expansions. This
gives us

λ < x, φk >=

N
∑

l=1

b̂l,k < x, φl > .

This easily implies, by the triangle inequality, that

|λ− b̂k,k| ≤
N

∑

l=1,l 6=k

|b̂l,k|
| < x, φl > |
| < x, φk > | ≤

N
∑

l=1,l 6=k

|b̂l,j | = Ck(V ∗ΣW ).

By definition, this means λ is in ΓSV
k (V ∗ΣW ) ⊆ ΓSV (V ∗ΣW ), for every singular value decomposition,

V ∗ΣW , of B. Thus, λ ∈ ΓSV (B). �

In the special case when B is a compact normal operator, the intersection set ΓSV (B) of (2.2) is just
σ(B). Moreover, this property characterizes compact normal operators, as we show now.

Theorem 2.3. Let B ∈ L(H). Then, B is a compact normal operator if and only if ΓSV (B) = σ(B).
Proof. If B is not compact, then by Definition 1.2, ΓSV (B) = C 6= σ(B). Let B be a compact operator.

Then, B is normal if and only if there exists an orthonormal basis {γj}N
j=1

in H such that Bγj = αjγj and
|αj | → 0 if H is infinite dimensional.

First, assume that B is normal. Let {αj}N
j=1

= {|αj |eiθj}N
j=1

be the spectrum of B and assume, without
loss of generality, that the sequence |αj | is non-increasing. Since B is a compact normal operator, the
eigenvectors γj of B are also eigenvectors of |B|. The relations |B|γj = |αj |γj and Bγj = |αj |eiθjγj imply
that

V ∗ΣW =
N

∑

j=1

|αj | < · , γj > eiθjγj

is a singular value decomposition of B. In other words, the singular value decomposition matrix coefficients
of this SVD of B are b̂j,k = |αk| < eiθjγj , γk >= αjδj,k where δj,k denotes the Kronecker delta (i.e., 1 if
j = k and 0 otherwise). This exactly says that all the SVD Geršgorin column sums of V ∗ΣW are zero and

b̂k,k = αk. Hence, ΓSV (V ∗ΣW ) = σ(B). This, combined with Theorem 2.2, implies ΓSV (B) = σ(B).
Conversely, assume ΓSV (B) = σ(B). Since B is compact, the non-zero spectrum of B consists entirely of

isolated eigenvalues of finite multiplicity, which converge to zero in modulus if N is infinite. We show that
the equation ΓSV (B) = σ(B) = {αj}N

j=1
implies that B has a singular value decomposition V ∗ΣW for which

all of the SVD Geršgorin column sums of B (i.e., radii of the SVD Geršgorin circles) are zero and the centers

of the SVD Geršgorin circles are b̂k,k = αk for all k = 1, · · · , N . In other words, b̂j,k = αjδj,k for all j and k

from 1 to N . Now for every k, Bφk =
∑N

j=1
< Bφk, φj > φj =

∑N
j=1

b̂k,jφj = αkφk. This establishes that
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φk is an orthonormal basis of eigenvectors for B, and the existence of such a basis is a characterization of a
normal compact operator.

It remains only to show that ΓSV (B) = σ(B) implies that B has a singular value decomposition of the

form
∑N

j=1
σj < · , eiθjφj > φj . We show this by induction on M0, where M0 is the maximal geometric

dimension of the non-zero singular values of B. It is easy to see that if M0 = 1, then every singular value
decomposition of B has the desired form. Now assume that B has a decomposition of this form, whenever
M0 = M − 1. Without loss of generality, let B =

∑l
j=1

σj

∑M
k=1

< · , ψj
k > φj

k where l ≤ N ≤ ∞ and
σ1 > σ2 > · · · > σl > 0 are the non-zero eigenvalues of |B|, in strictly decreasing order and each of geometric
multiplicity M .

Let A be an indexing set for B, the collection of all singular value decompositions of B. Fix m ∈ N

sufficiently large so that the closed disks ∆(σj ,
3

m ) := {z ∈ C : |z − σj | ≤ 3

m}, j = 1, · · · l, are disjoint. Let

Kα := ΓSV (Bα)\(∪l
j=1

∆(σj ,
1

m
)) (α ∈ A).

Then, each Kα is compact and

∩α∈AKα =∩α∈A

(

ΓSV (Bα)∩
[

∪l
j=1

∆(σj ,
1

m )
]c)

=ΓSV (B) ∩
[

(∪l
j=1

∆(σj ,
1

m ))
]c

=σ(B) ∩
[

∪l
j=1

∆(σj ,
1

m )
]c

=∅.

The finite intersection property implies that there exists a finite collection, Bα1
, · · · , BαL

, such that

∩L
s=1

ΓSV (Bαs
) ⊆ ∪l

j=1
∆(σj ,

1

m
).

Fix σ ∈ {σ1, · · · , σl} and, for each s = 1, · · · , L, let Bs = Bσ
s =

∑M
j=1

σ < · , ψs
j > φs

j be the restriction
of Bαs

to the σ eigenspace of |B|. For each s = 1, · · · , L, fix a singular value decomposition Geršgorin disk
∆(cs, ρs) of Bs such that |cs| is maximal, subject to the constraint σ ∈ ∆(cs, ρs). If |cs| < σ − 3

m for each

s = 1, · · · , L, then each of the disks ∆(cs, ρs) contains the number σ− 2

m , since σ− 2

m is necessarily closer to
cs than σ is. But this implies that σ− 2

m lies in ΓSV (Bσ
s ) for each s = 1, · · · , L. This contradiction establishes

the existence of a SVD Geršgorin disk, inside one of the SVD Geršgorin sets ΓSV (Bσ
s ), whose center has

modulus at least σ − 3

m . Without loss of generality, assume the center for the first SVD Geršgorin disk of
Bσ

1
has modulus greater than or equal to σ − 3

m . This exactly says that σ| < φ1

1
, ψ1

1
> | ≥ σ − 3

m . Thus, we
have shown that, for every σ ∈ {σ1, · · · , σl}, there exist unit vectors ψσ

m and φσ
m in the σ eigenspaces of |B|

and |B∗|, respectively, such that | < φσ
m, ψ

σ
m > | ≥ 1 − 3

mσ .
The above argument holds for every natural number greater than m, and taking the limit as m → ∞,

establishes the existence of collections {φσj}l
j=1

and {ψσj}l
j=1

of common unit eigenvector of |B| and |B∗| for

the eigenvalue σj . Hence, for each j = 1, · · · , l, there exists a θj ∈ [0, 2π) such that φσj := Bψσj = e−iθjψσj .
Now, the operator,

B0 = B −
l

∑

j=1

σj < · , eiθjφσj > φσj

satisfies the induction hypothesis. To see this, note that for each m and s in the above argument, the rank
one reduction of Bσ

s =
∑M

j=1
σ < · , ψs

j > φs
j to

∑M
j=2

σ < · , ψs
j > φs

j has a SVD Geršgorin set which is

smaller than ΓSV (Bσ
s ). Hence, ΓSV (B0) ⊆ ΓSV (B) = σ(B) = σ(B0). �

Recall that the singular value decomposition Geršgorin set is defined to be the entire complex plane for
non-compact operators, but ΓSV (B) can also be unbounded for a compact operator B. Of course, if B is
a finite rank operator, then ΓSV (B) is a bounded subset of C. Hence, in the finite dimensional case, the
SVD Geršgorin set is always a bounded subset of C. When B is not of finite rank, the set ΓSV (B) can be
unbounded but only if it is the entire complex plane. We show this now.

Theorem 2.4. Let N = ∞ and let B ∈ Com(H). Then, for each singular value decomposition V ∗ΣW of
B, the set ΓSV (V ∗ΣW ) is unbounded if and only if ΓSV (V ∗ΣW ) = C. Moreover, this happens if and only if
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the sequence of SVD column sums, {Ck(V ∗ΣW )}∞k=1
, is not bounded. Hence, ΓSV (B) is unbounded if and

only if it is the entire complex plane.

Proof. Let B = V ∗ΣW =

N
∑

l=1

σl < · , ψl > φl be a fixed singular value decomposition of B. Recall, from

(2.1), that b̂j,k =< Bφj , φk >, Ck(B) =
∑N

j 6=k |b̂j,k|, ΓSV
k (V ∗ΣW ) = {z ∈ C : |z − b̂k,k| ≤ Ck(B)} and

ΓSV (V ∗ΣW ) = ∪N
k=1

ΓSV
k (V ∗ΣW ). If the sequence Ck(B) is unbounded, by passing to a subsequence, we

can assume without loss of generality that Ck(B) > ||B|| for each k, and that Ck(B) → ∞ as k → ∞. Now,

|b̂k,k| = | < Bφk, φk > | ≤ ||B||, and so, for each k, Rk := Ck(B) − |b̂k,k| is positive. Moreover, the disk

∆(0, Rk), centered at the origin of radius Rk, is contained in ΓSV
k (V ∗ΣW ). Indeed, if |z| ≤ Ck(B) − |b̂k,k|,

then |z − b̂k,k| ≤ |z| + |b̂k,k| ≤ Ck(B). Hence, ΓSV (V ∗ΣW ) = C when the SVD column sums are not
bounded. On the other hand, if the SVD column sums are bounded by some L, then ΓSV (V ∗ΣW ) is
contained in the disk centered at the origin of radius M = L + ||B||, since z ∈ ΓSV

k (V ∗ΣW ) implies that

|z| ≤ Ck(B) + |b̂k,k| ≤ L+ ‖B‖.
Finally, since the above argument holds for every singular value decomposition of B, the set ΓSV (B) is

unbounded if and only if ΓSV (B) = C. �

The proof of the previous theorem also establishes the analogous result for the standard Geršgorin set.
Specifically, an operator B ∈ L(H) has a Geršgorin set Γ(B) which is a proper subset of the complex plane
if and only if the sequence {Rk(B)}N

k=1
of row sums of B is bounded. With this in mind, we define the

following two collections of operators in L(H). Let

G := {B ∈ L(H) : Γ(B) 6= C} and S := {B ∈ L(H) : ΓSV (B) 6= C}.
By construction, S is a subset of Com(H). Notice that G contains the identity operator on H, which is not
compact if N is infinite. Thus, G and S are distinct subsets of L(H) when N is infinite. If N is finite, then
S = G = C

N×N .
We define the equivalence relation ∼ on S by A ∼ B if and only if there exists a partial isometry U : H → H

such that U∗U is the projection of H onto Ran(A), that UU ∗ is the projection of H onto Ran(B), and that
B = UAU∗. It is important to note that if A ∼ B, then ΓSV (A) = ΓSV (B). Indeed, if B = UAU∗ and

A =
∑N

j=1
σj < ·, ψj > φj , then B =

∑N
j=1

σj < ·, Uψj > Uφj and

b̂j,k =< BUφj , Uφk >=< Aφj , φk >= âj,k,

for all j, k = 1, 2, · · · , N . Thus, the singular value decomposition Geršgorin set is independent of the
equivalence class representative in S0 = S/ ∼, where S/ ∼ denotes S modulo the given equivalence relation.
We will denote the singular value decomposition Geršgorin set of an element [A] of S0 by ΓSV ([A]).

Notice that if A = V ∗ΣW , then A ∼ ΣWV ∗. Hence, each equivalence class in S0 has a representative of
the form ΣU where Σ is a positive diagonal operator and U is a partial isometry. Moreover, each equivalence
class has a unique representative of this form since, if Σ1U1 = Σ2U2, then Σ−1

2
Σ1 = U2U

∗
1

is unitary and a
positive diagonal operator. Hence, it must be the identity operator on Ran(U1) = Ran(U2) and so Σ1 = Σ2

and U1 = U2. This observation shows that there is a well-defined map Ψ from S0 to L(H), given by
Ψ([V ∗ΣW ]) = ΣWV ∗.

Theorem 2.5. There is a natural bijection

Ψ : S0 → G0

between S0 = S/ ∼, equipped with the singular value decomposition Geršgorin method, and, G0 a subset of
G ∩ Com(H), equipped with the standard Geršgorin method.

Proof. We have shown that Ψ([V ∗ΣW ]) = ΣWV ∗ is a well-defined function on S0. Moreover, Ψ takes
values in G. To see this, let [A] denote an equivalence class in S0 and let A = V ∗ΣW be a singular value
decomposition of A with ΓSV (V ∗ΣW ) 6= C. Then A ∼ V AV ∗. Since the leading factor of B = V AV ∗ is the
identity operator on the closure of the range of B, the singular value decomposition matrix coefficients of B
are

b̂j,k =< Bej , ek >= bk,j . (2.3)
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It follows easily that ΓSV (V ∗ΣW ) = ΓSV (ΣWV ∗) = Γ(ΣWV ∗) 6= C.
An argument similar to the well-definedness calculation for Ψ, establishes that Ψ is one-to-one on S0.

Let G0 = Ψ(S0). Then, Ψ is a bijection from S0 to G0. We have shown that Ψ maps into G and, since the
compact operators are an ideal in L(H), the image of S0 under Ψ lies in Com(H). �

Even when N is finite, G0 is a proper subset of G ∩ Com(H), since each element of the range of Ψ has a
factorization of the form ΣU where Σ is a positive, diagonal operator and U is a partial isometry. In fact,
B ∈ G0 if and only if B is a compact operator, with a bounded Geršgorin set and B has factorization of the
form ΣU . However, the bijection Ψ : S0 → G0 gives the relationship between the SVD Geršgorin set and the
standard Geršgorin set for operators in G0.

Theorem 2.6. For each B ∈ G0, the singular value decomposition Geršgorin set of B, ΓSV (B), is
contained in the Geršgorin set of B, Γ(B). That is,

∀B ∈ G0, ΓSV (B) ⊆ Γ(B).

Proof. Let B ∈ G0 = Ψ(S0), with B = ΣU . Then,

ΓSV (B) ⊆ ΓSV (ΣU) = Γ(ΣU) = Γ(B). � (2.4)

3. Examples and Applications. Example 1. Let H = `2 be the sequence space of absolutely square
summable complex sequences. Let aj be a sequence of real numbers with

∑∞
j=1

|aj | < ∞, and define the
operator A : H → H by the infinite matrix

A =











a1 a2 a3 · · ·
a2 a3 a4 · · ·
a3 a4 a5 · · ·
...

...
...

. . .











. (3.1)

It is known that A is a compact self-adjoint operator (see [3], page 101), whose singular value decomposition
Geršgorin set exactly equals the spectrum of A. The standard Geršgorin set of A is bounded but does not
generally equal the spectrum of A. Specifically,

ΓSV (A) = σ(A) ⊆ Γ(A) = ∪∞
k=1

{z ∈ C : |z − a2k−1| ≤
∑

j≥k,j 6=2k−1

|aj |}. (3.2)

As a specific example of the above, let the matrix A of (3.1), be defined by

aj =
1

2j
(j = 1, 2, · · · ). (3.3)

In this case, it can be verified that if An is the n× n leading principal submatrix of A, then the spectra of
these principal submatrices are given by

σ(A1) = {0.5}
σ(A2) = {0.625; 0}
σ(A3) = {0.65625; 0, 0}
σ(A4) = {0.6640625; 0, 0, 0}
σ(A5) = {0.666015625; 0, 0, 0, 0}
σ(A6) = {0.66650390625; 0, 0, 0, 0, 0}, and finally
σ(A∞) = { 2

3
; 0, 0, 0, · · · }

For the choice of (3.3) for the matrix of (3.1) its associated sets σ(A) = ΓSV (A) and Γ(A), are shown in
Figure 3.1. (We note that Γ(A), the union of an infinite number of closed disks, reduces to the union of first
two closed disks.)
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Fig. 3.1. Γ(A) (shaded region), ΓSV (A) = σ(A) (“x’s”)

Example 2. Consider the normal matrix

B =

[

1 0
0 −1

]

. (3.4)

Clearly, σ(B) = {−1, 1} and |B| :=
√
B∗B =

[

1 0
0 1

]

. Consider the following two singular value decom-

positions of B:

B = V ∗
1

Σ1W1 =

[

1 0
0 −1

] [

1 0
0 1

] [

1 0
0 1

]

, (3.5)

and

B = V ∗
2

Σ2W2 =
1√
2

[

1 1
−1 1

] [

1 0
0 1

]

1√
2

[

1 1
1 −1

]

, (3.6)

A routine calculation shows that

ΓSV (V ∗
1

Σ1W1) = Γ(Σ1W1V
∗
1

) = Γ(

[

1 0
0 −1

]

) = {−1} ∪ {1},

whereas,

ΓSV (V ∗
2

Σ2W2) = Γ(Σ2W2V
∗
2

) = Γ(

[

0 1
1 0

]

) = {z ∈ C : |z| ≤ 1}.
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This illustrates that even for a normal operator B, the SVD Geršgorin set ΓSV (V ∗ΣW ), of some fixed SVD
of B, can fail to give exactly the eigenvalues of this operator B, while both singular value decompositions of
B above give necessarily the same singular values for B. (Curiously, it does not seem possible for MATLAB
users to ask if there are other singular value decompositions for their given matrix, as one gives the matrix
to MATLAB, and a singular value decomposition is delivered!)

In general, we have shown here that one can attain singular value decomposition Geršgorin sets for any
operator B ∈ Com(H), which gives added information about the spectra of such operators. This can easily
be extended to Brauer ovals of Cassini as well, but this is left for a future work.

We finally wish to mention that, once having calculated the Singular Value Decomposition of an operator,
getting eigenvalue estimates of this operator is computationally easy, using our SVD Geršgorin method.
More precisely, our method allows one to use a given Singular Value Decomposition of an operator to
cheaply obtain eigenvalue estimates, which are generally different from the standard Geršgorin estimates.
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