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THE DYNAMICAL MOTION OF THE ZEROS OF THE PARTIAL SUMS OF e*,
AND ITS RELATIONSHIP TO DISCREPANCY THEQRY”

RICHARD §. VARGAT, AMOS 1. CARPENTER?, AND BRYAN W. LEWISH

Dedicated to Edward B, Saff on his 64th birthday, January 2, 2008,

Abstract. With sn{2) 1= 3°F_, 2% /k! denoting the n-th partial sum of g%, lel its zeros be denoted by
{zk,n }:ml for any positive integer 1. If #1 and 6 are any angles with 0 < 01 < 62 < 27, let g, 8, be the
assaciated sector, in the z-plane, defined by

291,92 1= {ZEC:SI Sal‘ngﬁg}.

If ({Zk,n}:ﬂ ("} Zs, .9, ) Tepresents the number of zeros of 8,{) in the seclor Zg, 8. then Szegd showed in
1624 that

lim # ({zk.n}}::] 028;,69_) -~ 2 - oy ’

b 7 2

where $1 and ¢ are defined in the text, The associated discrepancy function is defined by

. B2 — o1
discn(f1,62) = # ({zk,n}’ﬁ:; mzﬁl,eg) - (“‘2—7;“* .
One of our new results shows, for any 8; with 0 < 81 < =, that
discn (03,27 — ) ~ Klogn, as n — oo,

where K is a positive constant, depending only on 61, Also new in this paper is a study of the cyelical nasure of
discn(f1, 82}, as a function of n, when 0 < §; < 7 and 6g = %7 — #1. An upper bound for the approximate cycle
tength, in this case, is determined in terms of by . All this can be viewed in our freractive Supplemens, which shows
the dynamical motion of the {normalized) zeros of the partia) sums of e* and their associated discrepancies,

Key words. partial sums of e®, Szegd curve, discrepancy {unetion
AMS subject clagsifications. 30C[3, 30E15
1. Introduetion, Let 5,(z) 1= 5}, #"/k! denote the n-th partial sum of e* for each

positive integer n, and denote the zeros of sn{z) by {2, }0_,. Let Zy, 8, be the sector in
the complex plane C, defined by

(1.n Zoy o, ={2€C:0; <argz <6},

for angles 6 and 9, such that § < 8y < 8 < 2o, Let # ({20 )% [} Bo, 4,) represent the
number of zeros of §,(z) that lie in the sector Zy, 4,. A beautiful result of Szegé [7} states
that

(1.2 g Flzn)iei N Z60) _ b=

n—oo n .

where if D is the closed curve (called the Szegf curve) in the unit disk which is given by
(1.3 Do :={z€C:lze'* = Lior |z} <1},
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then there are unique positive values e, (81 ) and 75 (83 ), in {0, 13, such that ro, (6; )¢ and
Tootf2)€™® are points of Do of (1.3). The angles ¢, in (1.2) are then defined by

(1.4) @y =05 — roo(f5) sin 8y, i=1,2,

The discrepancy function discy, (81, 82), for the zeros in Zy, 4, , is defined as

, o — &y
{1.5) disc, {61, 82) := # ({zk,n}L’:l ﬂZg“gQ) -7 (MW .
It follows from {1.2) that the function disc,(f;,0;) would behave, at worst, like o(n), as
n -~ oo, Qur first aim in this paper is to show in Theorem 2.5 the sharper resuit that

(1.6) disc, (01,62} ~ Klogn, for all nsufficiently large,

where K is a positive constant depending on #; and ;. It is of interest to noie that Szegd 7]
showed that the associated discrepancy function, but now in the w-plane under the mapping

is bounded as a function of n.

Our second aim is to closely study the cyclical nature of the sequence {discn(8y,8) )5,
Specifically, for 0 < #; < w and fy = 27 — 61, the approximate cyclic length, of what we
call the shori-term pattern, is determined as a function of ¢. (Long-term patterns are also
described in Section 3.}

Cur third aim in this paper is to illustrate the dynamical motion of the zeros of s,,{nz), as
n varies, with our fnteractive Supplement accompanying this paper, This allows the reader to
input By, in the range 7/4 < 8; < 3m/4, where 83 = 27 — 6, and to inpur n, the degree of
sn{nz), in the range 1 < n < 200. The reader’s computer then graphs the n zeros of s, (nz)
in the z-plane. On increasing n, one sees the actsal “fanning out™ of the zeros of s, {nz),
into the upper and lower haif-planes of the z-plane. In addition, the discrepancy function,
discy,{f, 03}, is then displayed to four decimal digits, at each ni-th step. This calculation is
based on the stored zeros of all polynomials {sn(nz)}itfl. whose zeros were all determined
to 200 decimal digits.

2. Background and statement of results. To study the behavior of the zeros of the par-
tial sums s, {2} of €7, it is convenient 10 study instead the normalized partial sums s, (nz) =
Y e (nz)¥ [kl whose zeros, henceforth denoted by {zgn )T, have the same arguments
as the zeros of sp{z}. This leaves disc,{f;,02) in {1.5) unchanged. An application of the
Enestrém-Kakeya Theorem {see [4, p. 137, BExercise 2], or |6, p.88, Problem 22]) shows
that all zeros {zg » oy Of 5.(nz) lie in the unit disk A == {z € C: |z] < 1} for any
n > 1. From compacingss considerations, there are necessarily accumulation points in 4 for
VS {2kn Yoo, and Szegl [7] established that each such accumulation point must lie on the
curve D, of (1.3), and, conversely, that each point of I, 1s an accumulation point of these
zeros of 8n{nz). Buckholtz [1] later proved that all zeros of all s,{nz) lie outside of Dy, for
any 7 2> 1, and that

2e

(2.1 dist[{zg,n  Fa1; Deo) < NG&

foranyn > 1,

where

dist{{zg,5 } 1 ; Doal 5= }_?fgn(dist[zk,m Dol
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and where dist{zy n; Doo] 5= minsen, [2pn — 2). It was shown in [2] that the exponent of
1/2 for n in (2.1) is the best possible, and that the constant 2e can be reduced in (2.1) to
0.636 657"

i {2}, the following curve was defined for each positive integer n:

4" = /T 122,
(2.2} Dop=d zeC: |2l<1, and

asg el 2 cos” ! (72)

where 7, defined by

n!
™= nre ™/ 2rn’
is the exact error in Stirling’s formula. For calculations of 7, when n is very large, the
following asymptotic series (cf, Henrici [31} for 7, can be ugeful;
n~l n7? 1399

T LA R LA o LT
T TS T g T Hmap T M0 oo,

and

R S R S St A
log T, =

12 T 360 T 1960 1630 T Ties

For any fixed § with 0 < § < 1, each D, curve gives a much better approximation to
where the zeros of 5, (nz) lie, in that from [2, Theorem 41,

(2.3) dist[{zpn e \Co; Dn] = O (-515) , asn — 0o,

5§

a3 n — oo.

where Cg 1= {z € C: |z — 1| < §}. The exponent of 2 for n in (2.3) was shown in (21 to be
best possible.

As defined in (2.2), the curve D, is not a closed curve, so we make the following mod-
ifications of (2.2). First, as will be explained in the proof of Proposition 2.1 in Section 5,
the curve Dy, of {2.2) can be extended, for each n > 1, to the boundary of A in two
unigue points, e and e~ where 0 < A, < 7 for each n > 1. Then, the circular
arc {e 1 —X, <o < +A,} is annexed to the extended D, curve, thereby producing the
following closed curve D, in A:

z € C:jze' " = 1 /2w 122

z

2 ’ ta
. ] fe < .
@4 Dn { 2] <1, and A, <argz < 27 — Ay }U{e A S0 < )
The curves Dy, forn = 1,5, and oo, are given below in Figure 2.1,
We remark that it can be shown that A, can be expressed as the convergent series

1.704 097  0.280 778 1
(2.5) Ay = 7z nEYZ O (m} , A8 7~ 00,

With the above definitions, we state the foliowing proposition, whose proof 15 sketched
in Section 5.
PROPOSITICN 2.1. For each positive integer n, the following are valid:

YExcept for discrepancy numbers discy, {81, 82}, whick are given to four decimal digits in the Interactive Sup-
plement, we trancate, in (be text, the displayed fractional part of neninteger numbers Lo six decimal digits.
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0.5

F1G. 2.1. The curve f)n,farn = 1,5 and oo,

1) The curve ]jn is a simple closed curve in LA which is star-shaped with respect io z = (;
i) Foreach§ with Ap, <0 < 21 ~ Ay, there is @ unigue number vy, (8), with 0 < rp(f) < 1,
such that z = v, (0)e% is a point of Dy, and satisfies

2.6) #(ze! )" W, {6}

=e
TV 2rn{l — z)

where W, (0} is defined, on the interval Ay, 2% — M.}, by

___ s i L Tr{f) sin f .
(27 ¥u(f) =nf - rp(f)sinf] + 6 + tan (m———-———1 —o cosﬁ) :

i) 0 < $,(A.) < 2w foreachn > i;

v} For ecach fixed n 2 1, W {0) is a strictly increasing function of 0 on [An, 21 ~ A, and
for each integer k with 1 < k <, there is a unigue point 24, = r"k,neié‘“-'* an the
curve Dy, with My < ék,n < 21 — Ay, such that

(2.8) T (fr,p) = 2mk;

v} If {zpn) i, denotes the (exact) zeros of sp(nz), then, forany zz » notin Cs .= {z € C+
{2 — 1} < 8}, where 6 is fixed with O < § < 1,

. 1
2.9 |Zk0 — Zion) = O (—2> , QS T} 0o,
Tt

where the constant, implicit in O(#), depends only on §,
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Next, it would appear that to precisely determine # ({Zk.n}2=1 N Zs, 8, ), one would
need to know many very precise ze10s {zin .., of sn(ne). This, for n large, wouid be a
daunting task! However, we give & very accurate estimate of # ({zk,ﬂ}Ll N Zs,.6. ) which
avoids finding any zeros of s,{nz}. This estimate is stated below in Proposition 2.2, after
some preliminary definitions are introduced.

Fixing any 6, with 0 < #, < =, consider any positive integer 7 such that A, < #,
where we see from (2.5) that this inequality holds for all n sufficiently large. Then, from
part i) of Proposition 2.1, there is a unigue number ro, {81), with 0 < 7, (1) < 1, such that
z := 7y (6)) & is a point of D,, which satisfies (2.6). With ©,{8,) defined in (2.7), and,

with the following notation®:

{{x)} = greatest integer < z, for any real z,
it follows, from the strictly increasing nature of W, from part iv) of Proposition 2.1, that
(2.10) {({@y, (61) /2m)) = 0.

This brings s to the statement of
PROPOSITION 2.2, Given any 8, with G < §) < w, the number of zeros of sp{nz) in the
sector —, < argz < +8y is approximately

(211 2{W, {61) /27}),

so that, by symmetry,

(2.12) # ({zk,n}};‘mTi N Ze;,zﬂwal) =n—2((¥n (6:) /27)).

The proof of Proposition 2.2 is given in Section 5.

To illustrate now the result of (2.12) of Propesition 2.2, suppose that 61 = 7/2, and we
choose n == 98, and r» = 89. Then, from part if) of Proposition 2.1, ry, (7/2) and T, (7/2)
are nunerically determined to be

rog{m/2) = 0.384 136, and W¥ge{r/2)/2n = 18.816 919, and

{2.13) { reg(7m/2} = 0.383 989, and Uge(m/2) /27 = 16.008 (74,

From (2.12}, this gives

#({Zk,gs}iii N Zn j2,3m2)

#{{Zk,sg}iil N Zn,’z,aw/z)
(2.14)
Because we have sl the zeros of {sn(nz)}ifl io an accuracy of 200 decimal digits, it turns
out that the final numbers of (2.14), i.e., 62 and 61, are exacrly the number of the zeros of
598{98z}) and s00(989z), respectively, in the sector 7/2 < 6y < 3w /2, without having directly

08 — 2({Tga(mr/2)/27)) = 98 — 2(18) = 62, and

99 — 2{(Tgg(m/2)/2r)) = 99 — 2(19) = 61.

. e . T
determined any zeros of s,(nz). In addition, in the symmetric sector case of §;, = — and

i
b = 2T it follows from (1.4) that g1 = ©- — = und ¢y = L o that
2 2 e 2 €

$2m¢t L1 617000
P 2 ew

*Note that this is not the floor function |}, which is defined as the greatest integer < .
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which gives us from (1.3} and (2.14) that

(2.15)  discos <325 £l

. ) = +1.524 233, and discgs (3 %ﬁ) = —0.092 866.

2 1
The two numerical discrepancies of (2.15) agree with the rounded numbers, in these cases,
of the Inzeractive Supplement of this paper.

We remark that using the expression in (2.11) to estimate the number of zeros of s, {nz},
n the sector —@; < argz < -6y, 1s generally very accurate, but it is evident that this estimate
can be faulty when U,(6)) /27 is exceedingly close to an integer, and this can change the
estimate in (2.12) by 2. This will be considered in more detail in Section 5.

Our next result gives an equivalent representation for dise, (61, 27 — 8;), where it proof
18 given in Section 5.

PROPOSITION 2.3. Given any 6 with 0 < &y < 7, assume that 0y = 27 — 8, the
symumetric case. Then, for any positive integer n,

T,.{6 U, (8
disc,, (81, 6:) = { 7(r 1) - 2 ’2(7T1))>
B}_ . 1 = Tn (’91) sin 91
2.16) — gty (WN

+ [rn(81) =~ roo(81)]

We remark that each of the three quantities in braces, in {2.16), can be seen to be positive,
For example, the first term in braces in (2.16) can be seen, using (2.10), to satisfy

217 0< {anl) - 2((@’;(151)))} <2, any b with0 < ) <m, anyn> 1.

Next, we have the result of Proposition 2.4, whose proof is again given in Section 3.
PROPOSITION 2.4, Given any fixed 6, with{ < 0 < =,

log(27n) Too (1) 8in 04
21 1~ roofly)cosfy

(2.18) nsinfy

[rnlf1) = 7o0 (81)] ~

),asn—}oo.

Then, because of the properties of the terms in braces in (2.16), we have
THEOREM 2.5. Given any 8y with{ < 81 < =, assume 82 = 27 ~ 0. Then,

{2.19) disc,(6y,82) ~ Klogn, as n - oo,

where K > U is dependent only on 8;.

To numerically illustrate here the result of (2.19) we have, in the case §; = =, that, as

|3

shown in Section 3,

om0 () e (] -2 () -]

as 1 — oo. This means that the last term: in braces in (2.16) tends slowly to 00 a8 11— 00,
while the other two terms in braces in (2.16) can be seen to be bounded. More concretely, we

T
have that for §y = 5

7 bis i _ N E an00
(221 - {rn(z) e} = 12.356 575, for n = 10°°.
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3. The interesting oscillations of disc,,(8;,6,) in the symmetric case. One of the
most intriging resuits, from this research, is that actual calculations of {dise,, (01,62) o .
in the symmetric case, produce patierns of two distingt types, which likely couid not have
been conjectured purely from theoretical results. For the symmetric case, these patterns can

be classified as

a1 short-term patterns of increases of the disc,(6;,62), and
) long-term patterns of increases or decreases of the disc, {0y, f2).

Both of these patterns cun be immediately seen from our fnleractive Supplement, which was
written in Java by our third author. On setting f; = 7 /2, one sees, at the bottom of the screen,
a short-ferm pattern of a sequence of four or five successive increasas in disc, (n/2, 37/2),
where the increases at each step are approximately (.3829, followed by a long-term patiern,
in which the shorf-term patterns are successively stightly increasing or slightly decreasing
from step to step. This can also be seen to be the case in other choices of 8y, as well. We
remark that these short-term and long-term patterns are valid only for symmetric sectors,

Our next theoretical result here has to do with the short-term: patierns.

THEOREM 3.1. Givenany f; with 0 < 8y < , assume that 63 = 27— 6, the symmetric
secior case, and let ¢y be determined from (1.4). Then, the length i af each shari-term patiern
15 at mosi

o 2
(3.2) f:=1+ [—“J ,
&
Jor all n sufficientty large, where the floor function {2} is defined as the greatest integer < .
As an example of the result of (3.2), consider the case of §, = T and @y = -7{—’ It follows
from (1.4) that 7o, (7 /4) = 0.538 278, and ¢y = 0.404 778. In this case, %1:" = 15.522 b44,
5o that from (3.2),

P

In this case, the short term pattern consists of at most 16 steps. This can be seen, from our
Interactive Supplement, with 6; = I, to be correct. Similarly, for §; = Land By = %ﬁ,
Too{T/2) = L = 0.367 879, and ¢; = 1.202 916, so that ﬁff = 5.223 291, s0 that

EIH-F?IJ:S'

émHP’iJ:zs.

1

In this case, the short term pattern consists of at most 6 steps. Again, this can be verified from
our Interactive Supplement.

4. Extensions. With 6, satisfying 0 < #; < =, and with 8, = 27 — #;, we have
considered only symmelric sectors in the previous sections, and we now extend these results
to general sectors Zg, g,, of (1.1), where § < f; < 65 < 27. Note however that since the
zeros, of (he real polynomial sa(n2), occur in conjugate complex pairs, we may assume,
without loss of generality, that 0 < 8y < 7. Then; @, either satisfies 7 < By < 27, or
0«8, <fy <.

With 5; 1= 9 — B and By ;= 9% — Bz, we consider the following three cases.

Case . 0 < 0y < 7.7 <82 < 2m and O < 8; < f, <, which is shown in Figure 4.1.
It is then geometrically evident, from Figure 4.1, that

4 ({zk.n}’,;i N ZQ“BJ _ # ({zk,n};:ml N Zghgj) ;# ({zk:ﬂ}}::; 0 252962) |
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T T T f
1 - -
)
é.
2\/\ /,
4.5 = 7 ]
/
/
7
I{ = \\//
- 0 -
iR B
AN
AN
i\
0.5 |- / -
[ 8
6,
-1 -
! ! | | f
-1 3.5 0 0.5 1

F1G, 4.1 Case I: 0 < 0y <o, < B < 2, and § < 0y < Gy < .

and, on using the definition of (1.5), it can be verified that
4.1 discn (61, 82) = {discﬂ(el J01) -+ discﬂ(éz,ez)} /2.

Case2. 0 < 6y <7, 7 < Py < 2m,and 0 < 05 < §; < 7, which is shows in Figure 4.2,
Similarly, we obtain

(4.2} diSCn(gl,gz) = [diSCn(§2,82> -+ diSCn(Ql, él )] /2,

The final case to be considered is
Case 3. G < 81 < 8, < =, which is shown in Figure 4.3, and it similarly follows that

43) discn (01,02} = [discn(6:,01) = discn(62,2)] /2,

"Thus, we have shown how the general function disc,, {f, 04 ) can be expressed in terms of
symmetric sectors. This will be used below to extend the result of Theorem 2.5, on symmetric
sectors, to general sectors, Its proof is given in Section 3,

THEOREM 4.1. Given any angles 0y and 8y with O < §, < 6y < 27, then,

{4.4) dise,{6;,6:) ~ Klogn, as n— oo,

where K > 0 is dependent only on 81 and 5.
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f T I
1~ ; .
)
91\ ~
0.5 7 -
L
/
:’ RN
OF | Praly -
|
\
\
0.5 - /\/ AN -
. \
6, hY
fa
1+ o
| £ f | ;
-1 -0.5 0 0.5 1

FIG. 4.2 Case 2: 0 < 6 <y < o < 2m, and 0 < fs < Gy < 7.

! ; I
I - o
1
32\ 7
0.5 - / —
/
/
S
\\./
0 - )/.\0 _
L~
\ N
\
0.5 - / .
8
6y
.1 .
! ! | i 1
-1 -0.5 G 0.5 1

FiG. 4.3. Case 3: 0 <8 < 63 < m.
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3. Proofs. Proof of Preposition 2.1, For each positive integer i, let A, be the largest
positive number such that e~ is 4 point of Dn, 1.8, from (2.4),

(5.1) erHii—eosin) o TV 271{2 — 2 cos )\n)l/z = dr/mr(l — cos )\n)l/z.
With vy, = 2n{1 — cos A, ), the squaring of the expression in {5.1) gives
(5.2) e = 2rTiu,.

Then, the largest of the two positive solutions of (5.2), called v, can be expressed as the
COnVergent expression

0.254 204  0.005 843 1
(53) v = 20080484 ———— - ——" 1.0 (

- |, asn -+ 0.
n? 1;3)’

From (5.2) and v, = 2n{1 — cos A,), it can then be verified that

=1 [y ¥n ) _ 1.704 097 0.280 778 1
(54) A, =cos {1 } = NG + 7 7

n

which was stated in (2.5), Then, improving slightly on the discussion in {2, Section 3], i
foliows that, for any & with A, < 8 < 27 — A,, there is & unique positive r,(#) < 1 .mch
that 7, (@)% is a point on D,,. Thus, having annexed the circular arc {zmet? ), <<
+Az} to form the carve D, then Dy, is a simple closed curve in A which is star- -shaped with
respect to z = 0, giving part i) of Proposition 2.1. Part i) of Proposition 2.1 then follows
from equations (3.12) and (3.13) of {2}

It can be verified from (5.4) and (2.7) that ¥y (A;) = 4.022 922 radians, and that ¥,,(\,,)
is strictly decreasing inn to /2 = 1.570 796, as n — oc. Thus,

),asn%oo,

{5.5) T.(An) < 27 = 6.283 185, foreachn > 1,

from which part iii) of Proposition 2.1 foliows.

Next, for any fixed n > 1, it was stated in [2, p. 118] that ¥ ,(8) is a strictly increasing
function of # on the interval [cos™ (2=2) , 27 — cos™! (222)], where the end-points of this
interval come from the definition of the curve I, in (2.2). Recalling that the curve D,, of (2.4)
is just an extension of the curve Dy, to the boundary of A, the proof from [2] similarly shows

that U, {#) is a strictly increasing functmn of & on the longer interval [An, 27 — 2], where
An 18 the largest number such that e is a point of D,,, and this gives iv) of Proposition 2.1,

Finally, the proof of v) of Proposition 2.1 again comes directty from [2, p. 118}, com-
pleting the proof. O

Proof of Proposition 2.2, With Proposition 2.1, assume that A, < 6 < 7, and let
2z = v, (61)e¥ be the associated unique peint of Dy, Le.,

z (zel—z)n —1

TV 2an{l — z) | '

which means solving the following equation for 7, (8 )

(5.6) rally) fralel T en ]t
- ran/ B {1 = Dra(1) c086r 4 12(6)]

Then from (2.7}, compute ©,,(f1), as well as ((¥,{#1)/27)). This latter number then esti-
mates the number of zeres of 5,(nz) in the sector 0 < 6 < #y1, and, as s,,(nz), with positive
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coefficients, has no zeros on the positive real axis, the even number 2{{Wp(0:)/2m)) esti-
mates the total number of zeros of s,(nz) i the symmetric sector —f; < § < #,. Thus,
n — 2{(¥n{0;)/27)} estimates the total number of zeros of s,(nz) in the complementary
symmetric sector [fy, 27 — 6], which is stated In (2.12). O

This leads vs to the

Froof of Proposition 2.3. From (2.12) and (1.5), we have that

(5.7) discy, (01,27 — 6:) = n — 2({ @"2{7?1) P n(d)gr;r@i )

Since 0 = 27 4y, it follows from (1.3) and {1.4) that ro, (f3) = Poo (61} and g = 2o — gy,

Thus, 228 1 = 9 gbstuuting tis in (5.7) sives
2 w
H L) \I’n 81
(5.8) disen (81,27 - 6,) = %mg« z(ﬂ )yy.

Next, we can rewrite (2.7} as

Tn{el) sin 91

. B . i f_ralfr)sing
Tp{lh) =06 — roo{0) sin 0;]4+6, +tan (1 TR —)

)—}-nsin'ﬂ; (reo(61) — ralfy)),

which from (1.4} gives

7‘1—,,(91) sin 33_

— ‘ -"..1 I
En{l:) = nd; + 8y + tan (1 — {8 ) cosf;

) +nsiny (1o (61) — rp(61)),

or equivalently,

r(61) sin &y

—— —— —_— —_1 T N
(5.9y ngy = Cp{fh) —6; — tan (1_%(91)@91

) = 061 (0 7001,
Substiiuting the shove expression for ngy /7 in (5.8) then gives

discn (8,27 — 8;) = {‘i’nfrﬂl) B 2“‘3&3(:1) ))}

91 1 -1 'rn{f?l)sin 91
(5-10) 7 * i tan (1 —rn{f:) cosh,

m@wwam@,

7 8in Gy
.§..

which gives the desired result of (2.16) of Proposition 2.3, O

As previousty remarked, the terms in the three braces of (5.10) are all positive, Moreover,
the first term in brackets satisfies, from the definition in (2.10}, the inequalities of (2.17), for
anyn > 1.

We next turn to the

Proof of Proposition 2.4. Given any fixed §; with 0 < 6; < =, the quantity in the braces
of (2.18) satisfies

nsinfy
T

(3.11) [ralfi) — reo(01)] > 0, foranyn > 1,

since rn(61) » roo(fy) forany n > 1. Next, set

(5.12) Mo(fy) 1= 520

fra(f:) — reo(61)].
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It follows from {5.6) that

. 13’!‘n(5’;) {ra(By)er ) esil™ = o ST (1~ 9,08y cos by +2(8,) 12
o With 76o(f1)el Treelfrioonfh g

Setting

(5.14) {61} = ro0(61) + 6a(81),

so that 6,{f;) > 0 foralln > L, then the first equation of (5.13) can be expressed as

() (4 ) )

1~ % (6)) cosBy +2(8,)} 7
(5.15) TV 27 { ( })COS 1“?“7",1( 1)}
Too(gl)
On taking logarithms and dividing by n, we have
&n {0 log(2
{(5.16) log | 1 + n(01) — pffh) cosfy = m + lower corder terms in n.
7'00(91) 2

Hence, for n large, we see that §,(f ) is smal} and positive, so that

5n(91)> _ dnl(fy)
ToolB1) ) Too(Bi)

log (1 + + lower order terms,

This gives from {5.16) that

1
8,81 {;—~%—9~1—)~ - cosﬂl} = _Qg%?ﬂ + lower order termsin n,
(o]

which we can write as

(5.17) Sn{th ~

log{2mn) Teo(f1)
on 1—rea(f1)cosb J’ a8 = oo
Thus, from (5.12) and (5.14},

log{2nn) Teo (61 sin By
e 1 = roo(81) cosdh

(5.18) Mp(61) ~ ), asmn — oo,

sothat M, {8;) is unbounded as m — 00, [

We remark that for n very large, the accuracy of the appsoximation of (5.18) is also very
large. We estimate that the result of (2.21), for n. = 1020, iz accurate to over 80 decimal
digits?

Proof of Theorem 2.3, This is an easy consequence of Propositions 2.3 and 2.4. The
first term in braces of {5.10) always Hes in the interval (0, 2], from (2.17). Next, the negative
second term in (5.10), for 0 < §; < w, clearly always les in the interval {w%, 0], since 8 fx,
by hypothesis, lies in (0,1), and, because the argument of the next term in turn is always
positive, then this term can be no more than % Hence, as the third term in braces of (2.16}
tends to 400, as n —+ oo, then (2.19) of Theorem 2.5 foliows, O
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Proof of Theorem 3.1. Given any ) with 0 < 6y < =, assume that 6y = 2r — 0y,
so that the sector Zy, g, of (1.1} is symmetric about the resl axis. To estimate the number
of zeros of sp(nz} in Zs, s,, we use the fact that the numbers {2, }7_. \ Cs, are, from
(2.9, close to the actual zeros {2y 5} 5, of s,(nz). In particular, consider the unique points

-1 T ~
{20 = Fipeitnn | _, ©f D, for which (ef. (2.8)

(5.19) OBy = 2wk, forall 1<k <n,
so that, from (2.6),

ﬁk,n(ék,neiwz-k'" )n

.20 =
(5.20) TV 2rn{l — B )

Then, in place of the n points {ék,n = ?"k‘nemm } . we consider the following n uniformiy

=]

spaced {in angle) points, defined as

. , . 2%k
(5.21) Wikl = 1, with argady,, = 77{1'””1” for alt 1 < k < n.

We remark that asking if the approximate zero 2, 5, of 8, (nz) is in the sector Zy, g, is equiv-
alent to asking if Wiy, of {5.20) satisfies

@n(ei) N l’n{gl}
A s S~ — el
(5.22) . <argiby, <27 P

We further remark that, as 4y, , can be expressed as

o (k1)
)) ’

Varn(l — Zen

we directly see, on letting n -~ oo, how the Szegé curve Dy, of (1.3) plays & major role in
the result of (1.2). We also show, in Figure 5.1, the numbers {dy, 14 }iﬁzl from (5.21).

Next, we order the approximate zeros {#;,}7_; of s,(nz) by their increasing argu-
ments, i.e.,

a5 i—ig
Wh,pn = Eppe o (T
n

(5.23) O<argfip<argiyn < - <argln, < 2.

The “fanning out” of the exact zeros of s, (n#}, above and below the real axis as r increases,
as can be seen in more detail in the frueractive Supplement, implies thac, in the closed upper
haif-plane,

5 - n4 1
(5.24) aTg B > Arg Zpe, forall 1 S < =y
and that, in the open lower half-plane, we have the reverse:

N . n 41
(5.25) arg &, n < arg 2y pn41, forall < k< n.

As the nonrezl zeros of the real polynomial s,{nz) occur in conjugate complex pairs, it is
sufficient to consider the motion (with respect to n) of the zeros, only in the upper half-plane
of (5.24). Now, as the approximate zeros {Z n}%., of sy(nz), were derived (cf. (5.24))
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/A

05+ ~

F10.5.1. {ﬁ’k.lﬁ}ii1 as s and the zeros of 815(162) as »'s.

as specific points 2y = fk'ne‘ﬁhﬂ of the curve f)n, then the following analog of (5.24)
necessarily holds, Le., from (5.21),

2nk 2rk n+1
—_— = 5. foralll <k < .
A1 > n+ 2 A Wents, Toradld 5 5 5 2

(5.26) arg g, =

in addition, we see from (2.1) that

< argain, < 2l02)

(5.27) ﬁk,n S Zghgz if and only if s
noA 1

Un(6y)
n+ 1
or, equivalently from (5.21),

l:Bn(gl) < 2wk < k1’11('92)

{5.28) Eyn € Zg, 9, if and onlyif nil SETTS

We note, for r an odd positive integer, say . = 2m - 1, that from {5.2}) we have

. 2r{m+ 1)
5.29 argw - S
( ) BWm+1,2m+1 S+ 2
This means that sgpq.1 ((2m + 1)z}, which has exactly one (negative) real zere, corresponds
to the point @41 2m4.1, Which is alse real and negative, from (5.21).
Next, suppose that £, is exactly on the boundary of the symmetric sector Zg, 4, in the
upper half-plane, i.e.,

2rk WL 41

(5.30) arg by = T TR where 1 <k < —5
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If ksatisfles 1 < k < "“‘ , then

{531y argWe,n < arg Wiy n = m <,
n+1

which implies that 2, ,, 1s also in the upper half-plane of Zg, 8,. 1t is then evident, from
(5.31), that the numbers {wk+l.m}m>n are all in the upper half-plane, with strictly decreasing
arguments, as m increases, (This is the analog, in the w-plane, of the “fanning out” of the
zeros of sp{nz}, in the upper half-piane.)

Next, what we seek, from this fanning out of the numbers {'wk_,,l,m} y 18 the smallest
nonnegative integer £ so that Zet1,m Zhpl gl ) Zpg1nae ave all in the upper half-plane
of Zg, p,, while 2 Zit1 4241 18 out of this sector. This implies from (5.30) that

2k + 1) T8 27k 2wk + 1)
32 > =
:32) n+-€+1*(n+1 n+1 >n+£+2‘
so that
1
(5.33) £<”——E—<£+z

From {5.3%), we can write these inequalities as

2
5.34 F g —————— g R I
(5.34) N AT

Next, it follows from (2.7) and (1.4) that

(5.35) Y

n—oa 7 4

=01 —reo{fr) sinf; =: ¢,

where oo (1) ligs on Deo. Then, as {5,30) implies that

n+l 27

(5.36) E Ua(60)/(n+ 1)

we see, assuming that n 1s large, from (5.35) and {2.7) that

T (61)

a1 ~

Moreover, (5.36), coupled with the last inequality of (5.33), gives approximately that

(5.37) E§2i§£+1.

¢
Thus, (5.37) says that 290/ is 2 good approximation of the positive £ in (5.33), when n
is large, but, as the Interactive Supplemens shows, it can also be guite good for small n as
well. Furthermore, this implies that the maximwm nonnegative integer £ such that Eht gt €
Zg; 8, When g o = 0y, is given approximately by

(5.38) 1+ {%J
1

which is independent of n, and this is the desived result of (3.2} of Theorem 3.1, 0
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We return to the assumption that 2, 1% exactly on the boundary of Zy, 4, in the upper
Balf-plane. Suppose now that Z; , is culside the sector Zg, 5,, while Zpprn s in By, p,. This
gives the inequalities

T,(6:)

arg w o
EWht1n > 77T

> argiy,m-
Then on seeking the smallest nonnegative integer i such that Zpps nqa is in Zg, g,, while
Zpp1,n4-n1 18 not, it similarly foliows that k < £, where £ satisfies (5.33).

Proof of Theorem 4.1. The results of (4.1) - (4.3} show in these cases how disc,, (8, 02)
can be expressed in terms of discrepancies for symmetric sectors. In particular, for any 8;
with 0 < 8y < 7, with 8y := 27 — 8y, it follows from Propositions 2.3 and 2.4 that

lop(2mn) [ reof{fi)sinf,

(5.39} dlSCn{gj_,ﬁg) ~ o 1= Tw(gl) on 9; s

B8 TL -y 00

But, it can be verified that the functon

Too (0 8in 8

40 e ——
540 1 —reo{f)cosé’

defined on {0, 2m),

is strictly decreasing, from +1 to -1, in @, so that, from (4.1} - (4.3}, we see, in all cases, that
disc,.(f1, 2) ~ Kiogn, where K > 0 is dependent only on 8; and 6. 'O
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