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APPROXIMATION GF THE MINIMAL GERSGORIN SET
OF A SQUARE COMPLEX MATRIX™

RICHARD §. VARGAT, LITLIANA CVETKOVIC!, AND VLADIMIR KOSTECH

Abstract. In this paper, we address the problem of finding 4 numerical approximation t the minimal Gergorin
s, FR{A), of an irredueible matrix A in C™", In particulas, boundary points of FR(A) are telated to a well-
known result of Olga Taussky.
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L. Introduction. Given an irreducible matrix A = [, ;] in C™™, its i-th Ger§gorin disk
is defined, with ¥V .= {1,2,...,n}, by
(1.1) TifA):={z e Cilz~a | SrfA) = S las]} (i€ ),

JENV{d}
and the union of ali these disks, denoted by
{1.2) P{A) = | ] Tu(4),
iEN

1§ cailed the Gerigorin set for A. A weli-known result of Gerdgorin [2] gives us that I'(A)
contains the spectrum, o{A4), of A, ie.,
1.3 o{A} = {A e C:det(A] - 4) =0} CT(A).

Continuing, for any x = [z, 29, .., 2,)7 > 0 in B", fe, 2 > Gforalli N,
let X = diaglwi,z2,...,2,] denote the associated nonsingular diagonal matrix, Then,
XLAX has the same cigenvalues as A, Thus, with the Gerigorin disks for X~ 1AX now
given by

(1.4)  IT(A):={s€C:lz~ayl <r4) = M M} (i e N,

&y
FEN\{}
and with the associated Ger$gorin set,
(1.5) A =TT (4,
iEN
then
(1.6} o{A) CT7{A), forany x>0 in R™

The inclusion of (1.6} is also a well-known result of Ger§gorin [2]. Clearly, the following
intersection,

(1.7) T*ay= [} 14,

x>0 iR
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called the minimal Gersgorin set in [4, 6], is always a subsct of T (A}, for any x > 0 in
R”, thereby giving the sharpest inclusion set for o{ A}, with respect to all positive diagonal
similarity transforms X ~*AX of 4.

This sharpness can also be expressed i the following way; cf. {6, Theorem 4.5]. With

(1.8)  (A) = {B = [biy] € C"" by = as and [biy| < fosg] ford # 5 (4,5 € N},
then

(1.9) s(QA) = | o(B)=TR(4),

BefA)

i.e., each point of IR A) is an eigenvalue of some matrix B in ((A4),

Unlike the Gerigorin set T'{A) of (1.2) or [ {A) of (1.5), the minimal GerSgorin set
I'R(A} of (1.7) is not in general easy to determine numerically. The aim of this paper is
to find a reasonable approximation of T7( A), with a finite number of calculations, which
containg I (A), and for which a limited number of boundary points of this approximation
are actual boundary points of T (A}, The determination of these latter boundary points are
then related to a famous sharpening, by Olga Taussky [3], of the GerSgorin set of (1.2).

2. Background. Given an irreducible matrix A = [o,;] in C™", His associated irre-
ducible matrix Q{z} = [g; ;(2)], in R™", is defined by

2.1 gii{z) = —lz —agql, and ¢; (2} = lag ], fori# j {4, ¢ N).
If
(2.2) ulz} = max |z~ aiql,

then the matrix B{z) = {b; ;(2)] € ™", defined by

(2.3) biilz) = p(z) ~ |z — a4, and b; 5{z} == |a; 3], i £ 5 (i,5 € N),
satisfies
(2.4) B(Z} == Q(Z) + (23,

where B(z) is a nonnegative irreducible matrix in ™", Then, from the Perron-Frobenius
theory of nonnegative matrices, the matrix 3(z) possesses a positive real eigenvaiue, p{ B(z)),
called the Perron rpot of B(z), which is characterized as follows. For any x > 0 in R™™,
cither

(2.5} !}élj{}{ (B(Z}X}T/JSL} < p(Bz)) < zﬁré%@{{(B(z}x)?/ma},
or
(2.6) Blzjx = p{B(z))x.

Thus, if we set
2.7 viz) = p(B(z)) — plz) (2l z € C),

then v(z) is a real-valued function, defined for all 2 € C. Moreover, from (2.5) and (2.6), for
any x > 0in R™ and any » € C, either

238) wind (QU2)x) /w:} < v(z) < max{ (Q(z)x),/u.},
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or
(2.9} GQlz)x = v{z)x,

the last equation giving us that 1{z) is an eigenvaiue of Q(z).

The follewing connection of the function »{z) of (2.7) o the minimal Gerigorin set,
I'*{ A}, comes from [4] and {6};

(2.10) z € T™(A) ifand only if (2} > 0,
and
(2.11) ifz & 8]-'R(A), then 1/(;:) == {),

It is also known (cf. [6], Theorem 4.6), from the assumption that A is irreducible, that
(2.12) vig; ) >0, foralli € N

Further, given any real number 6 with © < § < 27, it is known {(cf. [6], Theorem 4.6) that
there s a largest number §;(6) > 0 such that

{2.13) v{ag; + §:(0)e”) = 0, and v(ag; + ') > 0, forall 0 <t < Bu(,

so that the entire complex interval ja; ; + tffm}f_"__(g lies in FR{A). This implies that the set
P2 .

(2.14) | Tais -+ te®)2
=)

is a star-shaped subset of T™( A), for each s £ N, with

(2.15) Waw: + G:i(0)e) € ATT(A).

The results of (2.14) and {2.15) will be used below.

Next, we recall the famous result of Olga Taussky [3], on a sharpening of the Gerdgorin
Circle Theorem: Let A = [a,] in C™" be imreducible. If A & ¢(A4) is such that
Agint T;(A) foreachi € NV, ie, A —a;;| > ri{A) foreachi € N, then
(2.16) A —aq;i = r;{A), foreach i € N,

Le., each GerSgorin circle {z € C: |z — ay,| = r;(A)} passes through .
To complete this section, we include the following:

217 I v{z) = 0, then det Q(z) = 0.

This follows directly from (2.9), since »(z) is an cigenvalue of (Q(z). Finally, from [6, Exer-
cise 7, p. 1081, we also have that

(2.18) forany z and 2" in €, [(z) — v(2)] < |z - 2],

so that v(z} is uniformly continuous in C. This also will be used below.
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3. Numerical procedure for approximating '™ A). With the given irreducible matrix
A = [a;;} inC™" choose any j in V, and set z = aj ;. Next, we assume that the nonnegative
irreducible matrix B(a; ;}, which has at least one zero diagonal entry from (2.3), is a primitive
matrix; cf. of {5, Section 2.2]. (We note that this is certainiy the case if some diagonaj entry
of B(ay,;) is positive. More generally, if B(ay ;) is not primitive (e, Blay ;) is cyclic of
some index p > 2), then any simple shitt of B{e; ;) into Bla; ;) + 1, is primitive for each
e > 0)

With B{ay ;) primitive, then, starting with an %% > 0 in B™, the power method gives

convergent upper and lower estimates for p(B(a;;)), i.e, if x™ = B"{a; )x® for all
m > 1, then with x{"} 1o {asgm), a:gm‘), :EE,TT")}T, we have
'(rrl.+1) .‘17(-m+l) L
3.1y Ay 17 gré{,{,x{f;;,,—)—} < p(Blag;)) = max{ N } =
i ‘i

forail m > 1, with

{3.2) lim Ay = p{Bla; ;1) = lim A,
TIL— 00 ™ Trh 4 X

In this way, using (2.4), (2.7), and (2.9, convergent upper and lower estimates of vt )
can be numerically obtained. (These estimations of ¢(a; ;) do not need great accuracy for
graphing purposes, as the example in Section 4 shows),

Next, assume, for convenience, that v{a; ;} >  is acourately known, and sefect any res)
#, with 0 < & < 27, The numerical goal now is to estimate the largest §;(6), with sufficient
accuracy, where, from (2.2),

(3.3) via;; + @j(ﬁ)em) = 0, with v(a,; + (§;(6) + E)cif’) <0
for ali sufficiently small ¢ > 0. By definition, we then have that
(3.4) aj,; + 6:(0)e™ is a boundary point of rReay.

This means, from the min-max conditions (2.8)-{2.9), that there isan x > 0, in R", such
that (cf. (2.9Y)

{3.5) Qla;; + 6;(6)e")x = 0, where x = 1,29, 1, > 0.

Equivalently, on calling a; ; + 3;(0)e’ =: z;(0), we can express (3.5), using the definition
of (2.1), as

(3.6) 125(8) = aral = D lagulan/zs, (alli € N,
keNY{i}

which can be interpreted, from (2.16), simply as Olga Taussky’s boundary result. What is
perhaps more interesting is that it is geometrically unnecessary now to determine the com-
ponents of the vector x > 0 in R™, for which (3.6) is valid. This follows since knowing the
boundary point z;(6) of [ (A), and knowing cach of the centers, {ai;}ien, of the associ-
ated n GerSgorin disks, then all the circies of (3.6) can be directly drawn, without knowing
the components of the vector x.
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We return to the numerical estimation of ;{6), which satisfies {3.3)~(3.5). Setting
z =g 5 and 2= a0 + §;(0)e?, we know from {2.18) that

(3.7) &(0) = vlag;) > 0.

Consider then the number v(a, ; + v{a; ;)¢ ). If this number is positive, then increase the
number #(a; ;) to v{og ;) + A, A > 0, until v{a; ; + (v{a; ;) + A)e) is negative, and apply
a bisection search to the interval [1(e; ;),v{a; ;) + Al to determine §;(#), satisfying (3.3).
(Again, as in the estimation of (g, ;}, estimates of §;{#) do not need great accuracy for
graphing purposes.) We remark that a similar bisection search, on z, can be directly applicd
to

(3.8) det Q{1{az; + 8;(8)e™)) = 0,

as a conseguence of (2.11) and (2.15), but this requires, however, the evaluation of an n % n
determinant,

To summarize, given an irreducible matrix A = {a, ;] in C™", our procedure for approx-
imating its minima} Gersgorin set, [ ( A), is to first determine, with reasonable accuracy, the
positive numbers {1{ay,;)};en, and then, again with reasonable accuracy, to determine a few
boundary points {wy }j., of [™{A)}. For each such boundary point wy, of T 4), there is an

agsociated GerSgorin set, consisting of the unian of the n Gerfigorin disks, namely,
(3.9) Lr(A) = |z € C e — 0] < for ~ a4},

ieN
and their intersection,

e

(3.10) [} T (A),
k=1

gives an approximation to T (A), for which IT™(A) is a subser, and for which m points, of
the boundary of (", [ (A), are boundary points of TR A},

4. An easy example. Consider the irreducible 3 » 3 matrix
2 01
(4.1 C=101 1
11 2

whose minimal Gergorin set, I'®(C, is shown with the inner blue boundary in Figure 4.1,
(This minimal Ger§gorin set, I'™({("), also appears as the set with boundary (1) {2) (3 of [6,
Figure 4.4]) For the vector xg = [1,1,1}7 & R?, the associated Gergorin set I (C),
turns out to be simply ‘

(4.2 IOy ={zeC: |z —2| <2}

The boundary of this set is the {outer) flack circle in Figure 4.1,

Next, starting with the diagonal entry, z = 2, of the matrix C, we estimate v/(2), which is
positive from (2.12). As u(2) = 1 from (2.2), the associated nonnegative irreducible matrix
B(2) from (2.3} is

1 i
B2)=|0 0 1
11l
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16 4. 1.

and a few power method iterations (see (3.1)-(3.2)), starting with xq = [2,1,2]7, gives that
p(B(2)) = 2.2. More precisely’, p(B(2)} = 2.24697, so that from (2.7} we have 1/(2) =
. 1.24697.

Next, we search on the ray 2 +1, with t > 0, for the largest value { for which (2 +f) =
Oand (2 +1) > Oforali 6 < ¢ < 4. Using the inequality of (2.18), it follows that
i > v(2) = 1.24697. However, i this particular case, it happens that # = 1.24697, so that
7 = 3.24697 is such that v(z;) = 0, with z; € 8T™(C). Similarly, on considering the
diagonal entry 1 == ¢y 3, we approximaie (1), which turns out to be (1) = 0.80194, and
then searching on the ray 1 -- ¢, ¢ > 0, we similarly obtain v(z9) = 0 with 25 = 0.19806,
and with z € 1™ (C). Calling I {C) and T3 () the associated GerSgorin sets, then the
intersection of the three sets, ﬂ?xﬂ "3 (), is shown in Figure 4.1 with the red boundary,
where the boundary of the minimal Gerfgorin set, I'*{(C), is shown in blue.

We see from Figure 4.1 that the set with the red boundary is a set in the complex piane
which contains I'™ () and has two real boundary points, shown as the black squares z; and
72, in common with I'"™*(C). Continuing, knowing v(a; 1 = aza = 2) = 1.24697 and
v(agy = 1) = 0.80194, we then look for four additional points of AT™{C") which are found
on the four rays: 2 & ét, £ > (), and 1 &= it, £ > 0. This gives us the following four points
{20 of T¥(C):

z3 = 1 +{1.150963), 2, = 73, 25 = 2+ i({1.34236), 25 = 7=,
The intersection now of the above associated six GerSgorin sets is shown in Figure 4.1 with
the green boundary, which inciudes I'*(C) and has six boundary points in common with
ATR(C), shown as solid black squares. The region between the green boundary of I'®(C)
and its blue boundary is colored in yellow, which can be seen as small “roofs” composed of
segments of circular arcs,

The amount of numerical calcuiation to obtain a good approximation to T™(C') is moder-
ate. It is further evident that better approximations to I'™* (CY, having more points it common
with OT"% (£, can be similarly constricted.

5. Comparisons with Brualdi sets, Given an irreducible matrix A = {o;;] in T™7,
n > 2, one can similarly associate with 4 a minimal Braner set, KX (A}, as well as a minimal

FATL such numbers are tnmcated after five decimal digis.
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Brualdi set B*( A}, as described in {6, Section 4.3]. However, it is known (see [6, Theorem
4.15]} that all of these sets are equal, i.e.,

(5.1) PR(A) = KR(A) = BR(4),

but the approximation of, say, the minimal Brualdi set BR{A), would now differ from our
appreximations of the minimal Ger§gorin set, T™(A), described earlier in this paper. For
matrices having a very large number of nonzero off-diagonal entries, it is untikely (see [6,
Section 2.3]) that a similar numerical approximation of the minimal Bruaidi set, BR(4),
which from (5.1) equals T7%(A4), would be numerically competitive with our numerical ap-
proach of Section 3 for approximating I {A). But, in the case of the matrix ' of {4.1),
there are just two associated Brualdi cycles, ; = (13) and v = (23), for this matrix (), so
that the approximation of I'*{(), via Brualdi sets, in this case, is casy. In particular, for any
x = (1,29, 73)" > 0in R, its associated Brualdi lemniscares (cf. [6, eq. (4.78)]) are

(52) BIAC)={z€C:iz-2P <r¥{C) 3(C) = (i—i) 4 (“"1;”2) = "”1;“}3

and

(5.3 ' 131;:(0) ={zeC:lz -1}z -2 < (ﬁi..j) . (fﬂj_;;ﬂQ) - :cz_;m}}

so that its associated Brualdi set is (cf. {6, eq. (2.40])
(54) B7(C) =Bl ()| B ().

Now, knowing that z; = 3.24697 is a boundary point of T™((), we determine x; > 0 and
xz > O so thal z; = 3.24697 is a boundary point of B *{C). For this particular point
#p == 3.24697, the associated Brualdi set, consisting of the union of two Brualdi lemniscate
sets, is such that the boundary of each Brualdi lemniscate passes through =;. (This is exactly
the analog of Olga Taussky Theorem in the Ger§gorin case: see {17 and [6, Theorem 2.8].}
The unien of these two Bruaidi lemmiscate sets can be verified o reduce to

BTHC) = {z€Clz—1] |z - 20 < 280193}
Similarly, for the point z; = 0.19808, the associated Brualdi set has its two lemniscate sofs
passing through 22, and the union of these two Brualdi lemniscate sets can be verified to
reduce to the disk

BHCY = {2 € C: 12— 2] < 1.80193).

The boundary of the intersection B;Ti (N B;',:z (C) is shown in Figure 5.1 with the green
boundary. Also shown in Figure 5.1, with the red boundary, is the related GerSgorin set
from Figure 4.1, which also has z;, and z; as common points with the minimal GerSgorin set
e,

From Figure 5.1, we see that Bg’:l () ﬂBl":z(C) is a proper subser of the related
GerSgorin set, where the difference between these sets is shown in vellow. This 18 not un-
expected, as it is known {cf. {6, eq. (4.80)]) that, for any matrix A in C™",

B(A) CI"(A), forany x > O in R™,



ETNA
¥ent State University
hitp/ietna math.kent.edn

APPROXIMATION OF THE MINIMAL GERSGORIN SET OF A SQUARE COMPLEX MATRIX 403

FiG. 5.1,

Acknowledgment. This work is supported by the Provincial Secretariat of Science and
Technological Development of Vojvodina, Serbia, grant 0708 and by the Ministry of Science
of Serbia, grant 144025,

REFERENCIS

{11 R.BRUALDI, Matrices, elgenvalues and directed graphs, Linear Multilinear Algebra, 11 (1982), pp. 148-165.

[2] 5. GERSGORIN, Uber die Abgrenzung der Eigenwerte ciner Matrix, Jzv. Akad. Nauk SSSR Ser, Mat., |
(1931}, pp. 749-754.

[31 O.Tavssky, Bounds for the characteristic roots of matrices, Duke Math. J., 15 (1 0483, pp. 1043--1044,

[4] R. 8. VARGA, Minimal Gersgorin sets, Pacific 1. Math., 15 (1965), pp. 719-729.

[5) R.S. VARGA, Murrix lterative Aralysis, Second tevised and expanded odition, Springer, Berlin, 2000,

[6] R. 8. VARGA, Gersgorin and fis Circles, Springer, Berlin, 2004.



