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1. Introduction

With N denoting the set of all positive integers 11, and with z any complex number {written z € C), then

sn2y:=) 2/ (el )

J=0
is the familiar n-th partial sum of the Maclauren expansion of % about z=0, and for any even positive integer n (written
n g 28),
n/2
cosp(2) =Y (=272 (ne2N) (2)
J=0

is similarly the n-th partial sum of cos{(z); then, for any odd positive integer m (written m e 28 — 1},

{m—13/2
Sinp(2) = Y (=D 25+ 1) me2N -1 (3)
j=C
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Fig, 1. The Szegd curve D, of (3}

is the m-th partiai sum of sin(2). The refatrionship between the zeros of sp(z) with those of the zeros of cos,(z), for n even,
and those of $y(2) and sing{z), for m odd, was studied in Szegd [51 followed by results of Kappert [3]. and Varga and
Carpenter [8] and {7]. In this paper, we further sharpen these results.

For added notation and background information, the weli-known Enestrom-Kakeya Theorem (cf. Marden [4, p. 137,
Exercise 2]) states, for any polynomial pa(z) = Z?:o ajzf' with g; > 0 for all 0< J<n, that ali the zeros of pa(2} necessarily
He in the annulus

. {I; {;
min { — } <}zl < max [ —= }. (4)
Oi=n\ Qi+ Ogien\ digq

Applying the final inequatity of (4} to the partial sum s;(z) of (1) gives that all zeros of s5,(z} satisfy izi < n, for each n = 1.
Thus, with s;(n2} denoting the n-th normalized partial sum of e, the zeros of sp(nz), for all n = 1, lie in the closed unit disk,
denoted by

A=lzeC 2 <1}
Consequently, compactness considerations guarantee that the set, of afl zeros of all normalized partial sums {s,{nz}};> . has

at least one accumuiation point in A. Szegd [5} showed that the set of all such accumulation points is exactly the points of
the closed curve in A, given by

Do = [z e A |ze' | = 1}, (5)
which is now calied the Szegd curve in the literature. This closed curve Dy will play an important role in what is to follow,

and it is shown in Fig, 1, where we note, from (5), that the points &i/e and 1 are points of D
Next, from his Hiifsatz 1, Szegd [5] showed that

{Zei—z}n

W2mn

e sz =1-—

(%){1—%8“(2)} (n ek, (8)




300 RS. Varga, A ). Carpenter [ Applied Numerical Mathematics 60 (2010) 298-313

where
lim &,(z) =0, (N
n—00

unifermly on any compact subset of A% {1}. The resuits of (6) and (7) can be interpreted as saying that the n solutions of

T—zyn
M(L):I, 8)
2an \1—2z

approximate the n zeros of sp(nz) in A, for all m = 1. Later, more refined versions of (6} were obtained. For example, {8) was
sharpened in Carpenter, Varga, and Waldvogel 2] to

_ (ze! —%)" ( z ) [ 1 z{4 - 2) }
e s nz) =1~ 1 s e y 9

() T2 \1 -z (n+11 -2 4+ Din+2)(1 -2 ©
uniformly on any compact subset of A\ {1}, where 17, is the exact error in Stirling's formula, ie.,

nl
Ty —————— (10)
" nie=m./2an
which has the following known asymptotic series expansion:
- i + 1 139 N . (an
Tpem L b e e e e b a8 - 0,
mEET o T 288w 5184013
so that
1 .
rnrziJrO(E). as - oc. (12)
It then follows, using (12), that (9} can be expressed as
_ (zei“z)n( z (])
e s nz) =1 -~ ——=i| e 14+ 01~} asn— oo, 13
n{z) \/ﬂﬁ 12 n - (13)

uniformiy on any compact subset of A\ [1). If anly the first term, namely unity, of the terms in the braces of {13} is used,
then the n solutions (2 ,)g_; of

I RY2% 3

ze z

Ge ( ——) - (14)
Nomn \1-12 :

approximate the n zeros {z; 517_, of soénzy. The accuracy of the sofutions {Zinll_, of {14), with respect to the actual zeros

{Zxpli., of sn(nz). has been studied in the literature, and it is known from {2] and [8] that, given a compact subset of
AN {1}, then

. i
!Zk.nmzk.nimo(ﬁj)a asn - 0o, (15)

holds for all the z;, in this given compact set. As can be imagined, taking more terms, in the expansion in braces in (9),
gives rise to higher-order approximations of the actual zeros of s,{(1z) {cf |2, p. 119])

2. Connections with cos, (n2) and sin,(nz)
Since
2cos(z) = e? f iz
for any complex number z, it similarly follows, from the definitions in (1) and (2), that
208, (nz) = sp(inz) + sp{—inzy (ze T, ne 2N, (16}
which can be equivalently expressed as

208, (nz) = e (e~ "5, (inz)) + e (eMs, (—inz)}  (n & 2N), (17)

Noting that ces(z) has only real zeros in the entire complex plane, then, with the open upper haif of the unit disk denoted
by
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AT e (= x4y e AL y > 0},
an application of the expansion of {9} to (17), gives, from Varga and Carpenter [6, Eq. (3.7)], that

cos; (nz) 4 (—ize!HiEyn ¢ 272 . 377 o 1 (18)

costnz)  govaan \1+Z il rz22  \n2 ) !
as n - oo, uniformly on any compact subset of AT\ {i}, with a similar statement holding for the reflection, in the real axis,
of the set A™\ (i}. For our needs here, using {12) allows us to express (18) in the slightly weaker form

el s 552
CGSn(nZ):1_ (—ize' ™) ( 2z ){E—I—O(E)} {n e 2N, (19)
cos{nz) 2mn 1+2 n

as 1 — oo, uniformly on any compact subset of A1\ [i}. On fixing a compact subset of AT\ [i}, it can be shown, using the
techniques of [8], that the non-real solutions of

(szeLH'Z)ﬂ 7222 ) .
=1 ¢ 2N), 20
==\ 77 {n e 2N), (20)

in this compact subset of AT\ {{}, similarly produce approximations of the actual non-real zeros of ces(nz} in this subset,
with an accuracy of O(;f;). as n — o0, as in (15). Similar results hold for the reflection, in the real axis, of this compact sef
AT L

In analogy with (16), we also have from {1} and {3) that

2isinp{mz) = $, (IM2) —sp{—imz) (zeC,me 2N -1}, (21}

which can be equivalently expressed as

2ising, (mz) = e (e_"mzsm(imz)) @ iMZ (ei’"zs,n{—ilnz)), (22)

for all ze C and all m € 2N — 1, Noting that sin{z) also has only real zeros in the entire complex plane, then applying {9)
to (22) gives {cf. Varga and Carpenter {6, Eq. (3.103};

siflm (m;} 1 (—izeltizym o 352 - 3 - z% N O(~—]») } 23)
sin{mzy oarn \1422 (m4 D1+ z23)2 me

as m - oo, uniformly on any compact set in AT 5 {i], with simitar statements holding for the reflection, in the real axis, of
the set A*\ [il. On comparing the eguations of {23) with (18}, we see that the sight sides are identical, when m € 2N ~ 1
is replaced by n € 2N, and vice versa, This has the effect that, henceforth, it suffices to work enly with cos,(nz), n € 2N, as
analogous results for sing (mz) trivially follow by simply replacing n € 2N by m € 2 — 1 in what follows.

Next, on comparing the equation in (8) with that of {20}, we see that if z is replaced by iz in (20), ie, a rotation of z by
7 /2, we obtain

{ze'5)' = 2m1(5-;:~£i> (24)
B 222

which is quire similar to the following equivalent form of {8), Le,
I
&e“ifzzdznn( - ). (25)

Because the first terms of (24) and {25) are the same and are dominant, for n large, this would suggest that the zeros of
the normalized partial sums s,(nz) of 4, in the right haif-plane, when properly rotated into the open upper half-plane or
into the open lower half-plane, would give excellent approximations to the actual non-real zeros of €os,;(nz) or singy{niz), as
suggested by the original work of Szegd [51.

To iHustrate this, consider Fig. 2, where the zeros of cos12(12z) are shown as “x"'s, while the zeros of the normalized
partial sum $12{122) of ¢%, rotated by m/2, are shown as “e"’s. From this figure, we see that the open upper half-plane
contains 4 rotated zeros of s12(122), which are nicely approximated by the 4 non-real zeros of cosi2{12z) in this open
upper half-plane. The remaining zeros of cosy2{12z) in Fig. 2 consist of 4 real zeros, which are nearly uniformly spaced in a
symmetric real interval which contains |—1/e, +1/el, and 4 non-real zeres which are the reflection, in the real axis, of the
non-real zeros in the upper haif-plane. (Also shown in this figure is the dashed boundary of the circle {ze & |z~ ,%l o %},
which will be used later, and also the solid boundary of the Szegd curve from the right half-plane, which has been rotated
both 477 /2, and —7r /2, in this figure.} Fig. 3 shows similar results for the zeros of sinyj3(13z) and s13{13z).

Locking very carefully at Figs. 2 and 3, we notice not only that the non-real zeros of cosy2(122) or of siny3{13z) are
very well approximated by the appropriately rotated zeros of the normalized partial sums s;3{122) or 513(132), but also that
there is a definite pattern to the difference of these zeros. Specifically, on considering the open first quadrant, we notice from
Figs. 2 and 3 that
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Fig. 2, The rotared zeros of §12(127) {dots) and the zeros of cosy2(122) (crosses).

{i) for n=12 and n= 13, the rotated zeros of s,(nz) in this open first quadrant (denoted by “e”’s), all have smaller moduli
than those of the corresponding non-real zeros of cos,(nz) or sin,(nz) (denoted by “x"'s}, and similarly,

(iiy for n =12 and n = 13, the arguments of the rotated zeros of s,(nz) in this epen first quadrant, all have smaller arguments
than those of the corresponding non-real zeros of cas;(hz) or sing(nz).

This “definite pattern” is something which has not been sbserved in the literature.
One of the goals of this paper is to theoretically show that these observations are indeed valid, for all n = 6.

3. Main results
Following the notation of |8], consider the closed set

AL = {zenr j—ize"™| =1, and Imz 2 0}, (26)

which is simply the restriction, of the Szegd curve of (5), to the right half-plane, which is then rorared by 7 /2 to the vpper
half-plane, Then, with the closed set

A=A Ulze A e AL} (27)

which is the union of Al of (28) with its reflection in the real axis, Szegd [5} showed that the accumulation points of ail
zeros of cosp(nz), for any even n, and alf zeros of sing(mz), for any odd m, is precisely given by the union of the closed

sat Aa. with the real interval |'—%._ —{-%!.

Awu[-i,#]. (28)
e £




RS. Varga, A, Carpenter [ Applied Numerical Mathematics 66 (2010} 298-313 303

3

B 0.5 0 0.5 1

Fig. 3. The rotated zeros of s;9(13z) {dots) and the zeros of siny3¢132) (crosses).

That the accumulation poirts of ali these zeros is given by (28) is certainly suggestec by the results of Fig. 4, where all zeros
of cospinz), n=2,4,...,100, and all zeros of sin,(nz), n=1,3,..., 101, are shown by "e"'s. We also remark that cosy(nz),
for n even, has some non-real zeros if and only if n 2 6, and similariy, sinm(mz2), for i ¢dd, has some non-real zeros if and
only if m = 5, as shown by Kappert [3].

Using the notation of [7], we define the closed set K as

K = Ane U int Ace. (29)

witere the set K is shown in Fig. 5. Then, from Theorem 4.3 of Varga and Carpenter [7], we know that

{ {i} cosy(nz) has ne non-real zeros in K for any n € 2N, and (30,

{ii} siny(mz) has no non-real zeros in K for any m € 28 - 1,

which is surely indicated from Fig. 4. We remark that the results of {30} are a more tedious extension, to ¢osy{nz) and
sing, (mz), of a result of Buckhoitz {1}, which showed that any zero of any normatized partial sum spinz), ne N, must lie
outside the Szegd curve Dy, of {5).

Next, for any n € N, we define the n complex numbers {2, ,)i.,. whick satisfy (14), to be approximate zeros of the
normalized partial sum s,(nz), where, from {2} and {8], we know that these approximate zeros approximate the actual
zeros of sy(nzy to O(;%}, as n — oo, provided that these points belong to a fixed compact subset of A%\ {1}, In a simiiar

manner, we define the points ﬁk.n};ﬁ:])' in the open first guadrant, to be rotated approximate zeros of cos,(nz} if n is even,

for any 7 2 6, or of sin,{nz) if n is odd, for any n 2 5, if these points satisfy (cl. {24))

{:’?6 A”F‘ (281_2)11252

DAl -5

where the numbers {z’:k_,i}fi”]) are arranged in order of increasing arguments, i.e,

=1, and Rei>0], (31)

e
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-0.5 ¢

Fig. 4, The zeros of cos,(nz) for n=2,4, ... 100 and the zeros of siny () for m==1,3.....101.

O<arglp<argzy, < - < algpgn < w/2. {323

(We remark, from [3}, that p{n} = 1 for all n € N with n > 5.) Then, because of symmetries in the location of the zeros
of cosy(nz) and siny(nz), we deduce that if Z., is a rotated approximate zero of the aormalized partiai sum sy(nz), then
Zy €2 = %, is an approximate zero of cos,{nz) if n is even. or of sing(nz) i n is odd, in the spen second quadrant.
Moreover, reflections of these points, in both the reat axis or imaginary axis, produce all non-real complex zeros of cos,(nz),
n even, or of sing(n2), n odd.

Returning to the observation that the left sides of the equations of {24) and (25), are identical, we next compare their
different right-hand sides by taking their ratio, te, for z £ 0,

i—z

S 2z

(lfﬁ) = 14z (33)
{ 2zt '

The argument of this ratic then geometrically satisfies
2z
arg(———w) =arg{zy —arg{l+2) > 0, (34)
P4z

for amy z in A*. Similarly, it can be verified that the madulus, of the fina ratio of {33), satisfies I]—?f;g <1 is equivalent to z

lying in the open disk {ze C: |z - %| < %—}, but, because (20) holds caly in AT\ H}, then with the rotation by —m /2 used
in Eq. {24), we have that

| 2z
1+ z
The resuits of (34) and (35) will be used below.

<1 inRez=0, ifandonlyif inRez>0. (35}

[SSY I S

|
Z o ]
31
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Fig. 5. The set K of {29},

We know from {30} that the accumulation points of the zeros of cos,(nz), for any neven, of of sing(nz}, for any n odd,
must lie on the set of {28). However, Figs, 2-4 suggest that most of the non-rotated zeros of cos,(nz), for n even, or of
$iny{nz), for 1 odd, in the open upper half-plane, lie in the shaded open set G, defined by

. sl d]_2
C._[zesA g 3!<3 \K. (36)

where the portion of the gpen disk, in the definition of &, comes from the rotation of the open disk of (35). The set G is
shown in Fig, 6.

A more exact location of the nop-real zeros of cos,(nz), for n even, and of sing(nz), for n odd, is the set ¢ of {36}, as
shown below in

Theorem 3.1. For all n = 6, the non-real zeros of cos, (nz), for n even, and of sing (n2), for n odd, in the open upper half-plane, all lie in
the set G of £38), with a similar resuir holding in the reflection of the set & in the reai axis.

Proof. As previously stated, it is known from {3] that cosy (1123, for n even, has some non-real zeros only if 7 = 6, and that
sing(nz), for n odd, has some non-rea) zeros ondy if n = 5, but on determining the actual zeros of sins(5z), it foliows that
5ins(5z) has exactly one non-real zero in each guadrant of A, Two particular non-reai zeros of sing(5z) are shown in small
squares in the upper half-plane in Fig. 4. Note, however, that these two non-real zercs of sins(5z), in Imz = 0, lie just
outside the set G of (36), showing that Theorem 3.1 can hold only for n = 6,

Continuing, for convenience, let Gp denote the restriction of the set § of (36) to the first quadrant. For n = 6,7 8 and 9,
there is a single zero, of each cosainz) or sing(nz), in Gp, which have increasing arguments for increasing n, while for
m=10, 11,12, 13, 14, and 15, there are exactly two zeros, of each of these polynomials, in Gg, ete, Then, if we connect, by
straight-line segments, the successive zeras of cosyinz) or sing(nz), having the largest arguments in rhe open first quadrant,
we will have a path which stays in Gg, and tends to the point z =1, as showa by the clearly visible “cutside” path of "s" s
in the first quadrant of Fig. 4. Moreover, this path separates G into two disjoing parts, where the lower part ¢ontains all
remaining zeros of cos,(nz) and siy(nz) in this open first quadrant. The reason that this separation takes place is that,
when a non-real zero of COSa (N2} Or singinz), for larger values of n, enters G R+ it enters from the real axis with a smaller
modulus, as these zeros, hy necessity, must tend to the boundary of K in the first quadrant, as this is the oniy place in
the first quadrant where nona-real zeros can accumulate. In a similar fashion, for n 2 10, one can Join, again by straight-line
segments, the successive zeros of Cosy(nz) or sing(nz), having the second-largest arguments, thereby generating a second
path, in the first quadrant, which also terkds to the point z =14, but, as can be seen from Fig. 4, this path is inside the
previcus outside path in Gp. {Higher-order paths can aiso be defined, but they are more difficult to see inFig. 4) o
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Fig. 6. The set G of (36) is shaded above.

We next return to the question, from Section 2, concerning the "definite pattern” relating the zeros of c0s,(n2) or sing(nz)
in the upper half-plane with the rotated zeros of the normalized partial sum $,{nz). For our purposes here, it is more
cenvenient to consider the unrotated zeros of the normalized partial sums $x(nz}, in the first quadrant of A, corresponding
to the solutions of Eq. (25}, and to consider the zeros of cosp(nz) or sing(n2), in the second quadrant of A, which are
then rotated by —m /2 to the first quadrant of A, For the unrotated zeros of the nermalized partial sums s, (nzy in the first
quadrant, we consider the following curve Dy, a variant of the closed curve 0y of [8]. For each positive integer n, set

An :::cos“‘[im—v—}, (37)
2n

where v is the largest positive solution of ¥ = 27 v, that s, v :— 2.00394." The nurmbers ihpie . are strictly decreasing to

zero, with Ay = 2.03976 radians. Then for each n = 1, the closed curve Dy in A is defined {ef. [8, Eq. {24)]) as

Tz
- ze i
D,,?:{ZG:“A'-‘T -

" Va2

which comes from taking moduli in (25% it is further known from [8, Proposition 2.1], that the closed curve D, of (38)
is star-shaped, with respect to z =0, for any n = 1. Then, we consider the following intersection, which defines the closed
arc Dy

=1, and A, € argz < 2 An} U {e‘”: —hn G K gl (38)

wi—
Wi

Dy = f)nﬂ{zeA: !zw ‘g L2500, Rez 20, and lmz>0}. {39}

! We rruncate, throughout, any non-integer real number to five decimal digirs.
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Fig. 7. The curves Dyy and Ty, atong with the zeros of 573{122) {dots} and the rotated zeros of €0s43{12z) (crosses), in the first quadrant of A,

For the arc Dy, defined in (39), we are interested in those points z, of Dy, which correspond o approximate zeros of s,(nz)
in the first quadrant, i.e., points z which satisfy (14). It can be verified that such points of D, exist in the first quadrant,
only if n2= & We remark that D, of (39), for each n 3 6, is an arc in the first quadrant, as shown in Fig. 7 for n = 12.

Continuing, for any n 2 6 and for any point z = ry(&he’ of the arc Dn of (38), where A, €6 £ 21 — )y, we define the
function

{Zfi’l“z}n

n 1-
Yz} = arg(m) :arg((zel-z) )_arg(__z_f)? (40}

which can also be expressed as

Wn(2) = n(6 — ry{8) siné) + 9 +tan—r( ra(9) sing )

P~y (8)cosd
so that

-
ze " i (41)

From {2, p. 118], we have that W, (ra{6he!®) is a strz‘grly increasing function of # on [A. 27T — Ap]. In addition, for each n » 6,

we note from (38) that the non-circular portion of I extends tc the boundary point e™= of the unit disk. As An 18 positive,
from (37), for every positive integer n, it foliows that e les gutside rhe disk {ze A: jz— %f £ %}, for any n = 6. Then, the
subarc Dy of D, intersects the circie {ze A |z— %l nm %}, in a unique point, as Dy is star-shaped with respect to z = 8. We
define the angle of this unique intersection as wn, and this is shown in Fig. 7, for the case = 12. It also follows, from this
definition of wy, that the ray {z = re': r # 0} intersects the arc Oy in a unique point for any £ with w, < & < /2, and
that {cf. (37)
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hy < tn <7 /2 (allnz6).

{For example, in Fig. 7, we have that i == 0.54681 radians, while A,z = 0.49703 radians from (37}.)

Next, we define the related arc T, ("T" for trigonometricy, in the open first quadsant, which is derived from rotated
non-real zetos of cos,(nzs, for n even, or of sing(nz), forn odd, by first taking moduli in (24

1=z H

ze 1 2

‘ e ; - =1, and 12— —~l£ —, z#0, Rez 20, imz>{)}.
V2rn| i I 303
The arc Ty, in the open first quadrant of A, is again of interest (0 us, only for n = 6. Then, in a similar fashion to {40), we
define, for z = Ra(9)e® a point of Ty, the function

Tn = {ZG Al {42)

(Zeifz)n

~ 1-z2?
¥/ (@)= afg(m) =argf(ze' )"} - arg( 573 ) (43)
2z¢

which can also be expressed as

Wl (2) =n(8 - Rn(ﬁ)§in@)+2{3+zan—z(%), (44)
5o that
e )" uim
Vo R

2z
Continuing, for any i = 6 and for any fixed ¢ with @, <8 < 7 /2, it can be directly verified (via differentiation) that the
following functions of r,

{]-617;{05{:’)!? Izei,ZIn
P T e IV RN T R T and
2an(===7=0 -
o E =P COSH N 1zl
re ze
(‘ 2rico 2'-f)+ a . “"l—"%l”? (45)
(ra(lERCe BT 32 o |

are both sirictly increasing in ¢ for r e (0, 1] Then, with Eqs. (33) and (35) and the definitions of I, and Ty in (39) and (42},
the two functions in (45) necessarily satisfy
zel—2in ZeT—z!n .
: E Iz ', for any z on the ray {z =re:r> 0}, {46)

e >
— 7ty
Vanii Vam

with wy < # € /2. Hence, for any 1> 6, the strictly increasing nature of the functions of r in {45) gives us that the ray
lz= ety ¢ w D). first intersects the arc Dy, in a unigue point rie®, and then later similarly intersects the arc T, in a
unigue point Rn(@)e', where, from (46), we deduce that

Rpf#y > mp(0), forwy, <8 £ n/2 (473

The above inequality gives us that the arc of Ty, in the first guadrant and in the open disk {z € C: |z - %E < %}. is always
outside the associated arc of Dy, in the same region, and these paths are shown in the first quadrant of Fig. 7, for the case
n— 2. We note that arcs D, and T, are only defined, from (3%) and (42), up to the circle [ze ©: {2 — %l = %], where these
arcs approach a common point of this circle. This can be seen in Fig. 7 for the case n=12.

Next, noting that the definitions, of ¥,z of 40} and lpnT (z) of (43), can be applied to any nonzero puint z in the
ﬁr;t guadrant with n 2 6 and with w, < argz < /2, it follows from (40) and (43) that we can express the difference
wn (Z) - (Pn(z) as

r 1-2z 1=z (%)
"rjn (2) —W(zZ) = afg(w{—) - aig(_—z—z—2~) = afg{ETﬁ?r ],

272

$o, that from (33) and (34),

1 2z
W, (2) — ¥h(2) = al‘g<i~j;:—z) =argz - arg{l1+2z) >0, (48)

in the open first quadrant. This gives us that
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Table 1

g="x

T T W BB

10 0.40847 049113 +0.00535

20 01.43923 - 0.43466 +0.00457

40 0.40679 0.40398 +0.00281

g0 0.38890 038736 - +0,00154

160 0.37917 0.37836 +0.00081

320 0.37191 _ 037350 +0.00041
Table 2

= T[

n Ro(%) (%) e Ry(Z) =7at 3

i 0.65250 0.64405 +0.00845

20 0.56890 0.56188 +0.00702

40 0.52137 051713 +0.00424

80 0.49509 0.49278 +0.00231

160 0.48074 047953 +0.00121

320 _ 047265 947234 £0,00062

Table 3 j:
=% -
n Ru(Z) (%) Ra(Z) =) é
i 0.78415 077674 -+0.6074% |
26 0.67560 0.66751 +6.00809 3
40 061372 0.60861 +3.00511 E
20 0.57938 0.57656 +0.60282

160 0.56055 0.55907 +0.00148

320 0.55030 0.54954 _ +0.00076

T,
Wz > WD), (49}

where, for ¢ fixed with wy < argz < /2, the ray 2= re!”: 1 > 0) intersects both arcs D, and Ty in the first quadrant. The
result of {48} wiil be used below.

Next, we consider more carefully the arcs I, and T, | the first quadrant, for n = 6. As can be seen fram Fig. 7, the
particular arcs Dy and Ty are very close, and we explore this closeness in the [cllowing way. Fixing first the angle 8 = T,
the ray {z=ir: © 2 0} intersects the arcs Dy and Ty in the points ra(5)i and Rn{5 i, respectively. The moduli of these
intersections and their differences are given in Table 1 for different values of n, with similar data being given in Table 2 for
9=Z, and Table 3 for & = .

The results of Tables 1-3 show that the differences Rn{f) — ry (&), in the last columns, are all positive, in agreement
with (47), but what is more interesting is that, the terms, in the last columns of Tables -3, tend to zero, since these terms
behave as

£@)
©

'f'*«\
::§
&

A

T
asn - oo, where E(E) = 0.136, (50)
for example. With this in mind, we next consider the following differences of arguments of

8a(2) =W (2) — Un{z) = arg(z) — arg(1 +2) > 0. (51}

If z = Rp()e®, then z is a point of the arc Tn, $0 that if
w! (Ry(@e™) = 2k,  k a positive integer,

then, by definition, R,(#3e™ is an approximare rotated zeso of cos,(nz), n even, or of siny(nz), n odd: similasly, W, (s (9)€i)
is, by definition, a point of the arc Dy,

Next, we give values of &,(ry(8)e'®) and 8,(Ry(%)e') in Tables 4 and 5, which show that these differences are huge,
compared with the differences of Ry(z) — rn{z) in Tables 1-3.

We remark that, for example, the second and third columns of Table 5 for @ = % can be shown Lo converge to 0.51639
as -+ oo,

The above material can be interpreted as follows: Let z= Ra (23" be a point of the arc Ty, with npnT(z) =2k, Then, a
small decrease in Rn{@) to ra{#), gives a point, ra{@)el”, of the arc Dy, where the difference Rn(#) — ry(#) appeass in the
final columns of Tables 1-3. But then, 8,ir(6)e™) of (51) is large and positive, from the second columns of Tables 4-5,
which means that, while ry(2)}e” is a point of Dy, then the inequality of (51) gives us that
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Table 4

=14,

no e By L Sl Rel61e™) Bu{T ()€™} ~ Bu(Rn(M)e™)
W00 o 048213 - 047958 - 0.00255

000 050836 : 0.50602 000234

a9 0 b 052377 - : 052227 : 0.00150

80 o 053252° . o 053167 _ 0.00085

180 0.53738 T 053694 0.00044

320 0.54006 0.53983 000023

Table 5

H=1.

n_ B (8)e) dn(Ra(2e™) Sn(ru(6)e’” — n(Ru(te™)
10 044470 044276 0.00194

20 0ATSIO 0.47271 000239

40 L. 049314 - (49152 0.00162

80 S 0503480 0 T T 050256 T 0.00093

160 © 050831 ~ - 050881 0.00050

3200 0 051253 L 0.51227 o 0.00025

W (r(@)e™) < 2mk. (52}

But, W, ira (et is a strictly increasing function of ¢ from [2, p. 118}, so that there is a ¢’ = ff for which
{0 ) = 27k, (53)

As this argument hoids for all n = 6, we have the desired result of

Theorem 3.2. For any 1 = 6, assuine rhat & satisfies wy < 0 < /2, and that Ry(93e'" is a point of the arc To, In the open first
quadrant, with

] (Ry(@1e™y = 2k, k a positive integer, (54)

so that R, (6)e' is a rotated approximate zero of cosy(nz), n even, or of singénzy, # odd. Then, there is an 1y (9’)8#}/, a point of the
arc Dy, for which

W (ra (67 Y = 2k (same k as in (54)),
s0 that rpte" e is @ zero of s, (nz} in the first quadrant, for which

Rpilt) = 6y, and & =6, {55)

Remark. The items of {55) exactly corresponds to the “definite pattern” noted in (i) and (i} of Section 2, after one rotates
te the first quadrant.

Continuing, we nate that cos,(nz), i even, and sin,{nz), n odd, have no non-real rotated zeros, in the open first quadrant
of A, for any 1< n <4, while for 1 =25, sins{52) has one rotated zero and s5{5z) has one zero in the open first quadrant,
where these two zeros possess the “definite pattern”! As the cases for n = 6 are covered in Theorem 3.2, then this “definite
pattern” holds for all n, as remarked at the end of Section 2.

4. Estimating the number of real and non-real zeros of cos, (nz), n even, and of sin,{nz), n odd

In this section, we give easily computed estimates of the number of real and non-real zeros of cosy(nz), n even, and of
sing(nz), n odd.

To begin, we recall that the closed arc T, of (42), in the first quadrant and for n = 6, is such that z = R,(#)e" is a unique
point of the arc T, for each ¢ with w, <0 < /2. This implies from {42) that z = R, (#)e" satisfies

(Ra@ye!TntrcoseyT _ {fm(l ~ 2R3(@) cos(20) + REON | * (56)

2R3(6)
where @y, €6 < /2, and if
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-0.5 ¢

Fig. 8. The rotated zeros of 535(302) (dots) and the zeros of Cosag(30z) {crosses).

20,01 .
WZMZ (ze Z}” . eil!/,f (2)’ (57)
V2l — 22

then w,f {z) is a reai-valued strictly increasing function of # on the interval wy < 8 L /2, given by

‘ . R2(9)sin26
wlizy:=nlo R {9)sing +29+tan*"{w-'3~wl. 58)
v (@=nl - Ry ] 1— R%(8)cos 26 (
Cur interest now is in the case when 8 = 7 /2, so that from (56} and (58),
s n{l + Ri(m /22 | 1/
Rn(m)ez{n ( +4 S /2)) J : (59)
2 2R /2)

and

(T B 1 W Y L
W (IRH(E))-—HJ:Z Rr,(z):,+?r, (60)

where s(/,f{iRn{fr/2))/2:rr is a meqsure of the number of zeros of cos,(nz), n even, or of sing(nz}, n odd, which lie sutside
of the set K of (29), in the closed first quadrant of A. As this number of zeros is necessarily a noanegative integer, then
using the floor function,

Lx] :=largest integer < x  for any real x,

appiied to (60), gives us the result of

Theorem 4.1. For any positive integer n = 6, L{Pnr{i Ru{y0/2)) /25 | estimates the number of zevos of £os, (N2}, 1 even, or of sing{nz),
n odd, which lie outside the set K of {29) in the closed first quadrant of A.
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1 0.5 0 4.5 1

Fig. 9. The rorated zeros of 5310312} (dots) and the zeros of singy(312) (crosses).

As an example of Theorem 4.1, consider the case of n = 30, where we wish fo estimate the number of zeros, of
cos3p(302), in the ¢losed first quadrant of A, which lie outside the set K. It can be verified from {59} and (60) that

R3G(§> =0.41800, and Wi, (iR3p(mm/2))/2 = 6.00418.

so that L'Jf}%(ngg{?T/z)}/?.ﬂfj =6 and we see, from Fig. 8, that the number of zeros of cos30(30z) outside the set K, in the
ciosed first quadrant, is exactly 6, where one of these & zeros is real and positive. Similarly, for n = 31, we have

R (%) =0,41658, and ¥4 (iR31(/2)}/27 = 6.19466,

so that Lw; (iRy1{m /2))/27 | = 6, which is again correct from Fig. 9, but in this case, there is po real zero in the estimate.

The point of Theorem 4.1 is that estimating the number of zeros of cosa{nz), for n even, or of sing(n2), for n odd, in
the ciosed first guadrant, can be easily determined from a calculation of Llif,,T{iRn(Jf/E))/Z:frj, which is far simpler than
finding alf the zeros of cosy{nz), n even, or of singy(nz), n odd, We further note that the result of Theorem 3.2 easily
extends to the estimation of the aumber of zeros of cosy(nz), i even, or of sing(nz), n odd, in any sector O < By S /2
of A, upon determining the two numbers ¥ (Rq(6)e'™ ) and @] (R, (#2)e'™), from (58), and using LT (Rp(ta)e*2) —
@I (Rute)e™ yy2m .

The previous paragraphs were aimed at estimating the number of zeros of cosa(nz), n even, angd of sin,(nz), r odd, which
lie outside of K, which leaves cpen the estimation of their real zeros. To this end, we mention that the results of Ref. 7]
can be used, as follows. For any ne [N, set

. 1+e 2"
n+ :msm‘](—igmg) (alln c M), (61}

where £F /@ = 0.08043 for all n = 5. Then, for 7 even (n € 2N), let
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f 1 n i

e — = kp g, wherekn::mesj and 0 <ty < 1. (62}
er 2 . et 2

it follows from Lemma 3.1 of [7} that if & /7 < f,, then cos,(nz) has exactly 2k, simple real zeros in the interval -1 41
If ty < £F/m, then from Lemma 4.1 of [7], there are exactly 2k, simple real zeros of cosp{nz) in the slightly larger interval
(— P, +pm), where pp o= 2(1+ 1.

As an example, for n = 30, we have from (62) that k3p ==4 and t3p = 0.01298, so that t3p < _EgE/rr. In this case, p3p =
0.38014 > % = 0.36787, and cos30(302) has & simple real zeros in the interval |—0.38014, +0.38014), which is correct from
Fig. 8.

Similarly, for m an odd positive integer {m € 2N — 1), let

m m
— =Ky by, wherekn = LW—J and 0 <ty < 1. {(63)
er e

Then, from Lemma 3.2 of |7}, if &5/ < ti, then sing (mz) has exactly 2kpm + 1 simple real zeros in the interval i—%.+%§.
If tyy < &F /7, then from Lemma 4.2 of [7], then there are exactly e + 1 simpie real zeros of sing{mz) in the interval
{—Pm, Pp), WhHere pm 1= ‘::(1 + ;};) . ”

As a firal exampie, consider the case m = 31. From (63), we have kg = 3, t3; = 0.63008, and é;'; /7 = 0.08043, so that
5; < t31. Hence, sinz; (31z) has exactly 7 simple real zeros which all lie in the interval [—%,%% J, as can be seen to be true
from Fig. 9.

One item we have not discussed here is the occurrence of, and distinction between, so-catled real Hurwitz zeros of
cosy(nz} of sing(nz), and real spurious zeros of cos;(nz) and sing{(nz), which has to do with the special behavior of real
zeros of cos,(nz) or siny(nz), which arise outside the real intervai Iw%. +u:; 1. This we leave for another occasion.
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