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Abstract. The following problem arose in a correspondence between the au-
thors, concerning the exact location of the set of eigenvalues of special real
matrices, arising from a problem of synchronization of chaotic oscillators.
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1. Introduction

The original form of this matrix problem, which arose from an application of the
synchronization of chaotic oscillators, was this. Let k be a fixed positive integer
and for all integers m ≥ k + 1, let A = [ai,j] ∈ Rm,m be such that

(1)




ai,i = k (all 1 ≤ i ≤ m),

ai,j = 0 or − 1 (all i �= j, 1 ≤ i, j ≤ m),∑m
j=1 ai,j = 0 (all 1 ≤ i ≤ m).

Then, where are the eigenvalues of all the matrices A which satisfy (1)?
For our purposes, we found it more convenient, mathematically, to express the

matrix A of (1) as A = kIm − B, where Im is the m × m identity matrix and
B = [bi,j] ∈ R

m,m satisfies

(2)




bi,i = 0 (all 1 ≤ i ≤ m),

bi,j = 0 or 1 (all i �= j, 1 ≤ i, j ≤ m),∑m
j=1 bi,j = k (all 1 ≤ i ≤ m).

Thus, from (2), B is a nonnegative matrix in R
m,m. Moreover, let ρ(B) denote the

spectral radius of B, i.e.,

ρ(B) := max
1≤i≤m

{|λi| : λi is an eigenvalue of B} .

It follows from the well-known theorem of Geršgorin’s [3] that if λ is any eigenvalue
of B, there is an i, with 1 ≤ i ≤ m, such that |λ − bi,i| ≤

∑m
j=1,j �=i |bi,j|. But,

using (2), this reduces to |λ| ≤ k for all eigenvalues of B, so that ρ(B) ≤ k. On
1
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the other hand, for the vector v := [1, 1, . . . , 1]T in Rn, we have that Bv = kv, so
that k is an eigenvalue of B. Thus,

(3) ρ(B) = k, for all matrices B satisfying (2).

Next, we define the set B(k) as

(4) B(k) :=
{
B ∈ R

m×m : m ≥ k + 1 and B satisfies (2)
}

,

and if σ(B) denotes the eigenvalues of B, it follows that

(5)
⋃

B∈B(k)

σ(B) ⊆ {z ∈ C : |z| ≤ k} .

In addition, as the disk on the right in (5) is closed, in the usual topology of the
complex plane, then the topological closure of the set of all eigenvalues of all B in
B(k) necessarily satisfies

(6)
⋃

B∈B(k)

σ(B) ⊆ {z ∈ C : |z| ≤ k} , for each positive integer k.

Our goal here is to precisely determine
⋃

B∈B(k), for each integer k ≥ 1. This
will be done in two steps.

2. Step 1: The Case k = 1

Our first result is

Theorem 1. For k = 1, we have

(7)
⋃

B∈B(1)

σ(B) = {0} ∪ {z ∈ C : |z| = 1} .

Remark. This states that, for any m × m matrix B in B(1), each eigenvalue
of B is either 0, or a point on the unit circle {z ∈ C : |z| = 1}, as shown in Fig. 1
below.

Proof. Consider any m×m matrix B ∈ B(1), where m ≥ 2 from (4). Then, there
is an m × m permutation matrix P for which PBP T has the special form

(8) PBP T =




R1,1 R1,2 · · · R1,t

O R2,2 · · · R2,t
...

...
. . .

...
O O · · · Rt,t


 , with 1 ≤ t < m,

where each diagonal submatrix Rj,j in (8) is square, and is either irreducible or a
1 × 1 null matrix. (The expression in (8) is called the normal reduced form of the
matrix B; see [4, p.51].) We note that the union of the eigenvalues of the matrices
{Rj,j}t

j=1 gives all the eigenvalues of B. Because k = 1 in this theorem, it is easily
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Figure 1. Eigenvalue location for the case k = 1

seen that each diagonal submatrix Rj,j of (8) is either a 1×1 null matrix, or a full
cycle square permutation matrix, such as the following l × l matrix

(9) Sl =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0




, where l ≥ 2.

The eigenvalues of Sl are given by

(10) exp

{
i
2πj

l

}l−1

j=0

,

which are uniformly spaced (in angle) on the unit circle {z ∈ C : |z| = 1}.
Next, consider the last square submatrix Rt,t of (8). We further note that the

final matrix Rt,t in (8) cannot be a 1 × 1 null matrix, as this would imply that
the last row of equation (8) consists only of zeros, which contradicts part 3 of (2).
(This also shows why t < m in (8).)

The previous paragraph shows that, for any m × m matrix B in B(1) (where
m ≥ 2), the eigenvalues of B are made up of blocks of uniformly spaced points on
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the unit circle, and possibly some zero eigenvalues, so that

(11)
⋃

B∈B(1)

σ(B) ⊆ {0} ∪ {z ∈ C : |z| = 1} .

Next, we consider the following (l + 1) × (l + 1) matrix in B(1), namely

Bl+1 =




0 1 0 0 · · · 0
0
... Sl

0


 ,

where Sl is the matrix of (9) with l ≥ 2. Then, Bl+1 is an element of B(1), and
moreover, all the eigenvalues of Bl+1 are the eigenvalues of (10), plus one eigenvalue
of zero. Then, on letting l tend to infinity, we easily see that the topological closure
of the set of all eigenvalues of all B in B(1) satisfies

(12)
⋃

B∈B(1)

σ(B) = {0} ∪ {z ∈ C : |z| = 1} ,

the desired result of Theorem 1. This final set in eq. (12) is shown in Figure 1.
�

3. The Case k ≥ 2

Our next result states that the spectra of matrices in B(k), k ≥ 2, are vastly
different from the case of B(1).

Theorem 2. For any integer k with k ≥ 2, we have

(13)
⋃

B∈B(k)

σ(B) = {z ∈ C : |z| ≤ k} .

Remark. This states that the collection of all eigenvalues of all B in B(k), for
k ≥ 2, fills out the disk {z ∈ C : |z| ≤ k}.

Proof. We already know from (6) that

(14)
⋃

all B∈B(k)

σ(B) ⊆ {z ∈ C : |z| ≤ k} (any k ≥ 2),

so it remains only to show that equality holds in (14).
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Fixing a k ≥ 2, consider the basic circulant permutation matrix Dm, (cf. [1, p.
26])
(15)

Dm :=




0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1
1 0 0 · · · 0 0


 , where Dm ∈ R

m,m, where m ≥ k,

so that Dm satisfies (2), but with m ≥ k. The eigenvalues of Dm are, from (9)

(16) σ(Dm) =

{
exp

(
i
2πj

m

)}m−1

j=0

.

Then, we consider the associated circulant matrix

(17) Cm(k) := Im + Dm + D2
m + · · ·+ Dk−1

m (any k ≥ 2),

whose eigenvalues are well-known to be given by

(18) σ (Cm(k)) =

{
k−1∑
j=0

exp

(
i
2πjl

m

)}m−1

l=0

(all m ≥ k).

Next, we form the Kronecker product Dm ⊗ Cm(k), given by

(19) Dm ⊗ Cm(k) :=




O Cm(k) O · · · O O
O O Cm(k) · · · O O
· · · · · · · · · · · · · · · · · ·
O O O · · · O Cm(k)

Cm(k) O O · · · O O


 ,

which is an m2 × m2 matrix, where each O is a null m × m matrix. It follows
(cf. [2, p. 245]) that the m2 eigenvalues of Dm ⊗ Cm(k) are given by

(20) σ (Dm ⊗ Cm(k)) =

{(
k−1∑
l=0

exp

(
i
2πlj

m

))
· exp

(
i
2πs

m

)}m−1,m−1

j=0,s=0

.

We also have from (20) that

(21)
⋃

m ≥ k

σ (Dm ⊗ Cm(k)) ⊆ {z ∈ C : |z| ≤ k} .

To give further insights in the remainder of the proof of Theorem 2, consider the
following case of m = 8 and k = 2. The associated matrix D8 ⊗ C8(2) from (19)
has 64 eigenvalues, which are shown in Fig. 2, where the small solid disks are the
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Figure 2. The case k = 2, m = 8.

eight eigenvalues of C8(2), which are given, from (18), as

(22) σ (C8(2)) =

{
1 + exp

(
i
2πj

8

)}7

j=0

.

Then, each small solid disk in Fig 2 defines a specific circle, with center 0, which
passes through the given solid disk, and on this circle, there are eight equally
spaced zeros, where each such zero is a small open disk (if it is not already a solid
disk). The 64 eigenvalues of Dm ⊗ Cm(k) are given by the case m = 8 and k = 2
in (20), where we note that some of these zeros are multiple, as in the case of
z = 0.

Because of the high symmetries of the eigenvalues in Fig. 2, it is not difficult to
show, in general for the case k = 2, that the shortest distance between any given
eigenvalue of Dm ⊗ Cm(2) and its nearest neighboring eigenvalue is at most the
distance between the eigenvalue z = 2 and its nearest eigenvalue z′ = 1+exp

(
i2π

m

)
,

i.e.,

|z − z′| =

∣∣∣∣2 −
(

1 + exp

(
i
2π

m

))∣∣∣∣(23)

=

[
2

(
1 − cos

(
2π

m

))] 1
2

∼ 2π

m
, as m → ∞.

This means that, on taking the union of all eigenvalues of Dm⊗Cm(2) for all m ≥ 2,
these eigenvalues necessarily fill out the closed disk {z ∈ C : |z| ≤ 2}, which gives
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us that

(24)
⋃

all m ≥ 2

σ (Dm ⊗ Cm(2)) = {z ∈ C : |z| ≤ 2} .

But, as Dm ⊗Cm(2) ∈ B(2), for all m ≥ 2, we have the result of (13), for the case
k = 2.

To extend the above result for k = 2 to any positive integer k > 2, we define, in
connection with (17), the polynomial function

(25) Fk(z) := 1 + z + z2 + · · ·+ zk−1, where z = eiθ,

so that

(26) Fk(z) =
1 − zk

1 − z
, for any z �= 1.

It follows from (25) that (20) can be also expressed as

(27) σ (Dm ⊗ Cm(k)) =

{
Fk

(
exp

(
i
2πj

m

))
· exp

(
i
2πs

m

)}m−1,m−1

j=0,s=0

.

Then, Fk(e
iθ) has the properties given in Lemma 1 below.

Lemma 1. For any k ≥ 2, we have

(28)




i) |Fk(e
iθ)| ≤ k (all 0 ≤ θ ≤ 2π), with Fk(1) = k,

ii) |Fk(e
iθ)|2 = Fk(e

iθ)Fk(e
−iθ) = (1−cos(kθ))

1−cos(θ)
( all 0 < θ < 2π),

iii) Fk(e
i(2πj)/k) = 0 (all 1 ≤ j ≤ k − 1),

iv) Fk(e
i(2πj)/(k−1)) = 1 (all 1 ≤ j ≤ k − 2, for k ≥ 3),

v) |Fk(e
iθ)|2 is continuous in θ on [0, 2π], and is strictly

decreasing to zero on the interval
(
0, 2π

k

)
,

vi) Im Fk(e
iθ) > 0 (all 0 < θ < 2π

k
).

Proof. Items (28i) and (28ii) are immediate from (25) and (26). Then from (26),
(28iii) follows. Next, from (26), we have that Fk(z) = 1, for z �= 1, is equivalent
to z(zk−1 − 1) = 0, from which (28iv) follows. Next, to obtain (28v), it can be
verified from (25) and (28ii) that

(29) |Fk(e
iθ)|2 = k + 2

k−1∑
j=1

(k − j) cos(jθ),

for any θ in [0, 2π] and for any k ≥ 2, which give the continuity of |Fk(e
iθ)|2 on

[0, 2π]. With this expression and with standard trigonometric identities, which
change with k, it can be verified that d

dθ
|Fk(e

iθ)|2 < 0 on the interval
(
0, 2π

k

)
,

for each k ≥ 2, which gives the desired result of (28v) that |Fk(e
iθ)|2 is strictly
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decreasing to zero on
(
0, 2π

k

)
. As an example, consider the case k = 3 of (29). On

differentiating, one obtains from (29), with some minimal effort, that

(30)
d

dθ
|F3(e

iθ)|2 = −4 sin θ(1 + 2 cos θ),

which is negative on the interval
(
0, 2π

3

)
. Finally, to establish (28vi), it follows

from (25) that

(31) Im Fk(e
iθ) =

k−1∑
j=0

sin(jθ),

which can be verified, using trigonometric identities again, to give vi) of Lemma 1,
for any k ≥ 2. As an example of this, we deduce from (31) that

Im F3(e
iθ) = sin θ · (1 + 2 cos θ),

which is positive on the interval
(
0, 2π

3

)
. �

In Figures 3 and 4, we show the graphs of F2(e
iθ) and F3(e

iθ), for 0 ≤ θ ≤ 2π.
For k = 3, we see, from (28iii) and (28iv), that F3(e

iθ), with increasing θ, first
passes through zero when θ = 2π

3
, and then through unity when θ = π, then

again through zero when θ = 4π
3

, thereby creating a single inner loop, as shown in
Fig. 4. In Fig. 5, we show the graph of F5(e

iθ), for 0 ≤ θ ≤ 2π, and in this case,
F5(e

iθ), with increasing θ, similarly shows the existence of three inner loops. (We
will come back to a discussion about these inner loops.). Note, from Figures 3–5,
that ImFk(e

iθ) is positive on the interval
(
0, 2π

k

)
, which comes from (28vi).

We return to the proof of Theorem 2, for a fixed k > 2, and a variable m, with
m ≥ k. Consider the km+1 points of the curve Fk(e

iθ), where θ takes the equally

spaced values
{
θj := 2πj

km

}mk

j=0
. We see from (28vi) that the numbers

{
Fk(e

iθj )
}m

j=0

are all in the closed upper-half plane, with Fk(e
iθ0) = k and Fk(e

iθm) = 0. More-
over, the numbers

{
Fk(e

iθj )
}
, for 0 ≤ j ≤ m, have strictly decreasing moduli

from (28v). Also, it can be verified that the successive differences of these num-
bers, i.e.,

(32)
∣∣∣Fk

(
ei 2π(j−1)

km

)
− Fk

(
ei 2πj

km

)∣∣∣ > 0, for j = 1, 2, . . . , m,

are such that the largest of these differences is the first one, namely

(33)
∣∣∣Fk (1) − Fk

(
ei 2π

km

)∣∣∣ ,
as can be seen directly in Figures 4 and 5. In particular, it can also be shown that

(34)
∣∣∣Fk (1) − Fk

(
ei 2π

km

)∣∣∣ ∼ π(k − 1)

m
, as m → ∞.

The result of (34) has two interesting consequences. First, of the points
{

Fk(e
i 2πj

km )
}m

j=0

in the closed upper-half plane, the first difference of these moduli in (32) is largest,
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Figure 3. The curve F2(e
iθ) for 0 ≤ θ ≤ 2π and the point z = 0.
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Figure 5. The curve F5(e
iθ) for 0 ≤ θ ≤ 2π, and the thirteen

points F5(e
iθj), for θj = 2πj

60
, for j = 0, 1, . . . , 12, and m = 12.

which, from (34), is O (
1
m

)
, as m → ∞. Then, on recalling (20), the m2 eigenvalues

of Dm ⊗ Cm(k) can be expressed, using (25), as

(35) σ (Dm ⊗ Cm(k)) =
{[

Fk

(
ei( 2πl

m )
)]

· ei 2πs
m

}m−1,m−1

l=0,s=0
,

which creates m2 eigenvalues, built on rotations of the points Fk

(
ei( 2πl

m )
)

on the

curve Fk(e
iθ), by the final factor ei 2πs

m in (35). This means that, of all m2 eigenval-
ues of Dm⊗Cm(k), the difference in modulus between any eigenvalue of Dm⊗Cm(k)
and its nearest eigenvalue, cannot exceed the difference of (34), which is O (

1
m

)
,

for m large. Hence, on letting m → ∞, the eigenvalues of all Dm ⊗ Cm(k), for all
m ≥ k, necessarily fill out the disk {z ∈ C : |z| ≤ k}. Thus, as Dm⊗Cm(k) ∈ B(k),
we have the desired result of (13) of Theorem 2. �

We return to the inner loops in Fig. 4 and 5. We note that the proof of Theo-

rem 2, for k > 2, only drew upon the values of Fk(e
iθj) for

{
θj = 2πj

km

}m−1

j=0
, in the

upper half-plane, i.e., for values of 0 ≤ θj ≤ 2π
k

, while the associated circles were
associated with just these points. Let us now consider similarly the solid disks of
Fig. 2. If we delete the three solid disks in the open lower half-plane, the circles
generated from the five darkened points in the upper half-plane still effectively
cover the whole disk {z ∈ C : |z| ≤ 2}, and this is what is taking place here! In

other words, one only has to work with the values of Fk(e
iθj) for

{
θj = 2πj

km

}m−1

j=0

to cover the entire disk {z ∈ C : |z| ≤ 2}. Similarly, for k = 5, the three inner
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Figure 6. Eigenvalues of D100 ⊗ C100(3).

loops of Fig. 5 can be considered to be superfluous in filling out the larger disk
{z ∈ C : |z| ≤ 5}.

To carry this a bit further, consider the unique inner loop, in the case k = 3
of Fig. 4. The maximum distance, from any point of this inner loop to z = 0, is
exactly unity, which means that, applying our technique of building circles and
letting m → ∞, only results in forcing many more eigenvalues into the inner disk
{z ∈ C : |z| ≤ 1} of the larger disk {z ∈ C : |z| ≤ 3}. This is precisely what causes
the darkening of the inner unit circle in Fig. 6.

In a similar way, the maximum distance from z = 0 to any point of the three
inner loops, for the case k = 5 in Fig. 5, turns out to be exactly 1.25, and one can
directly see in Fig. 7 the associated darkening of the disk with center z = 0 and
radius 1.25, caused by the swelling of eigenvalues in this region, because of these
loops. This can be more easily seen in Fig. 8, which gives a zoomed-in view of the
darkened area of Fig. 7.
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Figure 7. Eigenvalues of D100 ⊗ C100(5).
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Figure 8. Detail of the darkened area for the Eigenvalues of D100 ⊗ C100(5).
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