ITERATIVE METHODS FOR SOLVING MATRIX EQUATIONS
R. S. VARGA, Case Institute of Technology

1. Intreduction. Iterative methods are, in concept, well known to us all since
it is likely that each of us has at one time or another used Newton’s method to
find square roots of numbers. It is probably not as well known that iterative
methods, utilizing the great speeds of modern computing machines, are exten-
sively used today in practical computations for solving matrix equations which
arise from finite difference approximations to elliptic partial differential equa-
tions of reactor technology and petroleum technology.

The object of this paper is to illustrate the use of finite difference techniques,
and to illustrate the nature of iterative methods for solving the associated matrix
equations. We shall do this by means of a very simple one-dimensional problem.
It is hoped that this simple example will serve as an elementary introduction
to the theory of such iterative methods which is covered in much more detail in
(1, 2,3,5,6].

2. A simple two~point boundary value problem. Consider the solution of the
two-point boundary value problem:

(1) —yP(x) + oy(x) = fx), 0<x<1, @ =d%/da?,
where
(2) y0) =, (1) =8

We assume that o, 8, and ¢ are given constants with ¢ 20, and f(x) is a given
function such that y®(x) exists in 0<x =<1, and

3) ly®@| =M, 0=a

IA

i.

By means of Taylor’s Theorem, we now express —y® in terms of a three-point
central difference approximation plus an error:

@) —yD(e) = [2y(x:) — (@ + B) + y(x — B)]/B2 + B2y (x; + 0.1)/12,

where ]011 <1, x;=th, 1 =¢= N, and k=1/(N-+1). With y(x;) =y;, the differen-
tial equation (1) can be written for the particular values x;, 1 £¢ < N,in matrix
form, as

® Ay = k+ =(y),
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where 4 is an N XN real matrix, and y, k, and =(y) are vectors, all given ex-
plicitly by

2+ oh? -1 V1 114 a/k?
' 1| -1 2408
4= +U\ Ly = 3.)2 : k= f:z ’
h? -1 . .
—1 2 ok? YN fv+ 68/

(6) s+ 041)

g = ——

12 3
Y@ (ay + Onh)

Neglecting the vector «(y) in (5) gives us the matrix equation

©) Az =k,

whose solution z is defined to be our discrete approximation to the solution
y(x) of (1)-(2), i.e., 2;, the jth component of z, is to approximate v;=y(jh).

It is obvious that 4 is real and symmetric. Noting that all the diagonal
entries of A are equal, we can express the matrix 4 as

2+ oh?
(8) A= @+ k) [I - B],
h2
where B is an N XN real symmetric matrix given explicitly by

01 0

3 1 10 1\

@2+ o) \\1
0 10

Because of the tridiagonal form of B, it is easy to verify that the vector x,
with k-th component x{ defined by P =sin(jkrh), 1 Sk SN, is an eigenvector
of B for each j, with the corresponding eigenvalue u; given by

(10) py = 2cos (juh)/(2 + oh?), 1=j=N.

Then, it follows that the spectral radius p(B) =maxXigjsv |,u,-l is less than unity,
and thus, from (8), 4 is evidently positive definite. Moreover, since p(B) <1,
we can express A~ by means of the convergent matrix infinite series

(1) A t=yI =B t=x{I+B+B+ -}, v=nr/Q2+ ).

Note that all entries of B are nonnegative from (9), so that all powers of B and
hence A-! have only nonnegative real entries. This last fact will be useful in
proving in the next section that the solution z of (7) is “close” to the solution
y(x) of (1)-(2), evaluated at the points x;=1k, 1 =14 =N.
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3. Convergence of the discrete approximation. To measure the discrepancy
between the components z; of the vector z of (7) and the numbers y;=y(ih), we
subtract (7) from (5) giving 4(y—z) ==(y), or, since 4 is nonsingular,

(12) y—z= A7(y).

Now, from (3), each component of =(y) is bounded above by M#?/12. Hence,
since A1 has only nonnegative components, !yi—zil < (Mh2/12)(A1E), for all
1<4i <N, where £ is the vector with all components unity. Thus, if wis any vec-
tor with Aw =¥, we obtain the bound Iyi——zil < Mh2w,;/12. But it is easy to ver-
ify that the choice w(x)=x(1—x)/2 with w;=w(ik) satisfies AW=E, so that

(13) | i — 2| < MI[ik(1 — ik)]/24 S MRY/96,

and last inequality following since w(x) £1/8 for 0 =x =1. This means that z
is close to y if the mesh spacing % is sufficiently small.

4. The Jacobi iterative method. For k small, the result of the previous sec-
tion shows that solving Az=k will give us a reasonable approximation to the
solution of the original differential equation (1)-(2). To solve Az=k for z, let
us combine (7) with (8) to form

(14) z= Bz g,

where g=(h¥k)/(2+0h?). Familiarity with the method of successive substitu-
tions suggests that we consider the following iterative method, called the Jacobi
iterative method,

(]_5) zmt+l) = Bz (m) + g, m = O’

where z©® is some initial estimate of the unique solution of (14). Writing
z(m =z 4-¢ to define the error e™ at each iteration, we see from (14) and (15)
that etV = Bet  from which we deduce that

(16) e = Brel®, m = 0.

Since B is a real symmetric N X N matrix, the eigenvectors {x(f) } ¥, of B can be
normalized to form an orthonormal basis for the associated N dimensional

vector space. Thus, there exist constants ¢; such that ¢ = ¥ ¢x®, where
Bx® =yux®, and it follows from (16) that

N
17 em = 27 (u)nex®,  mz 0.

=1

Because all y; are less than unity in modulus, ™ evidently tends to the zero
vector for any initial £©. Equivalently, the Jacobi iterative method converges
for any initial z®. What is more, from (10) each component of the error glm
with respect to the orthonormal basis {x®}]., is reduced per iteration by a fac-
tor not exceeding in modulus

(18) p(B) = 2 cos wh/(2 + ok?) =1 — (x* + o)h?/2 + o4, k] 0.
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Having just shown that the iterative method of (15) is convergent, it is our
sad duty to report that this iterative method can be extremely slowly convergent
for small &. To illustrate this, let A=10"2? and o =1. Then, to reduce each com-
ponent of £ by 10 would require approximately m iterations, where [p(B)]m
~0.1, and m turns out to be about 4200. Even for fast computing machines,
this would be a slow process, and obviously there is a need for faster iterative
methods.

5. The successive overrelaxation iterative method. To introduce just one
such faster iterative method, we first express the matrix B of (9) as the sum
L+L7, where L is a strictly lower triangular matrix. Multiplying both sides of
(14) by the real parameter w, and then adding z to both sides of the result yields,
after rearrangement,

(19) (I — bz = {(1 — )+ oL}z + wg.

Since L is strictly lower triangular, then (I —wlL) is nonsingular for any choice
of w. Thus, we can multiply both sides of (19) on the left by (I —wL)~*, which
gives

(19%) z= (I~ ol) [ — ) + L]z + o(I — wl)~g.

Simply inserting iteration superscripts then serves to define the successive over-
relaxation (SOR) iterative method:

(20) z0) = (I — L) (1 — w)I + wL7]z™ + (I — wL)~'g, m = 0.

At first glance, this iterative method of (20) looks rather formidable, and would
appear to be implicit. From the definition of B in (9), however, thisiterative
method can also be written equivalently as

@) a = = u[@ 4 ohDs™ = s 5~ W@ - o),

== N

Starting with i=1, zo=0« is fixed by the boundary condition (2), and we can

solve for the new component 2™ in (21) in terms of the old components z{™

and z{™. Continuing from left to right, we see that this is an explicit iterative
method.
In analogy with the Jacobi iterative method, we similarly seek the eigen-

values A of the matrix
(22) o= (I — L)1 — )] + wL7}.

Thus, we seek the roots of det {}\I——J?,w} =(. Since det(I—~wl)=1, it follows
that

(23) O0=det (] —wL)det M — &,) = det [\ + & — 1)] — (AL + L7)].
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Previously, we explicitly determined the eigenvectors x% and eigenvalues u;
of the matrix B of (9). In the same manner, one can verify that the vector w,
with kth component w§ defined by 7#/2 sin (jkrh), is an eigenvector of 7L-+L7
for any 7, with corresponding eigenvalue 71/2u;. Consequently, with 7=\ there
is a natural pairing from (23) of the eigenvalues A of £, with the eigenvalues u
of B through

(24) A+ o — 1) = Aol

which is the fundamental result of Young [8]. The real significance of this ex-
pression (24) is that it can be used to explicitly determine the real parameter w
which minimizes the spectral radius of £,. Indeed, it is now well known [8] that

(25)  minp(La) = p(Ls) = wp — 1, where w, = 2/(1 + /1 = p(B)).
Using the result of (18), we see that

(26) p(L,) =1 —2(v7 F )b+ 00, kO

Comparison of the exponents of % in the leading terms of (18) and (26) shows
that an order of magnitude improvement in convergence rate has been made,
simply by the adroit choice of the parameter w. To illustrate this numerically,
again let #=10"? and ¢ = 1. Then, the least positive integer m such that [p(£.,) ]
=0.1 now turns out to be approximately 35, as compared with 4200. For the
slight increase in arithmetic requirements per iteration in passing from (15) to
(21), a great over-all improvement in computational efficiency has been achieved.

6. Alternating direction implicit methods. After all is said and done, the
solution of the discrete one-dimensional problem Az =%k in (7) would not be de-
termined by means of iterative methods, except, of course, in expository papers
on the subject! Rather, straight-forward Gaussian elimination applied to the
matrix problem Az =k is not only efficient, but it is very stable relative to the
growth of rounding errors, thanks to the positive definite tridiagonal nature of 4.
The Gaussian elimination algorithm for solving this simple problem can be
expressed as

W=~ 1/b;  wi= (= 1/t wiy), 2SiSN—1, b=2+ ok,
Q27 g = BR/b; gi= (PRt gi)/(0+wi), 2SiS N,

l2v = gn; %y = g = Wilitl, 112N~ 1.

fl

Our simple one-dimensional problem can be useful once more to us in quickly
introducing a particular variant of the alternating direction implicit- (ADI)
methods, for the discussion above shows that discrete approximations to the
one-dimensional problem —u,,+ocu=f can be directly solved. Consider then
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the second order elliptic partial differential equation

(28) ~ (%, 9) = (%, 9) + 2ou(z, 3) = f(x,3), 0 < y<1,
in the unit square R with Dirichlet boundary conditions

(29) uw, y) = g(%, ), (x,3) € IR,

where g is specified on dR, the boundary of R. Writing (28) as

(30) [~ tter + ou] + [—wmy + ou] = f,

each term in brackets represents a differential operator in one of the space
variables. Thus, with

(31) {Hu(xo, y0) = [(2 + oh?)u(wo, yo) — (u(xo + &, o) + u(eco — k, yo))1/ 12,
Vo, 30) = [(2 + oh2)u(wo, yo) — (w(xo, 90 + &) + u(xo, yo — h))]/12,

representing discrete approximations to these differential operators on a uniform
mesh 2=1/(N+1), the discrete matrix problem corresponding to (28)—(29) is

(32) Hu+ Vu =k,

where H and V are real N2X N? matrices. It is not difficult to see that, with
suitable numbering of the mesh points of the square, H and V are direct sums
of the particular matrix 4 of (6). An important application of the discussion
above concerning Gaussian elimination is that matrix problems of the form
Hx=s and Vx=t can be solved directly for x, which is to be a basic part of the
iterative method to be described. Writing (32) as the pair of equations

(33) (H+rDu = (rI — V)u + k, (V+rDu= (rI — Hu +k,

we insert iteration superscripts to define the Peaseman-Rachford alternating
direction iterative method [4]

(H + ral)um+ii) = (17 — Vum 4k,

(34)
(V + rDu®™h = (7, — Muein 4k 20,

where {7,} is any sequence of positive acceleration parameters. Note that carry-
ing out a single complete iteration of (34) requires the direct solution of matrix
equations on horizontal mesh lines, then on vertical mesh lines, hence the name
alternating directions.

For the particular problem (28)—(29), we shall now show that the iterative
method (34) converges for any fixed positive acceleration parameter »>0. In
analogy with section 4, we first exhibit explicitly the eigenvectors of the N2 X N?
matrices / and V. Defining the column vector a®) with N? components o
by

(35) aiy’ = sin(kwik) sin(lnik), 1Si,jSN, 1shl=N,
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where o refers to the component of a1 at the ith column and jth row of the
uniform mesh on the unit square, we see from (31) that

Ho®b = [4sin? (krh/2) + och?]atb;
Va®bd = [4sin? (rk/2) + oh?la®d 1 < k1SN,

il

(36)

For any fixed >0, the error vectors e associated with (34) evidently satisfy,
in analogy with (16),

(37) ™V = T,e@™ g 2 0, where T, = (V + vI)~(rI — H)(rI + H)Y"(oI — V).
Thus, from (36), we have that T.a® Y =, ;a®D where

[r — (4sin? (kxh/2) + oh®)|[r — (4 sin? (Irk/2) + oh?)]

[r + (4 sin? (kxh/2) + oh®)][r + (4 sin? (nh/2) + oh?)]
and clearly, l)\k,z] <1 for any 1=k, I= N since r>0. Because the a®? form,
after normalization, an orthonormal basis for the associated N? dimensional
vector space, it follows from |As,;] <1 that e tends to the zero vector as m— «

for any initial vector £, which proves that the iterative method of (34) con-
verges for any fixed > 0. If we now choose the parameter r to be

? = {(4sin? (xh/2) + oh?)(4 cos? (xh/2) + ah?)}1I2,

it turns out [6, p. 216] that the spectral radius p(7%) is exactly equal to that of
the successive overrelaxation iterative method applied to (28)-(29), so that
from (26),

SEISN,

k.l

(38) p(I7) =1 = 2(v/n* + o) h+0(*), k] O

The really interesting results for such ADI methods are obtained by using
a sequence of optimally selected positive parameters [7; 6, p. 223], since the use
of such parameters can lead to a further order of magnitude improvement in
convergence rates. Specifically, with such optimally selected parameters, we
merely state that the average error reduction in norm per iteration turns out
to be asymptotically

_ @+
In (1/7)

which should be contrasted with (38). It must be mentioned, however, that the
result of (39) depends heavily on the assumption that the matrices H and V
have the common set of eigenvectors a®?, which is equivalent to the assump-
tion that H and V commute, i.e., HV = VH. For cases in which HV = VH, the
results concerning convergence rates of ADI methods are much less complete.

There is a rich and growing literature on the subject of iterative methods;
our aim here was to introduce quickly some of these methods. More complete
results, beyond the scope of this paper, can be found in [2, 3, 5, 6].

(39) k1O,
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