


MOEBIUS INVERSION OF FOURIER TRANSFORMS
By RicEarp R. GorpBERG AND RIcHARD S. VARGA

Introduction. The classical inversion of

™) F(1) fm o) cos tu du

is

fl

(1) ?rj; F(u) cos tw du.

In this paper we present a method of inverting (*) which uses no integration
whatsoever. The method consists of an application of the Moebius inversion
formula combined with a variation of the classical Poisson formula from Fourier
analysis. The main result is contained in Theorem 3. (Added in proof. It has
been called to our attention that a similar result was announced by R. J. Duffin
in the Bulletin of the American Mathematical Society, vol. 47(1941), p. 383.)

Tarorem 3. If1. ¢(u) of bounded variation on (0 < w < R) for every R >0,

2. f | ¢(u) | logu du < =, and
1
3. F() = [ ¢ cos tudu,
[}

then A. G(i) = %[Eﬁz@ s (_DkF(k_t_vr)]

k=1

is finite almost everywhere (0 < ¢t < «) and

B. 9() = 3 sauiGl(20 — D

almost everywhere (0 < & < o),

Here the {u.} are the Moebius numbers, defined in Example 1 of Section IT.
I. Two lemmas on sums.

Lemma 1. If 1. f |o(t) | dt < o forevery E >0,
R

then S lekt) | < o almost everywhere (0 < ¢ < ©).
k=1
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Proof. We first show

© flw-@fiwkolsflqﬁ(tﬂdt.

k=1

We have

I
i

[6(2) | S . ¢>(t)
et );: f dt
_ Zf 6@ |, Z f J&dt

<7 e = flwlqs(t)[dt.

Using (1) we have for any B > 0

dt d
LG nreen =[98 1owmn i< [T omoa= ) [ o0
The last term is finite by hypothesis so that
f %!Z |¢(kt) | < o forany R > 0.
R k=1

The conclusion follows immediately.

Lemma 2. If

1. f (1) | di < o forevery R >0 and
R

2. f L 6() | log tdl < w,
1

then
=1 k=1

22 ) | < o almost everywhere (0 < t < ),

Proof. From (1) we have forany n = 1,2, ---

[ 5 S vetn [ < [ ot | a
so that
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[0S 5 st | = 5 [ F 5 10t | < > [ et jar
S e a= Sy 2 1e0la

”_‘;fk ]¢(t)‘dt;%3 g(logkA-’y)fk | o(t) | dt

< 5 [T o0 1 Gog ik i = [ 160 Gog t o) .

Here v is Euler’s constant.
Hence, for any & > 0,

[0S 5 1ot | = [ F 5 X etenkd)|

k=1 n k=1

< [ tomn | Qog e+ ar =% [T 10 | (oa g+ ) o

S}%/:l‘i’(t)lOgtldf"r"}%(llOgR1+7)f:1<1>(t)\dt.

Our hypotheses show that the last two integrals are finite. Thus

f Ele:Z:ld)(knt)[< o ‘forany R >0
R =1

n k=1

©

from which the conclusion is evident.

(We are indebted to the referee for the simple proofs of Lemmas 1 and 2.
For more general lemmas of the above type, as well as a discussion of Moebius
inversions of other integral transforms, see [1].)

II. The Moebius Inversion Formula. Let {a,}x-: be any sequence of numbers
with @, 5 0, and let {b,}.-1 be the (unique) sequence such that

1 =1
(2) Z @b = "
dim 0 m= 2,3,

the sum running over all divisors d of the positive integer m. If for some func-
tion ¢(¢) we have

3) i i | axbugp(lnt) | < o (some fixed ?),
then
@ 3 3 aubaint) = 400
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For if (3) holds, we may rearrange the double series to obtain

) i 2” akbnqb(knt) = g qb(mt) g;, Uabyyg = #(2).

By sy
If we set
© 60) = 3 maen),
then if (3) holds, we have from (4)
(6) 50 = 3 b6,

Thus if we obtain (¢ from ¢ using {a,}, we invert (obtain ¢ from G) using {b,}.
For this reason (4), or equivalently (5) and (6), is called the (Moebius) inversion
formula. Here are two examples of pairs of sequences satisfying (2);

Examrie 1. 1t G =1k=12 ... » 1t is well known (see [2]) that b, = Un
where {u,}7., are the Moebius numbers defined ag B= 1,1, = (=1)°if n is
the product of s distinct primes, u, = 0 if 2 ig divisible by a square. For thig
example, (2) reads

@ D=1 m=1
dim 0 m=213 ...
Examprr 9, If

agk_lzl k=1,2,"‘; a2k=O k=l,2,"-,
then
bz,L_I=M2n_1 n=1,2,~-; baw = 0 n=1,2 ...,

For if m is even, then each term in (2) is zero while if m ig odd, then each divisor
d of m is also odd and (2) follows from (7). Hence (2) holds for thig pair of
sequences,

We can now prove the following theorem.

THEOREM 1. Iy 1. / [6(8) | dt < o forevery R > 0,
R
2. f [$0) [log tdt < w, ang
1 .

3. G = éqs[@k — 1)y

(which, converges almost everywhere 0<t< ®) by Lemma 1)

then aw=§MHW%~wﬂ

almost everywhere 0<t< ® ),
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Proof. 1In view of preceding remarks we need only prove

3 3 abaliond) | < o

=1 k=

almost everywhere (0 < { < «) where {a,} and {b,} are defined in Example
2. Since | a, | < 1,] b, | <1, it is sufficient to prove ‘

o

2y é | pent) | < o

almost everywhere (0 < ¢ < «). But this follows from Lemma 2, and the
theorem is proved.

III. The Poisson Formula. This is the formula

Vi[O 4 5 ren | - va[ 2+ 5 s |

n=1

where a > 0, o = 2, and

F@) = \/?r j:e‘ fw) cos tu du.

In [3] the formula (8) is established for functions f(w) which are of bounded
total variation on (0 < u < o) and which vanish at infinity. We will establish
a formula similar to (8) under conditions which will make Lemma 1 applicable.

TamorEM 2. If 1. ¢(u) s of bounded variation on (0 < u < R) for every R > 0,

2. f | o) | du < o forsome R >0,
R

o

3. F@ =f o) cos tu du, and

0
N .
4 Gy =1 [F—@ + Z(—D"F(’ﬁ)] N =12,

tL 2 penst ¢

then A. G() = lim Gy(?)
N—oo
exusts almost everywhere (0 < ¢ < ) and
B. G@) = kzl o[(2k — 1)¢]

almost everywhere (0 < t < o),

Proof. Since

F(%) = fo ¢(u) cos i'c“tw du =t fo o(tw) cos kmru du,
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we have
(——1)’“F(k—t—”> = tf:qb(tu) coskr(u + Ddu  (k=1,2,-++;0 << @),
Also
B0) = tj;md;(tu) du 0 <t < w).
Hence |

® 6w = [ oDyt + D1 = 3 [ o) Dulatu + D1

where

sin (N + Hu

= 1 =
Dy(w) = % + cosu -+ cos2u + + cos Nu 5 sm 112

For any g(u) of bounded variation it is known from Fourier analysis that

2k+1

lim g(w) Dy(ry) du = g(2F) k=20,1,2,---

N—w o 2k—1

and hence

2k+2

lim ¢(tw) Dylr(u + 1] dﬁ = ¢[(2k + D] k=0,1,2,---.

N-o o2k

Thus, taking the limit under the summation sign in (9) we have

©

6 = lim G() = 3 ¢l + D] = 2 ol(2k = D),

and the proof of the theorem will be complete if we can justify the limiting
process for almost all & To do this we note that by a mean value theorem

Likw qS(t’LL)DN[ﬂ‘(U/ + 1)] du = (j)(Zkt) j;k .DN[’IF(’M + 1)] du

ol2k + 2)1] fE " Dulelu 4+ 1] du

where (2k < &, < 2k -+ 2). Hence

L

w 2

k=0

sz+2¢(tu)DN[7r(u + ]) Tdu| < 4 ;; !¢(2kt) ! + | ol(2k + 2)t] 11

where A > 0 is a constant such that

b
fDN<u)du m=1,2-30a<b< ).
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(That A exists is shown in [3; 69].) Since the right side of (10) is independent
of N and is, by Lemma 1, finite almost everywhere (0 < ¢ < «), the above
limit process is valid almost everywhere (0 < ¢ < @), and the theorem is proved.

The inversion theorem (Theorem 3) is a combination of Theorem 1 and
Theorem 2.

In closing we note that if the double series in Lemma 2 converges every-
where, then it follows readily that the conclusions A and B of Theorem 3 also
hold everywhere. But the double series converges everywhere for a large class
of ¢(t), for example, any &(f) such that

o(t) = 0(%;) (@ > 1;1— ).

This indicates that the above inversion may be used as a feasible numerical
device. The authors have used it successfully in a number of cases.
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