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1. Introduction .

In the important work of Bramble and Hubbard [/], higher-order
difference approximations of order O(h*) are used at interior mesh points
" for two-point sclf-adjoint sccond-order boundary value problers, while
Jower-order difference approximations are used ncar the boundary points.
The resulting matrix equations are such that the associated matrices A
are nonsyrumetric, but possess the attractive property that 471 = 0.
Morcover, it is shown that the discretization error is also o).

This lack of symmetry in the matrix 4 is somewhat a matter of concern,
in that one intuitively feels that such self-adjoint problems should give
symmetric matrix approximations. T'his Jack of symmetry also malkes it
much more difficult (if not impossible [1, p. 124]) to rigorously apply
standard direct and iterative methods for the solution of such matrix
equations. "T'his raises the question if comparable difference equations can
be derived which are symmetric and of high accuracy. '

In this work, we shall affirmatively answer this question with the use of
higher-order Hermite interpolation in conjunction with the Ritz method for
numerically approximating the solution u(x) of the two-point boundary
value problem, ’

—u"(x) + o(x)u(x) = f(x), 0<x <1, o(x) = 0, )
where #(0) = (1) = 0. The Ritz method is of coursc classic, and other
authors (e.g., [2]) have applied similar ideas to the numerical solution of
this problem. However, the error estimates of 'Theorem 1 and the connec-
tion with Fox's differential correction method [4] scem new. '

2. The Spaces HG and H

Let [ be the space of all real-valued functions w(x) on 0 = & < 1 with
“w(0) = w(1) = 0 such that the following integral exists and is finite:

[t s e @< . 0
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Hlere, ofy) is 4 nonnegative smooth function on 0 < & < 1 Dcﬁmmg an
inngr product on 17 as

¢ p k.
T mwy = ,3 G w' () + o(yo(wlyid,  wwell, (2)
o0

then we denote the Dirichlet norm on 7 as

[t . Y\
o = (o, ) = } [(o ()% - o2) (1)) de. {33
0
Completing /1 in this norm gives us the Hilbert space I
Let YD be the {(finite d;zammrmm; subspace of M of all piecewise
polynomial  functions  w{n; m) = d'o,.

{¥ 3 C e ~
Ao, d s such that, for o,

Q). 01 (13 . .
e cz-m AU Ay

0 <5< N+ 1, b= 1N+ 1)

wol{a my = 9 laoi< IV
WV 7 i3 3 (4)
Wy my = dF,  O<i=N+1, 12k<m,

and, in (‘:wh interval ¢ < a0 = (04 DA, O 0 5 N, wle; m) is a poly-
nomial of degree (2m 4 1), Clearly, w & H mxpm that w & [0, 11,
We remark 22 at wix; 7/1} is Umqwiv dmmmz‘wd 0)) the (m - 1N + Zm
pararncters P, 49,1 i <N, 0w f 2 W , bk < Toother

words w e [T ™ can bg viewed as the uxuquc Hm'u.‘ztc po;.ynmxml interpola-
tion of these pm‘amcﬁar?,

Itis casy to see that FU2 is a substance of I of dimension (s + 1)V -+ Zm.
Specifically, we can construct (m -+ 1)V -+ Zm basis vectors in M9 as

follows, Let s olwymy, 1 =4 2N, and s (e m), 0247 <N+ 1,
1 < & = m, be defined as
Spolwgim) = 8 5 s (wyy ) = 0, < /l=m, (5
sy m) = by 5O (o g5 1) = 0, Oigsm, Ik {6)
forall 0 = § = N + 1. For any w & H, we can thus write
» N mo Nk .
winym) = dPs o(wym) + > > d%s (e m), {7y
f=1 ol =g g .

Since H s o closed finite subspace of H, a standard result from Hilbert
SPACE thmr\’ {57 tells us that, given any w & [, there exists a wnique w e P
of best approximation to «, called the projection of w on I, such that

inf ju - wilp = jlu -~ @, (9)
weHiT)

To show the relationship of this minimization problem of . (8) to
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variational problems, we define the functional I7 on [1 as

£ = [ (@ OF + e @O - 260010 )

If u(x) is the solution of the two-point boundary value problem
—u"(x) + o(x) u(x) = f(x), O<w<l, (10)
subject to the boundary conditions .
u(0) = u(1) =0, (11)

where o(x) = 0 and f(x) arc given functions which will subsequently be
assumed to be sufficiently smooth, then it is well known that

e — wlp? = Flw] — Flu] = 0, Vwe I, (12)

2]

and
lu — @p2 = inf |ju—wlp?= inf Flw] - I'ad]. (13)

weH M weH M

"T'hus, the clement @ in G of best approximation to w can be equivalently
formulated as
Fl#] = inf Flw]. (14)

weH

3. Accuracy

In this section, we estimate the size of the norm [lu ~ @|ip for @ e I
as i - 0. To begin, we first derive a norm inequality which will be uscful.
For any function g(x) € C*[0, 1] for which g(0) = 2(1) = 0, itis well known
{rom the fundamental theorem of calculus and Schwarz’s inequality that

2sup lg) = ([ (o A"

0gesl

< 1, it then follows from

Since o(x) is by assumption nonnegative in 0 < &
Eq. (3) that

2wl = lwlo (16)

for any differentiable function w(x) in If, where

We assume now that the solution u(x) of Eqs. (10)-(11) is of class
C2m+210, 1]. Evaluating u(x) and its derivatives in the points &; = ih,
consider the vector 0(x;m) = W% ty,eeny Uyy U5 uli s ey W
w) in H, obtained by Hermite polynomial interpolation to u(x) in
each interval ih = & < (i + Db, 0 <@ < N; e, uB@h) = @ O(ih; m)

for 0 =1 <m, 0 =i <N + 1. Then, estimating the interpolation error
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in a standard way (cf. [71), we find for cach & <7 < N that

lrﬁ”lhl - ‘,)!\L:,'

u{wy = go{n; my == o ; S (e Ol = gt we [y (4 DA
i -

_ (17

where ih < £, < (0 -+ Dk Thus, i w4 20)] < My, forall 0 gagl,
then

'
i3

fula) = (s )] = L (/ JzyEmea, b=w gl (18)

Ina similar way, we find that
M,

(Zm

P () = 43 (oe; )| = S (253N G<wxl, (9

:a).

Z

o

From the definition of the Dirichlet norm in Bg. (3), the inequalities of
Thgs, (18)-(19) then show us that there exists a cons aui O independent
of 4, such that

Ny =~ ob(oe; m Wip 5 Ophtmt s, (Z20y
But as

i - 4 17 i T T o
lu(acy -~ oo )l = ”‘f ) e — wllp = {lu ~ @llo,
wellh”

we have proved

Theorem 4. Assume that the solution ulx) of lgs. (10)-(11) is of
class C97+210, 1.7 Then, the element @(x; m} of best approximation to
w(x) in K satisfies

2y — oy whfle < i) — @loe; mdlly < QA7 (21}

where ,, is mdqwndom of .

We remark that [u{x} — (x; 77"}}3«; 3 G’g//“"‘ 2y from B, (18), and it s
probably also true that fu(y) — @{¥; 771‘)}5,, is %’1(/;,"”‘ 4y, Nevertheless, the
vesult of Theorem 1, even for thespecial casem = 2, s*c;n‘v:‘-;c-ntu; AN nPIove-
ment over the recent results uf Bramble and Hubbard T!!. Specifically,
assuming wix) is of class C¥[0, 1], Bramble and Hubbard {7, Theorem 2.0},
using five-dingonal mtnwm Uilt.xmu_l ii%wm .mpluxmhmlw Lo (i)
‘-mh‘i} at fu(ihy —w,| < MEHfor O <4 < N 4 1 With the same ;yput‘mw

spnamely, # e P“{ 1}, Theorem 1 «rzvc:*, us 4 u)i;/ /mom a;)p,uumw o1
"ufx 2) such that lu('w) I < 1. Theresults mw‘}

are however more closely i:smzmud in furm with the case m = = 1, 81008
we shall see in the next section that the matriz equation whose saiut.mu

t
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determined (a; 1) is such th‘u the associated matrix is essentially five-
diagonal.

4. Determination of the Best Approximation in Hom

We have scen that finding the unique element of best approximation in
T to the solution u(x) of Egs. (10)-(11) is cqnivalcm‘ to minimizing the
fm)ctzmml Ifw] of Eq. (9) over I, As cach clernent in ZI0 depends on
P= (m + 1)N + 2m parameters, we now derive a system of linear equa-
tions whose solution uniquely determines the P associated parameters for
w(x; m) in [0,

It is first convenient to order the basis vectors of HU as follows. Let
vi(ay ) = sy (x5 ), vu(x; m) = sq (x5 m),ee, vy(a; m) = 5o (x5 m);
U {05 M) = 51 oW M)yee, Vgpmyi(3y m) = s; (005 )0, vp(x; m) =
Sy+1,m(*; m). This corresponds to numbering the basis vectors of HG
consecutively for each mesh point. For any w € 2/, we can write

P .
w(w; m) = > cp,(x;m). (22)
j=1

Thus, the functional #w] is

#tl = [ [(3 enrf + o 3 em) - - 2f0] 3 el @)

A=t jel
which can be expressed as the quadratic form

Flu] = %7 x = 257k, (24) -
where 4 = (q; ;) is a real P x P matrix with ‘
a; = f (v,’v,' + o(tyow,)dt = (o, 00, ' (25)
0

k is a column vector’ whose entries are [§fo dt, 1 <7 <P, and x =
(€1 €9yeeey )T is the column vector of coeflicients which dctumlm, w(iv; m)
in Ioq. (22). Minimizing Iw] by setting 0l w]/dc; = 0, 1 <] = P, gives
- us the matrix equation

Ax = k. , (26)

Because the vectors o,(x; m2) are linearly independent, the m"mm Ais of
course positive definite.

Returning to thic definition of the vectors s (x; m) in Eqgs. (5)-(0), it is

clear that s; (x; 7) is zero for any & notin (i — 1)k < ¢ = (7 + )ll We

can make use of this observation as follows. I'rom I £q. (25), a;,; = 0 for
[/ = 1] > 2(m -+ 1). Thus, the matrix A of Eq. (26) is a band matrix of
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serpiwidti Zoe 4 1, which is independent of 7 A more precise statement,
however, can be made, We can partition the matrix 4 of Eq. (26) so that

?/zo.e Agy O
AT A, i .
g 01 L.},\\/ 1.5 — : @7

.S 4
é O \\:4N N LN

- Faves Ay i

od

Le., 4 is a block tridiagonal matrix. Here, the order of the submatrix 4,
iy the mxmb"‘r of paramseters assoviated with the ftb roesh point in the inter-
val { i i: < ha }mltmuidr the submatrices A, gy, Ay ave all of order
m == 1, while 14” g and Ay ey y are of order m,

These derived properties, viz., that the mateix A of Bq. (26) is real
symmetyic and positive definite, a band matsiv with semiwideh independent
of /1, and block mdz:wms zs, are of considerable numerical uselulness when
one actually wishes to solve this matrix equation. Because A is a positive
definite symimet ic hand md‘izsn, the direct solution of i, (26) by Gaussian
climination without pivoting is efficient and stable, velative to the growih
of rounding errors {91 Simi‘mly, since A is block widiagonal, the direct
solution of Fe. (26) can also be obtained by applying Gaussian elimination
by blocks to this matsix equation (¢f. [8, p. 190]). Tterative methods can
also be applied to solve F'q {26}, Bince A s real symunetric and positive
definite, the point successive overrelaxation is convergent for any e with
U< w2 (ef. 18 p. 177]); and as 4 is block tridiagonal and thus con-
sistently ordesed, block successive overcelaxation is also convergent for
ANY < wms O« w o« 218, po 1111 These statements are troe, independeud
of 1. "Thus, dzwrguxt sterative techniques or iterative techniques which are
convergent only for 4 sulliciemly mu.i, as in [}, are mnm?vtvi) avoided,

Finally, as snother computational point, each s, (o0 myforany 1 <4 =
has an expansion

Zm
siplaymy = o gfkyw) (s~ w0, 154 2m,
10

=3

we [( = 1k, (4 DI, (28)

where the coefficients ¢ (& m) do not depend on 40 Thas, it is suflicient to

determine just 5 {o; m), 0 = & < o, Blnilacly, by symmetry, the deters

mination of g, (e m), 1 <k 2 wm, gives also the vectors sy, (% m),
< koS o

%, Lonnection with Other Methods

in the previous section, we deduced the positive deflinite symumetric
nature of the matrix 4 of Eq. (26}, Now, we reorder the parameters %
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which from Eq. (4) uniquely determine #(x). Let R be the P x P permuta-
tion matrix, P = (m + 1)N + 2m, such that

R =(dD, 0, dP5 dPyec, dR 5 ooy AP, dP T = y; (29)
i.e., we group the parameters corresponding to the same derivative at the
mesh points. With RAR' = A4, we can partition the matrix 4 and the

vector y corresponding to the above natural grouping of the parameters so
that the matrix equation Ax = k becomes

’“/Io,o Jo.1 o Aom T Yo "E‘o"
qu.l /31,1 Al.m Vi ky
. . | , (30)

. . . .

m"qg.m ﬁf.nx e ﬁm,m-& L Y 5

where k = Rl Because 4 is real symmetric and positive definite, so is
A. Thus, the block Gauss-Seidel iterative procedure

m

5 45+ 3 4y = k) (31)
j=i 7>i i=0

‘is convergent (8, p. 77) for any initial y©,

Interestingly enough, this can be viewed as a variant of the Fox differen-
tial correction method [4], which we shall show is necessarily rigorously
convergent. T'o see this, assume that u(x) € C2m+2[0, 1], and assume that
we have found the element @(x; m — 1) of best approximation to u(x) in
Hip=. This uniquely determines the P — (N + 2) parameters {0,
WD,y eey B3 DD, 0, D 15 oy DD, 2§D, With these parameters,
define the initial vector ¥ of Eq. (31) so that y(® = ({?,..., %O)7,...,
Yz = (@D, d4=D)7, and y(® = (0,..., 0)7. These parameters in
turn determine a vector y‘P(x; m) in H{P. Since the vector w(x; m — 1)
of H{j~" is itself a Hermite interpolation of y©(x), then

leb(; m — 1) — yOw; m)|| < MMA2M-1, (32)
But as |lu(x) — d(x; m — 1)||, is itself O(h>™~1), then clearly
1y Ox; m) — u(a)|| o < Mh2m=2, (33)

On the other hand, with this initial vector y(x; m — 1) the iteration in
Eq. (31) is necessarily convergent to the unique element @(x; #) of best
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approximation to y in (", so that

190 m) = (il = DTRE, (34)
"Thus, the iteration of Eq. (%1) moproves the order of the approximation to
u{x) by two in k. In othor words, iteration in mi Us; determines a sequence
of vectors {‘w“){z“ ‘m}}"‘) in JG which necessarily converges to the element
o best :fxfx?p,f\vummm w(vz, ;1/) in f[j\,”” It may wlsa be true, as in Professor
Lees’s work in this volume, that iust one or two iterates of Bg. (31) are
necessary to produce this higher-order accur

G, A Posteriori Error Bounds and Snlines

First, we consider the case when m > 2, By definition, every element of
H@P s of class ©0, 17, and thus for @ = 2 these elements are twice
ditferentiable. Let L{w) = —w'(x) + alx) w(x), so that L(u) = flay,
O« w1 For any twice-differentiable function wx) in M, integrating
by parts gives us the identity

i3 @k
]{ (' (0)? + oe) (0(0))) dt = Jf’ w(t) Lw] de.
Y]

v

Thus, if L{w) = flx) ~ +{x), then

, [t e
I =l = | () — w(e)) ey d
o W
, »” s A2 el ) \ 12 ;‘.“{)‘
j (1‘1 e ’/ugi)) (l”‘i {j (7"{5))2:137[' ( /
o o !

7

bj, ) Behwars’s inequality. But for any differentiable s{£) with 5(0) = ()= (0),
it is known [6] that

[t

@

¢

1ot Lot )
' ; (s"(2)y* dt = =AY o) () de
o 7

Fence, we deduce that

Ll w0l T o~ wlly

(")

The point of this inequality is that for m = 2 any clement in F{ s twice
differentiable, and consequently the quantity #{x) can be m/n’n ity doter
mined, This means that the L, norm of - () can be explicitly caleulated.
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Tor the case when »t = 1, the clements in 77} are not in general twice
differentiable, but nonctheless given specific ordinate values w, = 0,
w(®, wi®,..., w, wi®), = 0, it is possible to assign derivative valucs
wiH,..., wi}’ at the interior mesh points so that the corresponding function
w(x) in I/ is actually twice differentiable. Specifically, regarding po and
Py as free parameters, let py,..., py be N parameters which satisfy the
system of lincar equations

IA

3 :
4]”( -+ j)t—l -+ Pi"'l = };(wﬁg), - wﬁ‘i)l ’ 1 1< N. (38)

Since the matrix of coefficients in Eq. (38) is strictly diagonally dominant,
the parameters py,..., py are uniquely determined. Then, it is known [7]
that w(x) = wW(X; Wyyeey Wy Pos Pireess P P 1) € L 38 twice dilferentiable,
and w(x) is called the spline interpolation of the parameters w{®,..., w{);,
wi®, wl) . This means again that, after modifying the derivatives at the
interior mesh points, the error function 7(x) can again be determined, and
Lq. (37) is again valid.
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