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ON A DISCRETE MAXIMUM PRINCIPLE*
RICHARD S. VARGAT

1. Introduction. Recently, some higher-order difference methods [1],
[2], [4] have been advocated for numerically solving second-order elliptic
boundary value problems such as Laplace’s equation, and the question
naturally arises as to whether the associated discrete problems satisfy,
like the continuous problem, a maxtmum principle, i.e., the maximum com-
ponent in modulus of the solution vector is bounded above by the maxi-
mum component in modulus of the boundary data. I'or the simplest differ-
ence approximations, this is easy to answer affirmatively. Because each
unknown in this case is the average of some of its neighboring unknowns
(cf. (4)), the well-known proof by contradiction for the continuous case
directly carries over to the discrete case. For higher-order difference ap-
proximations, the answer is not immediately obvious since this averaging
property is lost (cf. (7)).

In §2 of this paper we give necessary and sufficient conditions that a
matrix satisfy a discrete maximum principle with respect to a given sub-
space, and in §3 we apply these results to the difference methods of [1], [2],
and show that the associated discrete problems do indeed satisfy a discrete
maximum principle.

2. Let V..(C) denote the n-dimensional vector space of column vectors
x =[xy, -+, 2] having complex components. We can express X as X =
Doiiai e, where

e = [Bri, b2, -0, 00l Jiz

is an orthonormal basis for V,(C). As usual, || x [|. is defined as
max;<i<n | ®: | foranyx € V,(C), andif B = (b:;) isanyn X n (complex)
matrix relative to this basis, the associated operator norm of B is given by

(1) | Blle = sup || Bx .= max 2 |bi;l.
pxl =1 igign j=1

Let S denote any r-dimensional linear subspace of V,(C) spanned by r
of the vectors e;, 1 < r = n. Associated with the subspace S is the n X n
projection matriz Py = diag (dy, dy, -+, dy), where d; = 1if e; € 8, and
zero otherwise. Thus, Px € S and || Px |l < || x| for any x € V,.(C),
so that || P, || £ 1.

DEerFINITION 1. Ann X n matrix A satisfies a discrete maximum principle
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with respect to the subspace S (written A € 9%,) if and only if, given any
g € V,(C), every solution u of Au = P.g satisfies | u [» = I Pg -

We remark that if 4 € 91, , then choosing g = 0 in V,(C) implies that
the solution u of Au = 0 is necessarily u = 0. Thus, 4 is nonsingular.

LeMMA. A € 9, if and only if A is nonsingular and | A7P |- £ 1.

Proof. If A is nonsingular, then the solution of Au = P.g isu=A"Pg
— A7'P,P.g, since P, = P, . Taking norms, || u o < | A7P, [lo- || Pig |-
If | A7P, o < 1, then [u o = [ Pg e for any g € Va(C), so that
A € 9, . Conversely, if A € 91, , then A is nonsingular, and the solution
uof Au = P.g satisfies || u o = || A7Pg |l £ || Pgll» = [ & [« for any
g € V.(C), and hence || AP, || £ 1, completing the proof.

DeEFINITION 2. An n X n matrix A is normalized with respect lo the sub-
space S (written A € 9t,) if and only if Af = P& where & = dorie.

In other words, if A = (a.;) is the matrix relative to the basis {€:}i=1,
then the row sum ) j— @i ; is, respectively, unity or zero if e; €8 or
e; ¢ S. Writing B 2 0if B is ann X n matrix with nonnegative real en-
tries, we then prove the following.

TrroreM. Lel A € 9, . Then A € 9, if and only if A is nonsingular and
A7'P, z 0.

Proof. If A is nonsingular, then as A€ q,, £ = AP so that the
row sums of AP, are all unity. If A7'P, = 0 in addition, then the row
sums of the moduli of the entries of AP, are also unity, so that
| APy |lo = 1 from (1). From the Lemma, A4 € 9%, . Conversely, if
A € 91, , then A4 is nonsingular and || A7P |l £ 1. Butas 4 € 9, , then
£ = APk shows that || AP, [l. = 1. Combining, | AP, | =
Hence, the row sums of AT'P, are all unity from & = A7'Pg, and from
(1), the maximum of the row sums of the moduli of the entries of A7'P,
is unity since | APy ||» = 1. It necessarily follows that A7'P, = 0, which
completes the proof.

Since the projection P, is itself a nonnegative matrix relative to the
basis {e:}im, we have as an immediate consequence of this theorem:

CororLary 1. If A € 9, and A is nonsingular with A7 = 0, then
A € ;.

With the notation | 4 | = (| a:;]) if 4 = (a:;), we prove another con-
sequence of this theorem.

CoROLLARY 2. If B € 91, N 9, and A is ann X n nonsingular malric
with | A7'P,| £ B7'P,, then A € 9.

Proof. From the proof of the theorem, || B7'P, | = 1, and from (1), it
follows that || AP, [l = ||| A7Pc| e £ [ B7P, o = 1,50 that 4 € 9,
from Lemma 1.

An n X n matrix A for which 4 is nonsingular and A7 = 0is called a
monolone matrix [3]. From Corollary 1 above, it is clear that if A € 91, , then
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A monotone is sufficient for 4 € 9, . This condition, however, is not
necessary. As a simple example, let n = 3, 7 = 1, let S be spanned by ey,
and choose A as given below:

-1 2 0 11 1 1 00
A=|2 -3 1| ATV —1 L, P,=|0 0 0O
0 1 -1 1 & -3 0 00

Clearly, A € 91, and A7'P, = 0so that A € 9%, 1 9, , but 4 is not mono-
tone.

3. We now apply our previous results to the numerical solution of elliptic
boundary value problems. First, we consider the numerical solution of

ANV fisaA&v = Ov O <z < H«
subject to the boundary conditions
(3) uw(0) = a, u(l) =4

Here, o and 8 are given. Withh = 1/(N + 1),z =4h,0 7 = N + 1, we
can approximate the solution of (2)-(3) by the following system of linear
difference equations:

A»\_\SVH = W = a,

—Wi—1 + 2W; ~— Wit _
h? -
A\wgvi.m = Wy+e = L.
Here, A isan (N + 2) X (N + 2) real tridiagonal matrix which is easily
verified to be an M -matrix [5, p. 84], so that A is nonsingular and A7 =z 0.
If S is the linear subspace of Vyy2(C) spanned by the vectors e; and ey,
then it is obvious from (4) that 4 € 91,. Thus, applying Corollary 1

gives us that 4 € I, .
As an application of Corollary 2, consider the numerical solution of

(5) —Uze(2) + o(z)ulz) = 0, 0<a<l,

(4) (Aw); 0 if2<7< N+ 1,

I

subject to the boundary conditions of (3), where o(x) is continuous and
nonnegativein 0 < z < 1. We can approximate the solution of (5)—(3) by
the following system of linear difference equations:

(Bw), = w; = ¢

—wig 4 (2 gig KW — Wi
Nww

Amv Amgv@ ={ f2<iEN+1,

ngvzi = Wy+e2 = B3,
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diagonal M -matrix, and as such, B is nonsingular with B™ z 0. With S
defined again as the linear subspace of Vy,2(C) spanned by e: and exys,
it is not now in general true that B € 9%, . On the other hand, as B = 4, and
Bz 0and A" = 0, it then follows [5, p. 87] that A~ = B, where 4
is defined in (4). Thus, | B"'P, | < A7'P, , and from Corollary 2, we deduce
that B € 9.

The approximations used in (4) are O(h®) in the sense that if u(z), the
solution of (2), is an element of C*[0, 1], then max;<i<yie | u(@:) — Wit |
= O(K?), as h — 0. The same is true of the approximations of (6). To derive
O(h*) difference approximations of (2)—(3) under the assumption that
u(z) € %0, 1], we consider, as in [2], the system of linear difference equa-
tions:

Ab@ch = W = Q,

—wy + 2w — w3

A@gvm = E\m = .\.H s
7y (Dw),; = 30w; — 16(wi +HMMHV + (Wire + wia) _ 0 i3 <i <N,
Abévzi — — Wy + 2Wy+1 — Wa+2 =0,

72
Abévzi = Wy+2 = L.

It is known [2] that the (N 4+ 2) X (N + 2) matrix D is monotone, i.e.,
D is nonsingular and D™ = 0. Letting S again denote the linear subspace of
Vy42(C) spanned by e; and exys, then it follows from (7) that D € 9T, .
Hence, by Corollary 1, D € 9, . In other words, the higher-order difference
approximations of [1], 12] do satisfy a discrete maximum principle.

We have considered in detail these ideas specifically for one-dimensional
problems because they extend easily to higher dimension. To show this,
consider now an O(h*) difference approximation to

(8) Uea(Z, Y) 4 Uy (2, y) = 0, (z,y) € R,
subject to
(9) w(z,y) = g(x,y), (z,y) € Ik,

is a bounded region R with boundary dR. The mesh points of & + dR are,
as in (7), separated into three sets. The first of these sets consists of all
boundary mesh points for which w is specified. At such points, we simply
write down the elementary difference equation w;, = ¢(z:, y;). In one
dimension, this set corresponds to the end mesh points, and the difference
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equations from (7) are w; = a and wyys = B. The second set of mesh
points are those interior mesh points adjacent to the boundary. At such
mesh points, the simplest difference equation approximating (8), but in-
volving at most five unknowns, is used. The mesh lengths at such points are
not in general equal, but the sum of the coefficients in these difference
equations is nevertheless zero (cf. [5, p. 186]), basically because these
difference equations are obtained from Taylor series expansions of the
solution  at these mesh points. In one dimension, this set corresponds to
the mesh points ¢ = 2 and ¢ = N 4+ 1. The final set of mesh points is the
remaining set of interior mesh points where a higher-order difference
approximation to (8) involving nine mesh points is used. Again, for this
set, the sum of the coefficients in the difference equation for each point in
the set is zero. Thus, if we let S be the linear subspace spanned by the vec-
tors corresponding to boundary mesh points, then the discussion above
shows that the matrix arising from these finite difference approximations
is an element of 9%, . Moreover, this matrix is monotone [1], [2], [4], so that
we finally conclude from Corollary 1 that this matrix is an element of
M, .
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