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APPLICATION OF OSCILLATION MATRICES TO
DIFFUSION-CONVECTION EQUATIONS

By Harvey S. Price, Ricrarp 8. VArca AnD JosEra E. WARREN

1. Introduction. Consider the transfer of heat or mass [7, 8] in a one-dimen-
sional system which contains a homogeneous, incompressible flowing fluid. If
the term which describes transport due to fluid motion (i.e., the convection
term) is comparable in magnitude to the diffusion term, then the behavior of
the system satisfies the following parabolic partial differential equation:

ac(x, 1) e, t) — de(x, t)
at ox? ox

, A >0, (1)

where the diffusivity is taken to be unity and ¢(z, {) represents the normalized
concentration of heat or mass.
The following boundary conditions frequently apply:

ez, 0) =0;0 <z <

, (2)
c(0,1) = 1;t> 0, (8c/dx) (L, &) = 0;1 > 0.
With [ = o and the third condition of (2) replaced by c(z, ) — 0 as z — oo,
a routine use of the Laplace transform method shows that the concentration
e(x, t) at a fixed point in space is monotonically increasing:

e(x, t -+ AL) > elx, 1), Al > 0. (3)

This condition (3) remains true when [ is finite as well. Moreover, the concentra-
tion ¢(z, t) must He between zero and unity:

12 ez, t)y 20, 02zt =0. ()

Our interest in this problem arose from the fact that standard finite difference
approximations in space, such as (5), and time (such as the forward difference
method of Section 5), yielded approximate concentrations which for fixed z
exhibited damped oscillations in time about unity, thereby violating (3) and (4).
We shall show that such damped oscillations can arise even with infinitely small
time increments, 1.e., with semi-discrete finite difference approximations, if the
spatial mesh is sufficiently coarse. We firgt prove a necessary and sufficient
condition (Theorem 1) for non-oscillation in the semi-discrete approximations
o (1)-(2), and a sufficient condition (Theorem 2) for non-oscillation which ap-
plies to more general problems. The novelty of these results lies in the applica~
tion of the theory of oscillatory matrices of Gantmakher and Krein [5, 6]. In
the final section, a criterion for non-oscillation of fime-discretizations is similarly
given.

2. Semi-discrete central finite difference approximations. With a uniform
space mesh i = [/n, the usual three-point (spatial) central difference approxima-
301
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tion to (1) based on Taylor’s series is [3, p. 141]:
dei(t) _ cim(t) — 2¢:(8) + cia(t) — [:ChLl(t) — 01—1(”}
1=

e B? (5)

=n—1,

where ¢:i(1) = ¢(4h, t), and 7, is an error term of order A” as h — 0, which depends
on higher spatial derivatives of ¢(z, ¢). For the n-th mesh point, the boundary
condition ¢,(/, t) = 0 of (2) used in conjunction with the differential equation
(1) similarly yields

dcn“) "—2Cn(t> + 20n*—1<8)

di h? SIE (6)

where the error term 7, is now of order & as h — 0. Neglecting the error terms
i of (5) and (6) gives a system of ordinary differential equations which can be
written in the form

%‘_’f = —Aw() 5t >0, 7)
where 4 is a real n X n matrix, and w(¢) and s are column vectors with n com-
ponents given explicitly by

+2 —(1—a)
1 —(1 + &) +2 —(1~-a)
W ~(14+a) 42 —(1-a)
—2 +2
w(t) = : ;ST :
)
wa(t) 0
and
a = Nk (9

We shall call w(t) the semi-discrete approximation of (1)-(2), in that the time
variable ¢ has not been discretized.

Our object is now to show that the matrix A has positive real and distinet
eigenvalues for certain «. Let D = diag (di, dz, -+, du) be an n X n diagonal
matrix having n()n zero diagonal entries which alternate in sign, ie., d; =
(—1) d:|, 1 £ 4 = n. Then, upon forming D~ 'AD, it is easily seen, that for
02 a<1,weecan select the | di | as a function of « so that
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2 1— & )
[\/iﬁféﬁ\ 2 \\/1—0?2\ i
— ! 1
B=07aD = | vicd 2 wvaa-a | 10

L V21— o) 2

Several facts about the matrix D'AD = B can now be easily deduced. First,
B is a real symmetric matrix. Next, 4 is an irreducibly diagonally dominant

-

matrix with positive diagonal entries for 0 £ a < 1; as such, B is then positive
definite [10, p. 23]. Moreover, this irreducible diagonal dominance implies that
the successive principal minors of B are positive. Further, since the superdiagonal
and subdiagonal of B have positive entries for 0 £ « < 1, it follows [5, p. 124]
that B is an oscillation matriz, i.e., all minors of B, whether prineipal or not, are
non-negative, and some positive power of B has all its minors positive. But, as an
oscillation matrix has real dislénct eigenvalues [5, p. 126], we deduce that the
matrix A has real distinet positive eigenvalues for § < o < 1.

We remark that the real distinet eigenvalue character of the matrix 4, as proved
above, is also essentially given in [4, Chapter X], and could have been established
directly from a three-term recurrence relation between the upper left successive
principal minors of (yf — A).

For the case & = 1, the matrix 4 of (8) is then a lower bidiagonal matrix with
diagonal entries all 2, so that the eigenvalues of A in this case are all 2. Tor a > 1,
there similarly exists a positive diagonal matrix such that D7'AD is a real skew-
symmetric matrix. Thus, all of the eigenvalues v; of 4 are of the form

vi = (+2 +i0;)/h'; 1 = j = n, g real, (11)
where it can be verified that
max; (a;) > 24/2(a — 1) cos [r/(n + 1)]. (12)

In other words, for any « > 1, — A is a stable matrix [1, p. 242; 2, p. 108], ie.,
all the eigenvalues of —A have negative real parts. On the other hand, there
always exist eigenvalues of A with non-zero imaginary part. By way of contrast,
for 0 £ a < 1, all the cigenvalues of A are real. This proves the following:

TaroreM 1. Let A be the n X n matrix of (8). For any h > 0, — A4 is a stable
matrix. Moreover, all the eigenvalues of —A are negative real numbers if and
only if 0 < b < 2/N. If 0 < A < 2/, all the (negative real) eigenvalues of —A
are distinct.

We can apply the previous ideas to the following more general problem

ac(;’ ) = %{K(a&) f)f%%i)} —aw) 59—0-(6%"52; O<ae<l, >0, (13)

where K(z) and \2) are given continuous positive functions in 0 = = = 1,
with the boundary conditions (2). Using a not necessarily uniform spatial
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mesh with 2y = @ + hi, b > 0,0 <45 < n — 1, the spatial derivatives in
(13) can be approximated [10, p. 178] by

9 ey, t)
2 (s M)

d
v . (14)
= 2By hilein(t) — ei(D)] = 2Ky hi'es(d) — cia(t)] 4 0
hi + hiy t
and
iy O, ) Tega(t) — ci(t):] _ .[Ci@) - Ci-—l(t)] @
)\(3%) T = )\z [——WH >\z h{zﬁl + Ti (15)

where Ky = K& (z: + 24)]. In general, the error terms 7' in (14) and (15)
are of the order A; = max (4, hi_1), but when %;_y = h. , these error terms are
of order A, Thus, as before, by neglecting these error terms, we obtain

dw(t)

= —Awl) +s >0, (16)
where
+Dy -U;
-—-Lz_ . +.D2’ . Uz. .
A: 'a.,.."t“'..'oo...' (17)
‘-..,.."-."_'“ n—1
and

1 2K As .
R o B ML <4<
L hia {(hz + hi) + 2}’ =iz,

1

2K 4 A .
A R il SR N g
U, hi{(hi Ty 2 1=2i2n—1,

Dy =L; 4+ Uy, 1<i<n-—1 and D,=1L,.

(18)

IENhe + hiy) < 4K 3 foralll < ¢ < n — 1, then the quantities L; and U,
of (18) are all positive real numbers. Since D; = L, + U, then the matrix 4 of
(17) is then irreducibly diagonally dominant with positive diagonal entries.
The same device as previously applied in (10) shows that there is a nonsingular
diagonal matrix ' such that C™AC is real and symmetric, and thus A has real
eigenvalues. But as 4 is irreducibly diagonally dominant, then 4 has positive
real eigenvalues. To deduce that these eigenvalues are distinet, we again use the
fact that the superdiagonal and subdiagonal of A are positive, so that A is an
oscillation matrix. This gives us

Theorem 2. If N;(hs + hi_y) < 4K; 3,1 <4 = n — 1, then all the eigenvalues
of the n X n matrix A of (17) are positive real numbers. If \;(h; -+ hicy) <
4K, 3,1 27 =n— 1,all the positive real eigenvalues of 4 are distinct.
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If the matrix A has distinct real ’eigenvalues w: with associated eigenvectors
v, , then the solution of either (7) or (16) can be expressed as

w(t) = dorydi(l — e ™)., t20, (19)
where
A—IS = Z:;L], diV@' . (20)

Thus, for all sufficiently small mesh spacings k. , it is clear from Theorems 1 and
2 that the semi-discrete solutions of (19) are non-oscillatory. On the other hand,
Theorem 1 shows that there exist non-real eigenvalues u; for & > 2/), so the
solution w(t) of (19) exhibits damped oscillalions for h > 2/), even for a semi-
diserete approximation in which the time variable is left continuous.

3. Non-central semi-discrete approximations. We now increase the generality
of (1) by assuming that A = X\(z) = Oforallz, 0 £ 2 = 1. With a uniform spatial
mesh h = I/n, consider the following non-central finite difference approximations
to (1)-(2), which serve to define the n X n matrix B:

72 dCl(”

RBe(O)h = (2 + Mh)a(t) — e(t) = — + (1 4+ Mh) + b

hZ[BC(t)]z

i

—(1 + 2eh)alt) + <2 +§ g h) e(t) — cs(t)

dCz(t) _ 1

._._2 s 2 .
= IR — SN W

(21)
K1Bo(h)]: = %xi hea(t) — (1 4 20 )eia(t) + (2 + g A h) 0

- Ce—l—l(t) 2d01(t)

+ b, 3sSisn-—1

2 dcn<t)

RIBe(D)], = —2¢1(t) + 2e.(t) = — + 1

Here, \; = A(¢h), and the exror terms 7, are of order Kash—0for2<i<n—1,
while ; and 7, are of order h as h — 0. Neglecting the error terms r; in (21)
yields

2 dV(t)

—~By(l) = h —g t>0, (22)

where g is the vector with components defined by
= (1 4+ Mh); go= —3Nh; g:=0,3=7=mn

The matrix B so defined thus plays a role analogous to the matrix A in (7).
We now prove

Theorem 3. Tf \; = 0for 1 £ ¢ < n — 1, then the n X n matrix B defined by
(21) has positive real distinet eigenvalues for all A > 0.
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Proof. Defining bf; = <__1)@'+fbw,, 1 =7, 7 £ n, we first establish that all

minvors of the n X n matrix BY = (b];) are nonnegative. It is easy to verify that
an arbitrary minor of B" can be written as a product of elements of the matrix
B" (ie., the bf/s) and minors'

cf T, te, 0 <y < o0 < g
B‘F‘ > 3 » VP , 1 S D g
<k1;k2:'”:k1’) ( __kl<kz<'”<kp_n>9
whose elements satisfy

bk >0 and bl . >0 1<»y<p-— L (23)

Furthermore, one can show [6, p. 345; 9, p. 79] that minors whose elements satisfy
(23) can be written as products of elements of the matrix and minors of the form

+f{ L1+ 1,0 +p -1 0
kk+1,--- k+p—1/°

We shall now show that the minors of (24) are nonnegative.
CaseI. © — & = 1.In this case, if we choose 8% to be a p X p diagonal matrix
whose diagonal entries s, . are given by

Sae = (3)%7 12asyp,

A

i -k <1, (24)

then it is easy to verify from (21) that

+ + ' +
IV i bi; e bs itp—
+ + +
(8P) | birt b o bipibpe | (8@~
+ + +
bitpt,-1 bitp1 o Ditp—t,itps

is strictly diagonally dominant forall 2 < 4 < n — p+ Landl £psn— 1
Therefore, the minors

w1+ 1, i4p—1 .
. N . 2 <
B(z—l,z,«-~,z+p—-2’ =7

are all positive.
Case II. i — k = (. For this case, we shall consider minors of B rather than
B. Since B and B" are similar, we have that

L,orsttp—1\ _ or i+ p—1
B(i,~~,i~|—p—l)-B <i,~--,z'+p-—-1 ’

Il=i=2=n—p+41; 1=p £n.

A

n—op+1; 1=

IA
=3
IA
3
|

Defining
J’ bz,z b’[,ﬂ'+l e bi,i“‘p“l ]
B, p) = | beri banen o0 biite

...............................

(25)

bitp—1,i bitp—t,601 ¢ Ditpt,itp—

! Here, we are using the notation of [5] to denote minors.
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assume for the moment that B(7, p) is monotone’, and denote the matrix B~ (7, p)
by (r$%”). Hence, by definition
0 < roy”
B L N e /B Gi41, it p—1)  (26)
i— 1,4 i+ p—2 il i —1)
It therefore follows from Case I that
Gid L i p = 1) <isn—p+l <<
B<¢,¢+1,~--,i+p——1>>0’ PErEnopaL L=pEn
if B(7,p)ismonotoneforalll £ ¢=n—-p+1,1=p = n.
We shall now show that the particular matrix B(1, n) = (b;,;) defined by (21)

is monotone; the proof for an arbitrary successive principal minor B(7, p) follows
along the same lines. Define the n X n matrix C by

! 0"
€= [—d B(1,n — 1)]’

where d is the vector with » — 1 components d; given by
d1= Z;};llblyj= (1+)\1h), cl¢=0,2§i§n.

Calling the first row of C the Oth row, we now define two M-matrices’, M; and
M, , as follows:

(Mau)o = 2;
(M;u)i = ——%)\Jlui__]_ + i‘(]. -+ 3}\1,}'1/)?,(,@ s 1 = 7 =n— 1;

IIA
A
=

(M) = %;
(M’gu).,- = U1 + 2?4’,@‘ s 1

It is then easily verified that

If we define e to be the vector with all components unity and £ to have com-
ponents

then since Ce = &,
0= My'Mi{'Re = e — My'M;y'Ce < e — My M7'E. (27)
Tt is easily verified that M1 s = 1&, and that M3 £ > 0, so we have from (27)
0 < M;'Mi'Re < e — 3M;'5 <ee,

2 A real » X n matrix B is monotone if and only if B is nonsingular and B! = 0, i.e.,
every element of the matrix B! is a nonnegative real number.

3 A real n X n matrix B = (b;,;) is an M-mafriz if and only if B is monotone and b;,; = 0
foralli = 7,1 57,7 < n.
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which implies [10, p. 17] that the spectral radius p(M3' M{'R) satisfies
o(M7'MT'R) < 1.
Therefore, we can express (1 — M;'M7'R)™" as the convergent matrix series
(I — My'MTR)™ = 14 (M3'My'R) + (M;'M7'R) + -+ 2 0.

Since M3 MR is nonnegative, the above expression shows that (1 — M5 ' M7'R)

is an M-matrix, and as
C = MMy(I — M;"M7'R)

is the product of three M -matrices, €' is evidently a monotone matrix. From the
definition of the matrix C, it follows that

- [ 1 0
= [B_ld B"1:|’

and as C is monotone, every entry of C™" is necessarily nonnegative. Thus, B~
is & nonnegative matrix, or equivalently, B is monotone.

In summary, collecting the results of Cases I and II, all the minors of BT are
nonnegative. Since the superdiagonal and subdiagonal of B* have only positive
entries, we again conclude [5, p. 126] that B™ is an oscillation matrix, and as such
B has positive real distinct eigenvalues. Since B is diagonally similar to B* by
definition, then B also has positive real distinct eigenvalues, completing the proof.

We conclude this section with some remarks. Although more tedious to describe
in detail, arguments similar to those used in Theorem 3 further show that a
matrix B can be derived so as to have positive distinct eigenvalues even if A(z)
changes sign in 0 = 2 < [, provided that enough mesh points are used between
successive zeros of A(z). The derivation of the entries of this matrix B is altered
in that whenever \; < 0 for some ¢, a forward spatial difference approximation
for ¢;(7h, t) is used, rather than the backward difference approximation of (21).
In other words, a forward or backward spatial difference approximation to ¢,(¢k, ¢)
is chosen, depending on the sign of \; = A(¢h). As in Theorem 2, these results
can be extended to the case (13) in which one has in addition variable diffusivity,
ie., K(z) in (13) is a positive function of position.

4. Other semi-discrete approximations. The semi-discrete approximations of
Sections 2-3 to (1)—(2) are obviously not the only ones which can be used. The
following other approximations also come to mind.

a. Lower-Order Non-Central Difference Approximations. If we use the following
lower order non-central difference approximations in (5) for X > 0:

\ oc(x;, t) =\ [Ci(t) —hci—l(t):l (28)

ax

and retain the three-point central difference approximation to d%c(x. , )/da2%,
then each local error term 7 is now only of order & as h — 0. On the other hand,
the proof of Theorem 1 in Section 2 can be extended to show that the associated
tridiagonal coefficient matrix 4 will have positive real eigenvalues for all b > 0.
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Hence, as in Section 3, there isno restriction on A in terms of X for non-oscillatory
semi-discrete solutions. However, the local accuracy of these approximations
does not compare favorably with the local accuracy of the semi-discrete dif-
ference approximations of (21) which also possess non-oscillatory solutions for
all h > 0.

b. Change of Variables. If we define for constant X > 0

0(z, 1) = c(x, i) exp ( —3\z); 0z, t= 0, (29)
then 6(z, {) satisfies the differential equation
90(x, 1) _ 90z, ) N

6(z, 1), O<ae<l, t>0 (30)

at a2 4
where 8(z, 0) = O0for 0 < 2 < 1,0(0,t) = 1fort > 0, and
00(1, 1) A
A M ¢ .
o 29(Z, ), t>0 (31)

Again, using standard three-point central difference approximations to the right
side of (30), it is easy to show that the associated n X n coefficient matrix will
have positive real eigenvalues for all h > 0. Moreover, the local accuracy of such
an approximation is of order A’ as h — 0. Unfortunately, it can be shown that,
upon transforming the §’s back to ¢’s, that the related steady-state concentra-
tions are all greater than unity for any h > 0. In other words, these non-oscillatory
semi-discrete approximations have physically unacceptable steady-state values;
the semi-discrete approximations of (21) on the other hand can be verified to
possess the proper steady-state behavior.

5. Time discretizations. Having analyzed the oscillation problem for semi-
diserete approximations, we now turn to time discretizations, which are of
course necessary in practical computations. As we shall see, time discretizations
can introduce oscillatory behavior even in cases where no such oscillation exist
for the semi-discrete difference approximations.

The solution of (7) is given explicitly by

w(t+ At) = A7 +exp (—Atd)-{w(t) — A7}, t=0, Ar=0, (32)
where w(0) = 0 from (2), and A™"s will have all components unity if the steady-

state solution of (7) agrees with that of the physical problem. Using a fixed time
increment Af, we approximate the exponential matrix exp (—At4d) by

exp (—AtA) = [Q(AtA)[P(ALA), (33)

where Q(Atd) and P(AtA) are real polynomials in Atd, and Q(AtA) is non-
singular. This approximation generates a sequence of vectors z(mA¢), defined by

2(m 4+ DAY = A7 + Q(AtA)-P(AtA){ z(mat) — A7's}, m = 0, (34)

where z(0) = 0 from (2), and z(mAt) approximates the vector w(mAt).
With the results of our previous theorems, we now assume that the semi-
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discrete difference matrix A possesses only positive real distinct eigenvalues u.,
with associated eigenvectors v, . Using (20), we thus deduce that

_ ¥ _ (P2 ’”] _ .
z{mAl) = ; d; [l (Q(Aim)> vi, m = 0. (35)
Thus, for d: 0, the coefficient of v; oscillates with m if and only if
P(Atus)
= <) 36
Q@i (56)

We now consider various standard approximations [10, p. 262] for exp (—AtA),
which arise from Padé approximations to ¢, and we further require that no
oscillations occur.

a. Forward-Explicit Approvimation. In this case, P(AIA) = I —AlA,
Q(AtA) = I. Thus, (36) is invalid if

1
max p;
igign
It should be mentioned that the criterion for stability [10, p. 268] of this explicit
method similarly gives the restriction that

0< At S (37)

0 < At = ____,?__ .
max pg
igign
b. Backward-Implicit Approximation. In this case, P(AtA) = I, Q(AtA) =
I 4 AtA. Since P(Alu:)/Q(Atp:) = 1/(1 + Atus), then the backward-implicit
difference method is non-oscillatory for any At > 0.
c. Crank-Nicolson Approximation. In this case, P(AtA) = 2] — AtA, Q(ALA)

= 2] + AtA. Thus, (36) is invalid if

2

max u;
1gign

0< Al £ (38)

This criterion is actually much too restrictive since the small eigenvalues
dominate the solution. Experimentally we found that the oscillations resulting
from the time discretizations were eliminated, for all practical purposes, if

0<ar< L1
min g
Igign

(38")

We remark that the forward-explicit and the backward-implicit approximations
of exp (—AtA) above, are firsi-order correct, i.e., these approximations have ex-
pansions for A¢ small which agree only through linear terms in A¢ with the cor-
responding expansion for exp (—Atd). The Crank-Nicolson approximation is
second-order correct, but is restricted by (38"). Finally, we merely state that the
following Padé approximation s 1(AtA)[10, p. 267, is third-order correct, and
like the backward-difference approximation, is non-oscillatory for any A¢ > 0.
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Specifically, in this case
P(AtA) =T — g-AéA -+ é (Atd);  Q(AtA) =T + f})fA.
(s}

We should note here that as for the forward-explicit approximation, this
approximation, s, , has a criterion for stability given by

6

max p;
1gign

0 < At 2 (39)
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