ON A PROBLEM OF O. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

ON A PROBLEM OF O. TAUSSKY

BERNARD W. LEVINGER AND RICHARD S. VARGA

Recently, O. Taussky raised the following question. Given a nonnegative $n\times n$ matrix $A=(a_{i,j})$, let $\mathring{\mathcal{Q}}_{A}$ be the set of all $n\times n$ complex matrices defined by

(1.1)
$$\mathring{\Omega}_A \equiv \{B = (b_{i,j}) \mid |b_{i,j}| = a_{i,j} \text{ for all } 1 \leq i, j \leq n \}$$
.

Then, defining the spectrum $S(\mathfrak{M})$ of an arbitrary set \mathfrak{M} of $n \times n$ matrices B as

$$(1.2) S(\mathfrak{M}) \equiv \{ \sigma \mid \det(\sigma I - B) = 0 \text{ for some } B \in \mathfrak{M} \} ,$$

what can be said in particular about $S(\mathring{\Omega}_A)$? It is not difficult to see that $S(\mathring{\Omega}_A)$ consists of possibly one disk and a series of annular regions concentric about the origin, but our main result is a precise characterization of $S(\mathring{\Omega}_A)$ in terms of the minimal Gerschgorin sets for A.

Introduction. We shall distinguish between two cases. If there is a diagonal matrix $D = \operatorname{diag}(x_1, \dots, x_n)$ with $x \ge 0$ and $x \ne 0$ such that AD is diagonally dominant, then A is called essentially diagonally dominant. In this case, the set $S(\mathring{\mathcal{Q}}_A)$ is just the minimal Gerschgorin set $G(\mathcal{Q}_A)$ of [6], rotated about the origin (Theorem 1 and Corollary 2). Determining $S(\mathring{\mathcal{Q}}_A)$ in this case is quite easy, since it suffices to determine those points of the boundary of $G(\mathcal{Q}_A)$ which lie on the positive real axis (Theorem 2). This is discussed in § 2.

In the general case when A is not essentially diagonally dominant, we must use permutations and intersections (Theorem 3) to fully describe $S(\mathring{\mathcal{Q}}_A)$, in the spirit of [3]. These results are described in § 3. Also in this section is a generalization (Theorems 3 and 4) of a recent interesting result by Camion and Hoffman [1]. Our proof of this generalization differs from that of [1].

Finally, in §4 we give several examples to illustrate the various possibilities for $S(\mathring{\Omega}_4)$.

Before leaving this section, we point out that the question posed by O. Taussky [5, p. 129] has an immediate answer in terms of the results of [3]. In [3], the authors completely characterized the spectrum $S(\Omega_o)$ of a related set Ω_o of matrices, where $C = (c_{i,j})$ was an arbitrary $n \times n$ complex matrix and

(1.3)
$$\Omega_o \equiv \{B = (b_{i,j}) \mid |b_{i,j}| = |c_{i,j}| \text{ and } b_{i,j} = c_{i,j} \text{ for all } 1 \leq i, j \leq n \}$$
.

Clearly, $\Omega_A \subset \mathring{\Omega}_A$. On the other hand, if $D(\theta)$ represents an $n \times n$ diagonal matrix all of whose diagonal entries have modulus unity:

 $d_{j,j} = \exp(i\theta_j)$, $1 \leq j \leq n$, then $AD(\theta) \subset \mathring{\Omega}_A$ and $\mathring{\Omega}_A = \bigcup_{\theta} \Omega_{AD(\theta)}$, where the union is over all possible choices of $D(\underline{\theta})$. Thus,

$$S(\mathring{\Omega}_{\mathbf{A}}) = \bigcup_{\mathbf{A}} S(\Omega_{\mathbf{A}D(\theta)}) .$$

While this answers the question posed, it neither gives an insight into the nature of $S(\mathring{\Omega}_{\mathbf{A}})$, nor allows $S(\mathring{\Omega}_{\mathbf{A}})$ to be effectively calculated. We shall show that in fact $S(\mathring{\Omega}_{\mathbf{A}})$ is more easily determined than $S(\Omega_{\mathbf{A}})$.

2. The essentially diagonally dominant case. Let $A=(a_{i,j})$ be given $n\times n$ nonnegative matrix. In order to develop the material of this section, we recall some definitions and results concerning the $minimal\ Gerschgorin\ set\ G(\Omega_A)$ associated with A. In [3, 6], a continuous real-valued function $\nu(\sigma)$, defined for all complex numbers σ , was characterized by

$$(2.1) \qquad \nu(\sigma) \equiv \inf_{u>0} \max_{i} \left\{ \frac{1}{u_i} \left[\sum_{j \neq i} a_{i,j} u_j - |\sigma - a_{i,i}| u_i \right] \right\}.$$

Using the Perron-Frobenius theory of nonnegative matrices [7, § 2.4 and § 8.2], it can be shown that there exists a nonnegative vector $x \neq 0$ such that

$$(2.1') - |\sigma - a_{i,i}| x_i + \sum_{j \neq i} a_{i,j} x_j = \nu(\sigma) x_i, 1 \leq i \leq n.$$

From $\nu(\sigma)$, $G(\Omega_A)$ is defined by

$$G(\Omega_A) = \{ \sigma \mid \nu(\sigma) \ge 0 \}.$$

In view of (2.1') and (2.2), a complex number σ is contained in $G(\Omega_A)$ if and only if there is a nonnegative vector $x \neq 0$ such that

$$(2.3) |\sigma - a_{i,i}| x_i \leq \sum_{j \neq i} a_{i,j} x_j, 1 \leq i \leq n.$$

The set $G(\Omega_A)$ is a closed bounded set, and its boundary, denoted by $\partial G(\Omega_A)$, satisfies,

$$\partial G(\varOmega_{\mathbf{A}}) \subset S(\varOmega_{\mathbf{A}}) \subset G(\varOmega_{\mathbf{A}}) \ .$$

We first prove a result concerning $G(\Omega_{\mathbf{A}})$ which will have later applications.

LEMMA 1. If, for $z_0 > 0$, $z_0 e^{i\theta} \in G(\Omega_A)$ for all real θ , then all z with $|z| \leq z_0$ are in $G(\Omega_A)$, and z=0 is an interior point of $G(\Omega_A)$.

Proof. This is a simple application of (2.3). By assumption,

and $\mathring{\varOmega}_{_{m{A}}} = igcup_{_{m{ heta}} \varOmega_{_{m{A} \mathcal{D}(m{ heta})}}}, \;\; ext{where}$. Thus,

ther gives an insight into be effectively calculated. ly determined than $S(\Omega_4)$.

Int case. Let $A = (a_{i,j})$ or to develop the material dresults concerning the ith A. In [3, 6], a conall complex numbers σ ,

$$|\sigma - a_{i,i}| u_i$$

gative matrices [7, § 2.4 ts a nonnegative vector

$$x_i, \quad 1 \leq i \leq n$$
.

0}.

er σ is contained in $G(\Omega_{\mathbf{A}})$ $x \neq 0$ such that

$$1 \leq i \leq n$$
 .

A.

ts boundary, denoted by

₄) which will have later

for all real θ , then all z interior point of $G(\Omega_A)$.

f (2.3). By assumption,

 $-z_0 \in G(\Omega_{\mathbf{A}})$. Since $z_0 > 0$ and $a_{i,i} \ge 0$, $1 \le i \le n$, then

$$|-z_0-a_{i,i}|=z_0+a_{i,i}$$
.

Thus, for any z with $|z| \leq z_0$,

$$|z - a_{i,i}| \leq |z| + a_{i,i} \leq z_0 + a_{i,i}$$

and (2.3) holds for z with the same vector $x \ge 0$ which satisfies (2.3) for $-z_0$, which completes the proof.

We next introduce the notion of rotating a given point set P about the origin. Let

(2.5)
$$\operatorname{rot} P \equiv \{\sigma \mid \sigma e^{i\theta} \in P \text{ for some real } \theta\}.$$

With this notation, we have

Lemma 2. rot
$$S(\mathring{\mathcal{Q}}_{A}) = S(\mathring{\mathcal{Q}}_{A})$$
.

Proof. It is clear that $S(\mathring{\Omega}_{A}) \subset \operatorname{rot} S(\mathring{\Omega}_{A})$. If $\sigma \in \operatorname{rot} S(\mathring{\Omega}_{A})$, then $\sigma e^{i\theta}$ is an eigenvalue of some B in $\mathring{\Omega}_{A}$ and thus σ is an eigenvalue of $e^{-i\theta}B$. But $e^{-i\theta}B \in \mathring{\Omega}_{A}$ and hence $\sigma \in S(\mathring{\Omega}_{A})$, which completes the proof.

This elementary result already establishes that the spectrum $S(\tilde{\Omega}_{\mathbf{A}})$ can be described as the union of a family of circles concentric about the origin.

Lemma 3. If
$$\sigma \in S(\mathring{\mathcal{Q}}_{\mathbf{A}})$$
, then $|\sigma| \in G(\mathcal{Q}_{\mathbf{A}})$.

Proof. For any $\sigma \in S(\mathring{\Omega}_{A})$, there is a matrix $B = (b_{i,j})$ in $\mathring{\Omega}_{A}$ and a vector $\mathbf{y} \neq \mathbf{0}$ such that $B\mathbf{y} = \sigma \mathbf{y}$. Equivalently, we have

(2.6)
$$(\sigma - b_{i,i})y_i = \sum_{i \neq i} b_{i,i}y_i, \qquad 1 \leq i \leq n.$$

If we take absolute values in (2.6) and note that

$$|\sigma - b_{i,i}| \ge ||\sigma| - |b_{i,i}|| = ||\sigma| - a_{i,i}|,$$

we obtain

(2.7)
$$| |\sigma| - a_{i,i} | |y_i| \le |\sigma - b_{i,i}| |y_i| = |\sum_{j \ne i} b_{i,j} y_j| \le \sum_{j \ne i} a_{i,j} |y_i|$$
,

so that $|\sigma|$ satisfies (2.3) with the nonnegative vector x = |y|, which completes the proof.

From the definition (2.5), it follows that, if P and R are any sets with $P \subset R$, then rot $P \subset \text{rot } R$. Thus, (2.4) and Lemma 3 combine to give

COROLLARY 1. rot $\partial G(\Omega_A) \subset S(\mathring{\Omega}_A) \subset \operatorname{rot} G(\Omega_A)$.

We now study the case for which the inclusions of Corollary 1 become equalities.

THEOREM 1. Let A be a nonnegative $n \times n$ matrix. Then, $\operatorname{rot} \partial G(\Omega_{\mathbf{A}}) = S(\mathring{\Omega}_{\mathbf{A}}) = \operatorname{rot} G(\Omega_{\mathbf{A}})$ if and only if z = 0 is not an interior point of $G(\Omega_{\mathbf{A}})$.

Proof. First, assume that $z=0 \notin \operatorname{int} G(\Omega_{\mathbf{A}})$, and let σ be an arbitrary nonzero point of rot $G(\Omega_A)$, so that $\sigma e^{i\theta_0} \in G(\Omega_A)$ for some real θ_0 . The circle $|z| = |\sigma|$ cannot lie entirely in $G(\Omega_A)$. For otherwise, by Lemma 1, the entire disk $|z| \leq |\sigma|$ would be contained in $G(\Omega_A)$ and z=0 would be an interior point of $G(\Omega_{A})$. Thus, the circle $|z| = |\sigma|$ necessarily intersects the boundary $\partial G(\Omega_{\mathbf{A}})$, and there exists a real θ_1 such that $\sigma e^{i\theta_1} \in \partial G(\Omega_A)$. It follows that $\sigma \in \operatorname{rot} \partial G(\Omega_A)$, and thus from Corollary 1, σ is also a point of $S(\tilde{\mathcal{Q}}_{A})$. To complete this part of the proof, we need only examine the point z = 0. Clearly, the statement that $0 \notin \operatorname{int} G(\Omega_A)$ is equivalent to the statement that either $0 \in G'(\Omega_A)$, the complement of $G(\Omega_A)$, or $0 \in \partial G(\Omega_A)$. Thus, if $0 \in \text{rot } G(\Omega_A)$, i.e., $0 \in G(\Omega_A)$, then the previous remark shows that $0 \in \partial G(\Omega_A)$, which completes the proof of the first part. Now, assume that rot $\partial G(\Omega_{\mathbf{A}}) = S(\check{\Omega}_{\mathbf{A}}) = \operatorname{rot} G(\Omega_{\mathbf{A}})$, and call this common set of points H. If $0 \in H$, then $0 \in \partial G(\Omega_A)$, and hence $0 \notin \operatorname{int} G(\Omega_A)$. If $0 \notin H$, then $0 \notin G(\Omega_A)$, which implies that $0 \in G'(\Omega_A)$, and again $0 \notin \text{int } G(\Omega_A)$, which completes the proof.

The statement $z=0 \notin \operatorname{int} G(\Omega_A)$ can be seen to be equivalent to $\nu(0) \leq 0$, and this has an interesting connection with diagonally dominant matrices, i.e., $n \times n$ matrices $B=(b_{i,j})$ satisfying

$$|b_{i,i}| \ge \sum_{i \ne i} |b_{i,j}|, \qquad 1 \le i \le n.$$

Obviously, if $\nu(0) \leq 0$, then from (2.1'), there is a nonnegative vector $y \neq 0$ such that

$$(2.9) a_{i,i}y_i \ge \sum_{j \ne i} a_{i,j}y_j , 1 \le i \le n .$$

Thus, if D is the diagonal matrix $D \equiv \operatorname{diag}(y_1, \dots, y_n)$, then (2.9) asserts that the product AD is diagonally dominant. Conversely, if $D = \operatorname{diag}(y_1, \dots, y_n)$ where $\mathbf{y} \geq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$ and AD is diagonally dominant, then it follows from (2.3) that $\mathbf{v}(0) \leq \mathbf{0}$.

The statement that $\nu(0) \leq 0$ can also be coupled with results of Ostrowski [4] on *H-matrices*, which are defined as follows. Let $B = (b_{i,j})$ be an arbitrary $n \times n$ complex matrix, and associate with B the new matrix $C = (c_{i,j})$, where $c_{i,j} = -|b_{i,j}|$, $i \neq j$, and

$$c_{i,i} = |b_{i,i}|$$
 , $1 \leq i \leq n$.

nclusions of Corollary 1

n imes n matrix. Then, z = 0 is not an interior

 $G(\Omega_{\mathbf{A}})$, and let σ be an $\sigma e^{i\theta_0} \in G(\Omega_A)$ for some real in $G(\Omega_A)$. For otherwise, d be contained in $G(\Omega_A)$ Thus, the circle $\mathcal{G}(\Omega_{\mathbf{A}})$. $\partial G(\Omega_{4})$, and there exists that $\sigma \in \operatorname{rot} \partial G(\Omega_{\mathbf{A}})$, and $S(\Omega_{A})$. To complete this he point z=0. Clearly, it to the statement that or $0 \in \partial G(\Omega_A)$. Thus, if ious remark shows that first part. Now, assume this common set of points $0 \in \operatorname{int} G(\Omega_{\mathbf{A}}). \quad \text{If } 0 \notin H,$ and again $0 \notin \operatorname{int} G(\Omega_{\mathcal{A}})$,

seen to be equivalent to nection with $diagonally = (b_{i,j})$ satisfying

 $\leq i \leq n$.

e is a nonnegative vector

 $\leq i \leq n$.

lag (y_1, \dots, y_n) , then (2.9) dominant. Conversely, if 0 and AD is diagonally $0 \le 0$.

coupled with results of defined as follows. Let atrix, and associate with $|b_{i,j}|$, $i \neq j$, and

Then, B is an H-matrix if and only if all the principal minors of C are nonnegative. [That is, the matrix C is a possibly degenerate M-matrix.] In [4], it is shown that B is an H-matrix if and only if there exists a diagonal matrix $D = \operatorname{diag}(y_1, \dots, y_n)$ with $y \geq 0$, $y \neq 0$, such that BD is diagonally dominant. Thus we have

COROLLARY 2. Let A be a nonnegative $n \times n$ matrix. Then, $\operatorname{rot} \partial G(\Omega_{\mathbf{A}}) = S(\mathring{\Omega}_{\mathbf{A}}) = \operatorname{rot} G(\Omega_{\mathbf{A}})$ if and only if A is an H-matrix.

Summarizing, we have shown that the sets rot $\partial G(\Omega_A)$, $S(\mathring{\Omega}_A)$, and rot $G(\Omega_A)$ are equal in the case that A is an H-matrix, and this might logically be called the essentially diagonally dominant case, the title of this section.

We have already shown that $S(\mathring{\mathcal{Q}}_{A})$ is a collection of annuli and disks concentric about the origin. It is now logical to ask how the radii of these regions can be determined. For convenience, we will assume that A is irreducible (cf. [7, p. 20]). The reducible case requires only minor modifications.

We consider the function $\nu(t)$ along the nonnegative real axis $t \geq 0$. Let $\{t_i\}_{i=1}^m$ define the finite sequence of points $t_1 > t_2 > \cdots > t_m > 0$, such that $\nu(t_i) = 0$ and $\nu(t_i + \varepsilon) \cdot \nu(t_i - \varepsilon) < 0$ for all sufficiently small $\varepsilon > 0$. Then, these points t_i indicate strong sign changes in $\nu(t)$. In [6], it was shown that the spectral radius of A,

$$ho(A) \equiv \max_i \left\{ \mid \lambda_i \mid \mid \det \left(\lambda_i I - A \right) = 0 \right\}$$
 ,

is such a point, and since it was further shown that $\nu(\rho(A) + \delta) < 0$ for all $\delta > 0$, it is evidently the largest such point, i.e., $t_1 = \rho(A)$ and $m \ge 1$. We define $t_{m+1} = 0$, and now show that the points t_i divide the nonnegative real axis into intervals in which $\nu(t) \ge 0$.

LEMMA 4. For $t \ge 0$, $\nu(t) \ge 0$ if and only if $t_{2i} \le t \le t_{2i-1}$ for some i with $1 \le i \le \lfloor (m+1)/2 \rfloor$.

Proof. Since $\nu(t)$ is continuous for $t \geq 0$, it suffices to show that there is no $\mu > 0$, corresponding to a degenerate change of signs, with $\nu(\mu) = 0$ such that $\nu(\mu - \varepsilon) < 0$ and $\nu(\mu + \varepsilon) < 0$ for all sufficiently small $\varepsilon > 0$. This assertion is basically a consequence of the assumption that A is irreducible. For, if such a $\mu > 0$ exists, then $\mu \in \partial G(\Omega_A)$. Moreover, since $|te^{i\theta} - a_{i,i}| > |t - a_{i,i}|$ for any t > 0 and any real θ with $0 < |\theta| \leq \pi$, it follows from (2.1) that $\nu(te^{i\theta}) < \nu(t)$ and hence that $\nu(z) < 0$ for all complex $z \neq \mu$ in a neighborhood of μ . Thus, μ is an isolated point of $G(\Omega_A)$. As such, it follows [6] that μ is necessarily a diagonal entry of A, i.e., $\mu = a_{j,j}$ for some j. But, since

A is irreducible, it is known [6] that $\nu(a_{k,k}) > 0$ for every $1 \le k \le n$. This contradiction establishes the desired result.

Theorem 2. Let A be a nonnegative irreducible $n \times n$ matrix, and let $t_1 > t_2 > \cdots > t_m > 0$ be positive real numbers such that $\nu(t_i) = 0$ and $\nu(t_i + \varepsilon) \cdot \nu(t_i - \varepsilon) < 0$ for all sufficiently small $\varepsilon > 0$. If m > 1 and z is any complex number with $|z| \ge t_{2[m/2]}$, then $z \in S(\Omega_A)$ if and only if $t_{2i} \le |z| \le t_{2i-1}$ for some i with $1 \le i \le [m/2]$.

Proof. If z_0 is any complex number with $|z_0| \ge t_{2[m/2]}$ and $t_{2i} \le |z_0| \le t_{2i-1}$ for some $1 \le i \le [m/2]$, then from Lemma 4, $\nu(|z_0|) \ge 0$. Also, from Lemma 4 it follows that $\nu(|z|) < 0$ for any |z| with $t_{2i+1} < |z| < t_{2i}$. Thus, all points in the disk $|z| \le |z_0|$ are not points of $G(\mathring{\Omega}_A)$, and we deduce from Lemma 1 that $|z_0|e^{i\theta} \in \partial G(\Omega_A)$ for some real θ . Thus, $z_0 \in \operatorname{rot} \partial G(\Omega_A)$, and thus from Corollary 1, $z_0 \in S(\mathring{\Omega}_A)$, which proves one part of this result. Conversely, for any $z_0 \in S(\mathring{\Omega}_A)$ with $|z_0| \ge t_{2[m/2]}$, $\nu(|z_0|) \ge 0$ from Lemma 3. Then from Lemma 4, it follows that $t_{2i} \le |z_0| \le t_{2i-1}$ for some i with $1 \le i \le [m/2]$, which completes the proof.

Using the results of [6], it is now simple to determine the exact number of eigenvalues of any matrix $B \in \mathring{\Omega}_A$ which lie in each of the outer annuli: $t_{2i} \leq |z| \leq t_{2i-1}$ for $1 \leq i \leq [m/2]$.

COROLLARY 3. Let A be a nonnegative irreducible $n \times n$ matrix with m > 1. Then, for any $B \in \mathring{\Omega}_A$, B has p_i eigenvalues in the annulus $t_{2i} \leq |z| \leq t_{2i-1}$, $1 \leq i \leq [m/2]$, if and only if A has p_i diagonal entries in this annulus.

Proof. By a familiar continuity argument, going back to Gerschgorin, each connected component of $S(\mathring{\Omega}_A)$ contains the same number of eigenvalues for each $B \in \mathring{\Omega}_A$, and hence, the same number as A. But from [6], A has p_i eigenvalues in this annulus if and only if A has p_i diagonal entries in this annulus, which completes the proof.

As final remarks in this section, we mention that Theorem 2 precisely gives $S(\mathring{\mathcal{Q}}_{A})$ and the radii of its associated concentric annuli in the case that m (the number of strong sign changes in $\nu(t)$ for $t \geq 0$) is even. In this regard, it is interesting to point out that the geometrical result of Theorem 1 and Corollary 2 is basically contained in Theorem 2, since it can be obtained by applying Theorem 2 to a family of nonnegative irreducible matrices $A(\varepsilon)$, $\varepsilon \geq 0$, where $A(\varepsilon) \to A$

n > 0 for every $1 \le k \le n$. Sult.

 $egin{aligned} rreducible & n imes n & matrix, \ real & numbers & such & that \ sufficiently & small & arepsilon > 0. \ & with & |z| & \geq t_{2[m/2]}, & then \ ome & i & with & 1 & \leq i & \leq [m/2]. \end{aligned}$

from Lemma 4, $\nu(|z_0|) \geq 0$. From Lemma 4, $\nu(|z_0|) \geq 0$. |z| < 0 for any |z| with $|z| \leq |z_0|$ are not points $|z| \leq |z_0|$ for some m Corollary 1, $|z_0| \leq S(\hat{\Omega}_A)$, ersely, for any $|z_0| \leq S(\hat{\Omega}_A)$, with $|z_0| \leq S(\hat{\Omega}_A)$, which

ble to determine the exact which lie in each of the /2].

 $irreducible \ n imes n \ matrix \ as \ p_i \ eigenvalues \ in \ the \ and \ only \ if \ A \ has \ p_i$

ent, going back to Gerschontains the same number the same number as A. his annulus if and only lus, which completes the

mention that Theorem 2 sociated concentric annuli sign changes in $\nu(t)$ for ting to point out that the try 2 is basically contained applying Theorem 2 to a (ε) , $\varepsilon \geq 0$, where $A(\varepsilon) \rightarrow A$

as $\varepsilon \downarrow 0$, for which m is again even for each $A(\varepsilon)$ for all sufficiently small $\varepsilon > 0$. We also mention that computing the points t_i or Theorem 2, whether m is even or odd, is not difficult because of the inclusion relationships of (2.1).

In the case that m=2l+1 is odd, Theorem 2 gives no information about the final disk $0 \le |z| \le t_{2l+1}$, and different techniques are necessary to decide which points of this disk are points of $S(\mathring{\mathcal{Q}}_{4})$. This will be discussed in § 3.

3. $\nu(0)>0$. If z=0 is an interior point of $G(\Omega_A)$, i.e., $\nu(0)>0$, we can still give a precise characterization of $S(\mathring{\Omega}_A)$ using the methods of [3], but these results are considerably more complicated than those given in § 2. We shall show by means of examples in § 4 that these complications cannot, unfortunately, be avoided.

We first give a more or less well known result.

LEMMA 5. Let $0 \le \alpha_1 \le \alpha_2 \le \cdots \le \alpha_n$ be nonnegative real numbers, and ρ an arbitrary complex number. Then, there exist real numbers $\theta_1, \dots, \theta_n$ such that $\rho = \sum_{j=1}^n \alpha_j e^{i\theta_j}$ if and only if

$$(3.1) \qquad \qquad \sum_{j=1}^{n} \alpha_j \ge |\rho| \ge \alpha_n - \sum_{j=1}^{n-1} \alpha_j.$$

Proof. This lemma is precisely Lemma 1 of [1] applied to the n+1 nonnegative numbers $\alpha_1, \dots, \alpha_n, |\rho|$. However, for completeness, we give a proof by induction.

Only the fact that (3.1) implies the existence of the θ_j is nontrivial. For n=2, $|\alpha_2+\alpha_1e^{i\theta}|=\sqrt{\alpha_2^2+2\alpha_1\alpha_2\cos\theta+\alpha_1^2}$ which varies continuously from $\alpha_2+\alpha_1$ to $\alpha_2-\alpha_1$ as θ varies from 0 to π .

For n+1, we distinguish two cases. Consider first the case where $|\rho| \geq |\alpha_{n+1} - \sum_{i=1}^n \alpha_i|$. Then, as in the previous case for n=2, for some θ we can write $|\rho| = |\alpha_{n+1} + e^{i\theta} \sum_{i=1}^n \alpha_i|$. Otherwise, if $|\rho| < |\alpha_{n+1} - \sum_{i=1}^n \alpha_i|$, then from (3.1) we deduce that $|\rho| < \sum_{i=1}^n \alpha_i - \alpha_{n+1}$, which gives us the inequalities

$$\alpha_n - \sum_{i=1}^{n-1} \alpha_i \le \alpha_n \le |\rho| + \alpha_{n+1} \le \sum_{i=1}^n \alpha_i$$
.

Thus, from the inductive hypothesis, $\alpha_{n+1} + |\rho|$, and hence also ρ , have the representations of the desired form.

With this, we now characterize $S(\mathring{\mathcal{Q}}_{A})$ by a set of linear inequalities.

LEMMA 6. Let σ be an arbitrary complex number. Then $\sigma \in S(\mathring{\Omega}_{A})$ if and only if there exists a nonnegative vector $\mathbf{x} \neq \mathbf{0}$ such that

(3.2)
$$\sum_{j=1}^{n} a_{i,j} x_{j} \ge |\sigma| x_{i} \ge a_{i,k} x_{k} - \sum_{j \ne k} a_{i,j} x_{j}$$

for each i and k with $1 \leq i, k \leq n$.

Proof. If $\sigma \in S(\mathring{\Omega}_{A})$, there exists a matrix $B \in \mathring{\Omega}_{A}$ and a vector $z \neq 0$ with $Bz = \sigma z$. Taking absolute values and setting $|z_{j}| = x_{j}$, we obtain for the *i*-th component

$$\left|\sum_{j=1}^{n} a_{i,j} x_{j} \ge \left|\sum_{j=1}^{n} b_{i,j} x_{j}\right| = \left|\sigma\right| x_{i} \ge a_{i,k} x_{k} - \sum_{j \ne k} a_{i,j} x_{j}$$

for each $1 \le k \le n$, which establishes the first part of this theorem. Conversely, if (3.2) is satisfied by a nonnegative vector $\mathbf{x} \ne \mathbf{0}$ for each i and $k, 1 \le i, k \le n$, we can repeatedly apply Lemma 5 to find real constants $\theta_{k,j}$ such that $\sigma x_k = \sum_{j=1}^n a_{k,j} e^{i\theta_{k,j}} x_j$ for $1 \le k \le n$, so that $\sigma \in S(\hat{\Omega}_A)$, which completes the proof.

We now remark that the inequalities of (3.2) are equivalent to the following set of n^2 linear inequalities

$$(3.3) \qquad \sum_{j \neq i} (-1)^{\delta_{j,k}} a_{i,j} x_j + (-1)^{\delta_{i,k}} | |\sigma| + (-1)^{\delta_{i,k}} a_{i,i} | x_i \ge 0 ,$$

$$1 \le i, k \le n ,$$

where $\delta_{i,k}$ is the Kronecker delta function. For $k \neq i$, the second inequality of (3.2) is identical with (3.3). For k = i, (3.2) yields

$$\sum_{j\neq i} a_{i,j} x_j \geq (|\sigma| - a_{i,i}) x_i \geq -\sum_{j\neq i} a_{i,j} x_j$$
,

which is equivalent to

$$\sum_{i\neq i} a_{i,j} x_i - ||\sigma| - a_{i,i}|x_i \ge 0.$$

In order to develop the material of this section, we recall some definitions and results [3] concerning the minimal Gerschgorin set $G^{\varphi}(\Omega_{\sigma})$ associated with a matrix C relative to the permutation φ . Let $C=(c_{i,j})$ be an arbitrary $n\times n$ complex matrix, and let φ be any permutation of the first n positive integers. If σ is any complex number, we can define a continuous real valued function $\nu_{\varphi,\sigma}(\sigma)$ by

$$\begin{array}{ll} (3.4) & \qquad \nu_{\varphi,\sigma}(\sigma) = \inf_{u>0} \max_i \left\{ \frac{1}{u_{\varphi(i)}} \left[\sum_{j \neq i} (-1)^{\delta_{j,\varphi(i)}} \left| \left. c_{i,j} \right| u_j \right. \right. \right. \\ & \left. + (-1)^{\delta_{i,\varphi(i)}} \left| \left. \sigma - c_{i,i} \right| u_i \right] \right\}. \end{array}$$

number. Then $\sigma \in S(\mathring{\Omega}_{A})$ ector $x \neq 0$ such that

$$\sum_{j \neq k} a_{i,j} x_j$$

$$a_k x_k - \sum_{i \neq k} a_{i,j} x_j$$

est part of this theorem. Every vector $x \neq 0$ for each by Lemma 5 to find real for $1 \leq k \leq n$, so that

(3.2) are equivalent to

$$(-1)^{\delta_{i,\,k}}a_{i,i}\,|\,x_i\geqq 0$$
 , $1\leqq i,\,k\leqq n$,

For $k \neq i$, the second or k = i, (3.2) yields

$$\sum_{j\neq i} a_{i,j} x_j ,$$

$$\geqq 0$$
 .

section, we recall some mal Gerschgorin set $G^{\varphi}(\Omega_{\sigma})$ to permutation φ . Let atrix, and let φ be any s. If σ is any complex ued function $\nu_{\varphi,\sigma}(\sigma)$ by

$$c_{i,\sigma(i)} \mid c_{i,j} \mid u_i$$

Period and State of S

The minimal Gerschgorin set $G^{\varphi}(\Omega_{\sigma})$ is given as in (2.2) by

$$G^{\varphi}(\Omega_{\sigma}) = \{ \sigma \mid \nu_{\varphi,\sigma}(\sigma) \geq 0 \} .$$

Equivalently, $\sigma \in G^{\varphi}(\Omega_{\sigma})$ if and only if there exists a nonnegative vector $x \neq 0$ such that

$$(3.6) \quad \sum_{i \neq i} (-1)^{\delta_{j,\varphi(i)}} |c_{i,j}| \, x_j + (-1)^{\delta_{i,\varphi(i)}} |\sigma - c_{i,i}| \, x_i \geq 0 \,\,, \quad 1 \leq i \leq n \,\,.$$

In order to couple the inequalities (3.3) to those of (3.6), let $A^{\varphi} = (a_{i,j}^{\varphi})$ be an $n \times n$ matrix derived from A as follows:

$$(3.7) a_{i,j}^{\varphi} = \begin{cases} a_{i,j} , & j \neq i \\ (-1)^{1+\delta_{i,\varphi(i)}} a_{i,i} , j = i \end{cases}, 1 \leq i, j \leq n.$$

It is clear from Lemma 6 and the definition of A_{φ} that $\sigma \in S(\mathring{\Omega}_{A})$ implies that $|\sigma| \in G^{\varphi}(\Omega_{A})$ for each permutation φ . Note that this result generalizes Lemma 3 of § 2 to arbitrary permutation. Hence, it follows that $|\sigma| \subset \bigcap_{\varphi} G^{\varphi}(\Omega_{A})$, so that

$$S(\mathring{\varOmega}_{\mathbf{A}}) \subset \operatorname{rot}\left(\bigcap_{\varphi} G^{\varphi}(\varOmega_{\mathbf{A}^{\varphi}})\right).$$

We now show that equality is valid in (3.8).

THEOREM 3. Let $A = (a_{i,j})$ be a nonnegative $n \times n$ matrix. Then,

$$S(\mathring{arOmega}_{m{A}}) = \mathrm{rot}\left(igcap_{\!\!\!arphi} \, G^{\!\scriptscriptstylearphi}(arOmega_{m{A}^{\!\scriptscriptstylearphi}})
ight)$$
 .

Proof. From (3.8), it suffices to show that $|\sigma| \in \bigcap_{\varphi} G^{\varphi}(\Omega_{A^{\varphi}})$ implies that $|\sigma| \in S(\mathring{\Omega}_{A})$. To prove this, we define the sets $M_{i,k}(|\sigma|)$ from (3.3) by

$$(3.9) M_{i,k}(|\sigma|) = \left\{ x \ge 0 \mid \sum_{j=1}^n x_j = 1 ; \sum_{j \ne i} (-1)^{\delta_{j,k}} a_{i,j} x_j \right. \\ \left. + (-1)^{\delta_{i,k}} ||\sigma| + (-1)^{\delta_{i,k}} a_{i,i} | x_i \ge 0 \right\}.$$

By (3.3), $|\sigma| \in S(\mathring{\Omega}_{A})$ is equivalent to the existence of a vector x with

$$x \in \bigcap_{1 \le i, k \le n} M_{i,k}(|\sigma|)$$
,

and thus we must prove that $\bigcap_{1 \leq i,k \leq n} M_{i,k}(|\sigma|)$ is nonempty. We shall show that the hypothesis, $|\sigma| \in \bigcap_{\varphi} G^{\varphi}(\Omega_{A^{\varphi}})$, implies that any n of the sets $M_{i,k}(|\sigma|)$ have a nonempty intersection. Then, the conclusion will follow from Helly's Theorem [2, p. 33], which states that if K is a family of at least n convex sets in Euclidean (n-1)-space,

 R^{n-1} , such that every subclass containing n members has a common point in R^{n-1} , there is a point common to all members of K. Since the $M_{i,k}(|\sigma|)$ are convex and of dimension at most (n-1), this implies our theorem.

It remains to show that any collection $\{M_{i_j,k_j}(|\sigma|)\}_{j=1}^n$ has a nonempty intersection. This is always true if the second subscript k_j fails to take on the integer value k_0 , $1 \leq k_0 \leq n$. For, if y is the vector with components $y_{k_0} = 1$, $y_j = 0$ for $j \neq k_0$, we see that (3.3) is satisfied and thus $y \in \bigcap_{j=1}^n M_{i_j,k_j}(|\sigma|)$. By (3.6) and (3.7), the condition $|\sigma| \in G^{\varphi}(\Omega_{A^{\varphi}})$ is equivalent to the assertion that $\bigcap_{\varphi} M_{i,\varphi(i)}(|\sigma|)$ is nonempty. Thus, $|\sigma| \in \bigcap_{\varphi} G^{\varphi}(\Omega_{A^{\varphi}})$ implies that $\bigcap_{j=1}^n M_{i_j,k_j}(|\sigma|)$ is nonempty whenever $k_j = \varphi(i_j)$ for some permutation φ . Finally, consider a collection $\{M_{j(k),k}\}_{k=1}^n$ where j(k) is not one-to-one. In this case, there is evidently a repeated first index, and for convenience, we assume that $1 = j(1) = j(2) = \cdots = j(r)$, $r \geq 2$. Then let y be any nonnegative vector with $y_1 + y_2 = 1$, $y_j = 0$ for $2 < j \leq n$. For such vectors, it follows from (3.9) that

(3.10)
$$y \in M_{1,1}$$
 if and only if $a_{1,2}y_2 - ||\sigma| - a_{1,1}|y_1 \ge 0$,

(3.10')
$$y \in M_{1,2}$$
 if and only if $-a_{1,2}y_2 + ||\sigma| + a_{1,1}|y_1 \ge 0$,

$$(3.10'') y \in M_{j(k),k}, k > 2 if and only if $a_{j(k),i}y_1 + a_{j(k),2}y_2 \geqq 0.$$$

Clearly, from (3.10") all such vectors \boldsymbol{y} are in $\bigcap_{k>2} M_{j(k),k}$. If $a_{1,2} > 0$, then the vector \boldsymbol{y} with $y_2 = (| |\sigma| - a_{1,1} | y_1)/a_{1,2}$ is in $M_{1,1} \cap M_{1,2}$, and if $a_{1,2} = 0$, then the vector \boldsymbol{y} with $y_2 = 1$ $y_1 = 0$ is in $M_{1,1} \cap M_{1,2}$. Thus, $\bigcap_{k=1}^{n} M_{j(k),k}$ is nonempty, and we conclude that any collection of n sets $M_{i,j}$ has a nonempty intersection, which completes the proof.

We can further show that, if $\sigma \notin S(\mathring{\mathcal{Q}}_{A})$, then as in [1] there is a unique permutation φ such that $|\sigma| \notin G^{\varphi}(\Omega_{A^{\varphi}})$. This will permit us to show that at most (n+1) permutations are necessary to characterize $S(\mathring{\mathcal{Q}}_{A})$ in Theorem 3.

THEOREM 4. If $\sigma \notin S(\mathring{\Omega}_{A})$, then there exists a unique permutation φ such that $|\sigma| \notin G^{\varphi}(\Omega_{A}^{\varphi})$.

Proof. If $\sigma \notin S(\mathring{\Omega}_{A})$, then, by Theorem 3, there is at least one permutation φ with $|\sigma| \notin G^{\varphi}(\Omega_{A}^{\varphi})$. Thus, if $|\sigma| \notin G^{\psi}(\Omega_{A}^{\psi})$, we must show that $\psi = \varphi$, i.e., $\psi(i) = \varphi(i)$ for $1 \leq i \leq n$.

To prove this, we introduce the sets

$$(3.11) N_{i,k} = \left\{ x \ge 0 \middle| \sum_{j=1}^{n} x_{j} = 1 ; \sum_{j \ne i} (-1)^{\delta_{j}} {}^{k} a_{i,j} x_{j} \right. \\ \left. + (-1)^{\delta_{i,k}} \middle| |\sigma| + (-1)^{\delta_{i,k}} a_{i,i} \middle| x_{i} < 0 \right\},$$

n members has a common all members of K. Since at most (n-1), this implies

tion $\{M_{i_1,k_1}(|\sigma|)\}_{j=1}^n$ has a if the second subscript k_i $\leq k_0 \leq n$. For, if y is the $j \neq k_0$, we see that (3.3) By (3.6) and (3.7), the ssertion that $\bigcap_{\varphi} M_{i,\varphi(i)}(|\sigma|)$ es that $\bigcap_{j=1}^n M_{i,j,k,j}(|\sigma|)$ is permutation φ . Finally, s not one-to-one. In this ex, and for convenience, we $r \geq 2$. Then let y be any for $2 < j \le n$. For such

$$|\sigma| - a_{1,1} | y_1 \ge 0 ,$$

 $|\sigma| + a_{1,1} | y_1 \ge 0 ,$

$$a_1 + a_2 = 0$$

 $a_{j(k),j}y_1 + a_{j(k),j}y_2 \geq 0$.

in $\bigcap_{k>2} M_{j(k),k}$. If $a_{1,2}>0$, $M_{1,1}\cap M_{1,2}$ is in $M_{1,1}\cap M_{1,2}$, and $= 0 \text{ is in } M_{1,1} \cap M_{1,2}$. Thus, that any collection of nh completes the proof.

), then as in [1] there is $\ell(\Omega_{\mathbf{A}}\varphi)$. This will permit us e necessary to characterize

sists a unique permutation

n 3, there is at least one $f \mid \sigma \mid \notin G^{\psi}(\Omega_{A}\psi)$, we must $i \leq n$.

$$-1)^{\delta_{j}} k a_{i,j} x_{j}$$

$$\left\{ \left\{ \left\{ \left\{ a_{i,i} \right| x_{i} < 0
ight\} , \right\} \right\}$$

with $1 \leq i, k \leq n$. Clearly, $N_{i,k}$ is the complement of $M_{i,k}(|\sigma|)$ relative to the (n-1)-simplex $S \equiv \{x \geq 0 \mid \sum_{j=1}^n x_j = 1\}$. It is also clear that $N_{i,k}$ is empty if and only if $a_{i,k}=0$ when $i\neq k$, and $||\sigma|-a_{i,i}|=0$ when i = k, and $N_{i,k}$ does not intersect the face of the simplex S defined by $x_k = 0$. Further, it is readily verified that $N_{i,k} \cap N_{i,k'}$ is empty if $k \neq k'$.

If $|\sigma| \notin G^{\varphi}(\Omega_{A^{\varphi}})$, it follows from (3.6) and (3.7) that $S = \bigcap_{i=1}^{n} N_{i,\varphi(i)}$. On the other hand, $|\sigma| \notin G^{\varphi}(\Omega_{A^{\varphi}})$ implies from (3.5) that $\nu_{\varphi,A^{\varphi}}(|\sigma|) < 0$, and hence, from the definition of (3.4), there must exist (by continuity) a positive vector u > 0 with $u \in N_{i,\varphi(i)}$ for all $1 \le i \le n$, i.e., if u is normalized, then $u \in \bigcap_{i=1}^n N_{i,\varphi(i)}$. Similarly, $|\sigma| \notin G^{\psi}(\Omega_{A^{\psi}})$ implies that $S = \bigcap_{i=1}^n N_{i,\psi(i)}$.

Now, let $I = \{j \mid \psi(j) = \varphi(j), 1 \leq j \leq n\}$. Assuming that $\psi \neq \varphi$, then I is a proper subset of the first n positive integers. From the vector u > 0 above, form the vector $v \in S$ as follows: $v_{\varphi(j)} = 0, j \in I$; $v_{\varphi(j)} = u_{\varphi(j)}, u_{\varphi(j)}/(\sum_{j \notin I} u_{\varphi(j)}), j \notin I$. Since $u \in N_{i,\varphi(i)}$ for all $1 \leq i \leq n$, it is easy to verify that $v \in N_{i,\varphi(i)}$ for any $i \notin I$, and thus $v \in \bigcap_{i \in I} N_{i,\varphi(i)}$. Furthermore, $v \in \bigcup_{i \in I} N_{i,\psi(i)}$ since the union of the $N_{i,\psi(j)}$ covers the simplex S, and $N_{j,\psi(j)}$ does not intersect the face $v_{\varphi(j)}=0$ for $j\in I$. Thus, there is a $k\notin I$ such that $v\in N_{k,\psi(k)}\cap N_{k,\varphi(k)}$. But since $N_{i,k} \cap N_{i,k'}$ is empty if $k \neq k'$, then it follows that $\psi(k) = \varphi(k)$, i.e., $k \in I$, which contradicts the assumption that I is a proper subset of the first n positive integers. Hence, $\varphi(i) = \psi(i)$ for all $1 \le i \le n$, which completes the proof.

We remark that the special case $\sigma = 0$ of Theorems 3 and 4 corresponds to the main results of [1].

Letting R' denote the complement of any set R in the complex plane, then Theorem 4 implies:

Corollary 4. If K is an open connected component of $(S(\tilde{\Omega}_{A}))'$, the complement of $S(\Omega_A)$, then there is a unique permutation ψ for which $K \subset (G^{\psi}(\Omega_{\mathbf{A}^{\psi}}))'$.

Proof. Since $\bigcap_{\varphi} G^{\varphi}(\Omega_{\mathcal{A}^{\varphi}}) \subset S(\mathring{\Omega}_{\mathcal{A}})$ by Theorem 3, then obviously $(S(\Omega_{\mathbf{A}}))' \subset (\bigcap_{\varphi} G^{\varphi}(\Omega_{\mathbf{A}^{\varphi}}))' = \bigcup_{\varphi} (G^{\varphi}(\Omega_{\mathbf{A}^{\varphi}}))'.$ Next, we remark that if $|\sigma|$ were replaced by σ in the definition of $N_{i,k}$ in (3.11), all subsequent arguments remain valid. In particular, from the proof of Theorem 4, it follows that the $(G^{\varphi}(\Omega_{A^{\varphi}}))'$ are nonintersecting open sets. Thus, the open connected component K can be in only one set $(G^{\psi}(\Omega_A^{\psi}))'$, which completes the proof. We remark that in general $K \neq (G^{\psi}(\Omega_{A^{\psi}}))'$ because of the rotational invariance of any connected component of $(S(\tilde{\Omega}_A))'$.

We now consider the closed connected components of $S(\Omega_{\mathbf{A}})$.

THEOREM 5. Every connected component of $S(\mathring{\Omega}_{A})$ contains the same number of eigenvalues for each matrix B in $\mathring{\Omega}_{A}$.

Proof. This is basically a continuity argument. For, given any matrix $B \in \mathring{\Omega}_A$, we can construct a matrix $B(t) \in \mathring{\Omega}_A$ whose entries are continuous functions of t, $0 \le t \le 1$, such that B(0) = A and B(1) = B. Since the eigenvalues of B(t) then vary continuously with t, each matrix $B \in \mathring{\Omega}_A$ must have the same number of eigenvalues as A in each connected component of $S(\mathring{\Omega}_A)$, which completes the proof.

Theorem 3 states that $S(\mathring{\Omega}_{A})$ can be determined from the n! sets $G^{\varphi}(\Omega_{A^{\varphi}})$. The next result shows that at most (n+1) permutations are necessary for the determination of $S(\mathring{\Omega}_{A})$.

THEOREM 6. There exist permutations $\varphi_1, \varphi_2, \dots, \varphi_r$ with $r \leq n+1$ such that $S(\mathring{\Omega}_A) = \operatorname{rot} \left(\bigcap_{i=1}^r G^{\varphi_i}(\Omega_A^{\varphi_i})\right)$.

Proof. Since the matrix A has n eigenvalues, then $S(\mathring{\Omega}_A)$ can have at most n closed connected components by Theorem 6. Because each closed connected component of $S(\mathring{\Omega}_A)$ is either a (possibly degenerate) disk or an annulus centered at the origin, then it is clear that the complement of $S(\mathring{\Omega}_A)$ consists of at most (n+1) similar regions. By Corollary 3, exactly one permutation corresponds to each open connected component of $(S(\mathring{\Omega}_A))$, and thus at most (n+1) permutations are necessary to describe $S(\mathring{\Omega}_A)$.

We remark that, since $(S(\mathring{\mathcal{Q}}_{A}))'$ always contains the unbounded connected component $\{z \mid |z| > \rho(A)\}$, the identity permutation must always occur as one of the r permutations of Theorem 6. This follows from the fact [3] that $G^{\varphi}(\mathcal{Q}_{A^{\varphi}})$ is a bounded set only for the identity permutation. Of course, if A is essentially diagonally dominant, then r=1 from Theorem 1. We now remark that the results of Theorem 2 and Corollary 3 can be used to obtain an improved upper bound for r. For, if t_m is, as in Theorem 2, the smallest positive number such that $\nu(t_m)=0$, then by Corollary 3, the number of eigenvalues σ for each $B\in \mathring{\mathcal{Q}}_A$ with $|\sigma|\geq t_m$ is equal to the number, k, of diagonal entries $a_{i,i}$ of A with $a_{i,i}\geq t_m$, and clearly $k\geq \lfloor m/2\rfloor$. Thus, by the same argument as above,

$$r \leq n+1-k$$
.

In § 4, we give an example of a 3×3 matrix for which 3 permutations are required to determine $S(\mathring{\mathcal{Q}}_{A})$. In general, examples can similarly be given where n permutations are required for the $n \times n$ case, and we conjecture that the result of Theorem 6 is valid with

contains the

For, given any see entries are and B(1) = B. with t, each es as A in each of.

m the n! sets permutations

with $r \leq n+1$

en $S(\mathring{\Omega}_{4})$ can n 6. Because ly degenerate) lear that the regions. By pen connected nutations are

the unbounded sutation must This follows the identity ominant, then the sof Theorem per bound for number such a values σ for agonal entries by the same

hich 3 permuexamples can or the $n \times n$ is valid with n+1 reduced to n.

To actually calculate $S(\Omega_A)$ in the general case, it is necessary from Corollary 4 to work with the complements of the sets $G^{\varphi}(\Omega_{A^{\varphi}})$, i.e., to determine those intervals of the positive real axis $(t \geq 0)$ for which $\nu_{\varphi,A^{\varphi}}(t) < 0$ for some permutation φ . However, it is in general not easy to determine a priori which $r(\leq n+1)$ of the n! permutations suffice to characterize $S(\mathring{\Omega}_A)$ in Theorem 6. For this reason, the analogue of Theorem 2 which could be stated for the general case seems computationally unattractive.

4. Examples. To illustrate the results of $\S 2$, consider the following diagonally dominant matrix A:

(4.1)
$$A = \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 3 & 1/2 \\ 0 & 1/2 & 5 \end{bmatrix}.$$

For this matrix, the minimal Gerschgorin set $G(\Omega_A)$ is given by

$$(4.2) G(\Omega_{\mathbf{A}}) = \{z : 4 | z - 1| \cdot | z - 3| \cdot | z - 5| \le |z - 5| + |z - 1| \}.$$

From this, it can be verified that the intervals of the nonnegative real axis for which $\nu(t) \ge 0$ are given by

$$(4.3) 0.88 \le t \le 1.14; \ 2.75 \le t \le 3.25; \ 4.86 \le t \le 5.12.$$

From Theorem 2, $S(\mathring{\mathcal{Q}}_{\mathbf{A}})$ then consists of three concentric annuli, and from Corollary 3, each $B \in \mathring{\mathcal{Q}}_{\mathbf{A}}$ has exactly one eigenvalue in each annulus.

To illustrate the results of § 3, consider the matrix $A(\varepsilon)$ where

(4.4)
$$A(\varepsilon) = \begin{bmatrix} \varepsilon & 1 & 0 \\ 0 & \varepsilon & 1 \\ 1 & 2 & \varepsilon \end{bmatrix},$$

and $\varepsilon \geq 0$. Note that A(0) is the companion matrix for the polynomial x^3-2x-1 . It is not difficult to show that at most three permutations¹, $\varphi_1=I$, $\varphi_2=(23)$, $\varphi_3=(123)$, are necessary to describe $S(\mathring{\Omega}_{A(\varepsilon)})$, i.e., $G^{\varphi}(\Omega_{A(\varepsilon)}^{\varphi})$ is the entire complex plane for all other permutations for every $\varepsilon \geq 0$. Thus, from Theorem 3, $S(\mathring{\Omega}_{A(\varepsilon)})$ is determined by the sets $G^{\varphi_i}(\Omega_{A(\varepsilon)}^{\varphi_i})$, which turn out to be

$$(4.5) G^{\varphi_1}(\Omega_{A(\varepsilon)}^{\varphi_1}) = \{\sigma : 1 + 2 \mid \sigma - \varepsilon \mid - \mid \sigma - \varepsilon \mid^3 \ge 0\}$$

$$= \{\sigma : \mid \sigma - \varepsilon \mid \le 1.62\}.$$

¹ Here, we are describing permutations by their disjoint cycles.

$$(4.6) \qquad G^{\varphi_2}(\Omega_{A(\varepsilon)^{\varphi_2}}) = \{\sigma: 1-2\,|\,\sigma-\varepsilon\,|\,-\,|\,\sigma-\varepsilon\,|\cdot|\,\sigma+\varepsilon\,|^2 \geqq 0\}\;,$$

$$(4.6) \qquad G^{\varphi_3(2_{\boldsymbol{A}(\epsilon)},\varphi_3)} = \{\sigma: -1 + 2 \mid \sigma + \varepsilon \mid + \mid \sigma + \varepsilon \mid^3 \ge 0\}$$

$$= \{\sigma: \mid \sigma + \varepsilon \mid \ge 0.45\}.$$

The basic reason for considering such an example is that, for suitable choices of ε , the actual number r of permutations in Theorem 6 which are necessary to describe $S(\mathring{\mathcal{Q}}_{4^{(e)}})$ can be made to vary from one to three. More precisely, for $0 \le \varepsilon < 0.045$, r = 3; for $0.045 \le \varepsilon < 0.45$, r=2; and for $0.45 \le \varepsilon, \ r=1.$ The first two cases are illustrated in Figures 1 and 2.

Fig. 1 $\varepsilon = 0$; $R_1 = 0.45$, $R_2 = 0.62$, $R_3 = 1.00$, $R_4 = 1.62$

Fig. 2 $\varepsilon = 0.05; R_1 = 0.40, R_2 = 1.67$

 $\sigma+arepsilon\mid^2 \geq 0 \}$,

 $|^3 \ge 0$

ample is that, for utations in Theorem de to vary from one or $0.045 \le \varepsilon < 0.45$, es are illustrated in

This last example serves to answer some questions which might naturally arise in reading the previous sections. First, it shows that $n \times n$ matrices A exist for which at least n permutations φ are necessary to determine $S(\mathring{\Omega}_A)$. On the other hand, it shows that it is not necessary for A to be essentially diagonally dominant in order that $S(\mathring{\Omega}_A)$ coincide with rot $G(\Omega_A)$ (cf. Theorem 1), since choosing $\varepsilon = 0.5$ in (4.4) gives this condition. Finally, it demonstrates that, in general, it is not possible to find a single matrix $B \in \mathring{\Omega}_A$ for which $S(\mathring{\Omega}_A)$ is rot $S(\Omega_B)$. This fact follows quite easily from the last example with $\varepsilon = 0.05$, in particular.

BIBLIOGRAPHY

- 1. Paul Camion and A. J. Hoffman, On the nonsingularity of complex matrices, Pacific J. Math. 17 (1966), 211-214.
- 2. H. G. Eggleston, Convexity, Cambridge at the University Press, 1958.
- 3. B. W. Levinger and R. S. Varga, Minimal Gerschgorin sets II, Pacific J. Math. 17 (1966), 199-210.
- 4. A. M. Ostrowski, Über die Determinanten mit Überwiegender Hauptdiagonale, Comment. Math. Helv. 10 (1937), 69-96.
- 5. Olga Taussky, On the variation of the characteristic roots of a finite matrix under various changes of its elements, Recent advances in matrix theory, edited by H. Schneider, University of Wisconsion Press, 1964, 125-138.
- 6. Richard S. Varga, Minimal Gerschgorin sets, Pacific J. Math. 15 (1965), 119-729.
- 7. _____, Matrix iterative analysis, Prentice-Hall, Inc. 1962.

Received October 29, 1964.

CASE INSTITUTE OF TECHNOLOGY CLEVELAND, OHIO

1.62