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§ 1. Introduction

We shall consider here the numerical approximation of the solution of the
following real nonlinear two-point boundary value problem

(1.1) Liu(x)]=f(x, u(x), 0< x<< 1,
with boundary conditions
(1.2) D*u(0)=D*u(t)—0, D=-—, osks=n—1,

where the linear differential operator L is defined by

(13) Llu(x)] =.ZO(*1)f+1D’ [p;(x) D'u(x)], n=1.

j=
We remark that nonhomogeneous boundary conditions: D*u (0)=o,, D*u(1)=f;,
0<k=<n—1, can always be reduced to those of (1.2) by means of a suitable
change of the dependent variable. The coefficient functions p;(x) are assumed
to be of class C'[0, 1], =0, 1, ..., n, although we will see in § 8 that these con-
ditions can be weakened.

Let S denote the linear space of all real functions w (x) satisfying the boundary
conditions of (1.2), such that w(x)eC"*~*[0, 1] with D*~'w(x) absolutely con-
tinuous in [0, 1] and D*wecL2[0, 1]. We assume that there exist two real con-
stants § and K such that

(14)  [olo= sup o] =K {f
z€[0,1] (1]

]é:o?f(x) (D'w(%))2 4 B (w (x))z] dx}%

for all weS. The assumption (1.4) is the weakest one that we will need, and in
particular, it will be implied by either of the following:
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1 1
for some 1, 0=l5n—1, where |w]p.== { f (w(x))zdx}". We remark that (1.5") 12
0

a weakened form of GARDING'S Inequality [46, p. 175]. As such, (1.5") is thus
Pi(x)cCl0, 1], O;;j_gn, the additional assumption that p,(x)=w>0 for all
x£70, 1] is sufficient to insure the validity of (1.5) for all —1=/=n—1 for
we S. Finally, we remark that the inequality (1.4) implies that the quantity in
the right-hand side is a norm on the space S.

Next, we introduce the finite quantity (see Lemma 1)

1, n
1{ 24 () DV (0))2} s
(1.6) A = inf 27=0 J .

A [t ()rdx
4]

Although this fact is not used, A is a lower bound for the eigenvalues of the
associated eigenvalue problem L[u(x)]+A4#(x)=0, 0<<x<C1, subject to the
boundary conditions of (1.2).

Finally, we assume that the functions f(x, #) and —8%?& are real and con-
tinuous in both variables, i.e., f(x, u), RIICACE €C°([0,1] X R), and there exists a

7
constant y such that “

(1.7) a]‘(;l"ﬂsfu(x,u)gy>~—/l for all x€[0,1], and all real «.

In the linear case f(x, #)=p(x) u+q¢(x), these conditions imply that p(x) and
¢(x) are continuous, with p (x) =y which generalizes for example the assumption
of [42]. We point out that still weaker conditions can be made on f(x, #), and
these will be described in § 8.

The techniques used here are such that it is necessary to make the essential
hypothesis that a classical solution of (1.1)—(1.2) exists. Later, in [1]], using
the more general technique of monotone operators [§], we shall treat weak (or
generalized) solutions of (1.1) —(1.2) and regularity conditions which insure that
a weak solution is indeed a classical solution.

One of our main goals is to study the effects of applying the classical Rayleigh-
Ritz procedure (cf. [28, p. 85]) to the variational formulation of (1.1)—(1.2) by
minimizing over subspaces of polynomial functions, and piecewise-polynomial
functions such as Hermite and spline functions. In so doing, we generalize the
results of [42], [9], and [10], and we obtain new error estimates which consider-
ably improve upon known results in the literature, both for discrete finite dif-
ference methods applied to (1.1)—(1.2) (cf. [7], [12, p. 141], [18, p. 228], [19],
(21, p. 347], [22, p. 191], [24], [27], [31], and [43]), as well as continuous methods
applied to (1.1)—(1.2) (cf. [2, p. 28], [6], [12, p. 207], [15], [22, p. 262], [28, p.126],
[33], [34], and [39]). :

Another of our goals is to show that these techniques can, from a numerical
point of view, be efficiently applied on modern high-speed digital computers. To
illustrate these theoretical results, numerical results for particular examples of
(1.1) —(1.2), such as the bending of a thin beam, will be examined in detail in §9.

27 Numer, Math. Bd. 9
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§ 2. Variational Formulation

In this section, we determine certain properties of a functional associated
with the variational formulation of (1.4)—(1.2). We begin with

Lemma 1. With the assumption of (1.4), then

1, n R
[{ 3 o) (D7 w ()]}
j=0

(2.1) /lzlirelfq—o» — - - > — 00,
w0 Jw(x)Pdx

0

Proof. Since |w | »=[@ s, then from the definition of /A and the assumption

(1.4), it follows that

1
Az 55 —p. QED.

Corollary 1. If f<1/K?, then A4 is positive.
As previously mentioned, we make the essential hypothesis that (1.4)—(1.2)
has a classical solution (%)

Theorem 1. With the assumptions of (1.4) and (1.7), let ¢(x) be a classical
solution of (1.4)—(1.2). Then ¢@(x) strictly minimizes the following functional?

1 n . w(x)
(22) Py = {3 S0) (D) L) dnj

over the space S, and @(x) is thus the unique solution of (1.1)—(1.2).

Proof. If ¢(x) is a classical solution of (1.1)—(1.2), then surely @ (x)€S.
Since S is a linear space, w (%) — @ (%) =¢ (%) isin S, for any we S. After integration
by parts, it then follows that

1,90
Flio) = Flgl + 3/ { 20,3 (D'e ()7} dx +

7

(2.3) ’ 1 p(x)+e(x)
+ L [ () — f[% @ (#) ] dndx.

Using the hypothesis (1.7), a simple calculation gives that

@(x)+e(x) »
[F(xm) — (% p(@)]dnz 5 &%),
(%)
so that ?

1 1
(2.4) HM%H@+%[§¥mﬂﬁdm%w+%fﬂ@m.
0o 7= 0
Thus, from the definition of A in Lemma 1, it follows that
1
25) Fra) 2 Flgl + (457 [ o) — o] s
0

Thus, F[w]>F[¢] for any weS with w=E¢. Q.E.D.

1 Sych functionals for nonlinear boundary-value problems have been considered
by LeviNsoN [25] and MigHLIN [29].

[ B U
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§ 3. Approximation Scheme

Consider now any finite dimensional subspace S,; of S of dimension M, and
let {w,(x)}/L, be M linearly independent functions from the subspace. The analogue
of Theorem 1, concerning the minimization of the functional FF[w] over the sub-
space Sy, is given in

Theorem 2. With the assumptions of (1.4) and (1.7), there exists a unique
function @, (x) in the subspace S,, which minimizes the functional F[w»] over S,,.

Proof. Suppose first that ¢(x) is in S;;. Then from Theorem 1, @y = gcS,,
uniquely minimizes F[w] over Sy,. If ¢(x)¢S,,, consider the (M -+ 1)-dimensional
subspace of S spanned by {w;(x)}iL; and @(x). Any function in this subspace is

expressible as L u; w,;(x)+o@(x) for suitable coefficients, and can thus be re-

presented by the (M +1)-vector ©= (1, tiy, ..., 4y, o). Since the w;(x) and ¢(x)
are linearly independent, then

61 mE) =l i) = (] St + o g af

is a norm on this subspace. Thus, for any function w, (%)= 2 ,w;(x) in Sy,
we can rewrite the inequality of (2.5) as =1

(3-2)

Zu w, }21:[ 14+ e o uy, —1).

But, as all norms on this (M -+ 1)-dimensional subspace are equivalent, there
necessarily exists a positive constant C (which depends on S,) such that

Copluy, sy, oo, 1y, ) 2{]“112’1" ot I”M|2+ [“]2}&
Z {fo |2+ oo |2,

the second inequality being obvious. Hence, for any w (x)€ Sy,

(33)

64 F| Do) 2Fie)+GE fuml o+ 3.

4=1

M M
Thus, if we view F { Qu; wi(x)] as a functional on R and write F { Tu, w,-(x)] =
i1 i=1
G(uw)=G (uy, s, ..., uy), then the equivalence of all norms on R¥ coupled with

(3.4) gives us that
3.5) lim G(u)=+ o

luj]—>o00

for any norm || on R¥. Hence, as G (u) is clearly a continuous function on RY
which is bounded below (by F[¢]) and satisfies (3.5), a standard compactness
argument shows that there exists at least one vector @ie RM for which G (u) =G ()
for all ue R¥, or equivalently

M
(3.6) F[ or () = Zuw }gF[ 0= Dy (x)] forall wyesSy.

27%
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To show that fic RM is actually unique, we first observe that G (u) 1s 2 twice
differentiable function over RM and its derivatives explicity are

1

7 ;M N ’
o _ | {Zﬁmm (D) () -+
(3 ‘,;z Mp==1 i

J

(3.7) LR .
4 / f{x,.zukwk(x))wi(x) dx, 1=i=M,
. Nok=1
0
and

1
ZG "T . .
(3.8) o 7 y
+f—2£~(x,2u,%(x)) wi(x)wk(x)dx, 1<4, <M.
0 r=1

2
Now, we define an M XM real matrix B (w)=(b; » (1)), where by i (w)= %M-G_—'a(%);.
(3

From (3.8), it is clear that B(u) is symmetric for all ue RM, and we now show
that B(u) is uniformly positive definite, i.e., for any (column) vectors % and y
in RM, there exists a positive constant ¢ such that y* B(W)y= cyTy for all ye RM
and all ue RM. By definition, it follows that

M

y" Bwy= g;lyt‘bi, 5 (W) Vi
6.9) | y 2
= [{Z et (DY) Lo (2, 3wy, () (V1)

r=1
M
where Y (%)= 2 y,w; (%) Applying the definition of (1.6) and the inequality of
i=1
(1.7) to the equation above yields

(3-10) y" By = (A+7/)0f (Y(x))2dx.

But, since Dfl {(% yiwi(x))2 dx}i = { fl (Y (x))2 dx}*. is evidently a norm for the

‘=1 0

(column) vector Y= (Y1 Yar - yy) T in RY, the equivalence of all norms on RM
shows that exists 2 positive constant C’' such that

1M 2
(3.11) f{z y,-wi(x)} dx=C'yTy forall ye RM.
0 ‘=1

Hence, combining (3.10) and (3.11), we have
(3.12) yTB(u)y?;C’(A—}—y)yTy for all yeRM, all wuc RYM,

which establishes the uniform positive definite character of the M x M matrix B (w).
Since G (u) is a twice differentiable function of u¢ RM we can write its Taylor
series expansion as

(3.13) Gw) =G @)+ (w -—-ﬁ)T{gde(ﬁ)} +(u—0)" Bw)(u — ),
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where w=9u-+(1—9J) u for some ¢ with 0<¥<21. Then, the uniqueness of
¢ RM is apparent, for if G (u) =G (@) for all we RM, then evidently grad G (i) =0,
and the positive definite character of the matrix B further gives us that

(3.14) Gu)>G (@) forany w==u in R¥
Thus, @ is the unique vector in R¥ which minimizes G (u). Q.E.D.
M
To find this unique element 7, (%)= 2 u;w@,(x) in S,; which minimizes F[«]
i=1

over S,,, we must solve the M nonlinear equations

1(n 1% ' _

T 00 ( 20D () D)+
j= — /

(3.15)
+7(x»wM(x))wa(%)}dx:0, 1<i

A

M E
for the M unknownsu,, #,, ..., #,, which arise from grad G (u)= 0, or equivalently

M
oF | 3 wiwi(x)]
—= ——0, 1=i<M.
8u,~ -

It is convenient to write these Eqs. (3.15) in matrix form as

(3.16) Au+g(u)=0,

where A== (a;,) is an M XM real matrix, and g (u)= (g (u), ..., g, (w))7 is a
column vector, both being determined by

647 ey {340 Dl Dm0} de, 154, k=M,
and ”

1 M
(3-18) gk(u):ff(xl'guiwi(x)) w, (%) dx, 1=k=M.

While we know that (3.16) have a unique solution vector in R¥, it is of practical
importance to know that several iterative methods for the numerical solution of
(3.16) have been shown to be convergent [30, 35]. To illustrate this, consider the
Gauss-Seidel iterative method applied to (3.16):

a; juf +,§,“@i w4 g (T, WY ) u) =0,
i >

.19 =
319 1<i<M.

For each fixed 7, 1 <7< M, this equation, a nonlinear equation in the single -
unknown #{*Y, has a unique solution, and the cyclic determination of the a{ %
is convergent [35]. The practical implications of this will be considered in greater
detail in § 9. It is, however, clear that the speed of convergence of such iterative
methods depends in part on the sparseness of the matrix 4.

§ 4. Convergence

We have seen that, given any finite-dimensional subspace S,, of S, we can
find a unique element @, (x) in Sy, which is the best approximation to the solu-
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tion ¢(x) of (1.1)—(1.2) in the sense ol minimizing Flw] over S,,. It is quite
natural to expect that the difference (@Mi(x) — ¢(x)) might converge to zero,
i.e., in some topology, if we have asequence of subspaces {Sar >, satistying the
necessary condition 11_21(33 dim Sjy;,= -+ o0, as well as appropriate asymptotic pro-
perties.

If % (%) is a continuous function on [0, 1], define
1r n s
(44)  Jof,= {Of Lzopj(x) (DFw ()2 + k(x) (w(x))?| dxf  for all weS.
7: i
If 4(x)=a on [0, 1], we write @], for |w],. Then, recalling the constant y of
(1.7), we have.

Lemma 2. If /(x)=y'>—A is a continuous function on [0, 1], then @], and
|w], are both norms on S, and moreover they are equivalent.

Proof. With the notation of (4.1), then % (x)=y'>—/ coupled with Lemma 1
gives that [w[}= (A7) |w|f for all w(x)eS. Similarly, [w[}= (A+y) [w]Z. for
all w(x)€S, so that both |w]}, and |w], are norms on S. To prove the equivalence
of these norms, we merely state that the following inequalities

(4.2) o< |wE<co|wli for all wes,
where
- ina.x(l’~y; 0)\—1, - max (y—y"; 0)\,
(42) o= (14 "R s (1 B,
I'= max h(x),
%€ [0,1]

follow routinely from the hypothesis h(x)=y'>—A and the definition of A
in (2.1). Q.E.D.

Corollary 2. If assumption (1.4) is satisfied for some real number f, then it
is also satisfied for every y’ with 9’ >—1.

Proof. Clearly, the number B =max{f, —A-1} satisfies (1.4) since g=p
Now, take any p'>—A. Since f/'=—A+1>—4, we can apply Lemma 2 to
||y and |w@],¢ Thus, there necessarily exists a constant ¢>>0 such that |y =
c|wl, . Thus, |@|<K|w|p = Kclw], for all weS. Q.E.D.

As a consequence of Corollary 2, we can write for the particular constant y
of (1.7) that

(4.3) |~ < K|w|, forall weS,

where |w|, is defined in (4.1). We shall regard K and y in what is to follow as
fixed constants satisfying (1.7).

One of the important consequences of Lemma 2 is that, for any continuous
function %(x) on [0, 1] with /(x)=y'>—A, the norm |w[, can be induced by
the following tnner product on S:

(44) o= 34, Diwn) Do) +h(w(x)o()|dx,  w,veS.
0 =0

This will be useful in establishing Theorem 3.
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Lemma 3. With the assumption of (1.7), let A= xrgn{g)}(}[f(x, 0)|. Then, for any
real 4, any £>>0, and any 0= %=1, '
; A% M
(4.5) [1wmanzw—a% — 5, -

[}
Proof. 1f A= 0, then as 0=#n= 41, we have that
Flo, o) = 1% 0) + fulw 97) -0 2 f(5,0) 477
Hence,
- Ay Ay
[1wmanz10) a+"F z—aa+ "

[

Similarly for A<0, we obtain

2
Aty
[t anzaa+55r
0
Finally, for any £>0,
}»2}/ 2
w?:};./ﬂZ_Z_(y—-e)—— — M2,
since
1 (.- M2
Hreax25f'z0.  QED.

Finally, we have the following @ priori bounds for both the solution ¢(x)
and the best approximation @, (x) in S .

Lemma 4. Let w () be any function in S with F[w]=0. Then, the following
a priori bound is valid:

(4.6) [oh s o, A= mgglie ol
and thus,

2K.H#
(4.7) leh-=77 -

Proof. From the definition of F[w] in (2.2), the hypothesis F[w] < 0 combined
with the result of Lemma 3 gives us that

1
1< ; w(x))? M2
[ 200 Do)+ — o — S ax < Flw) <o
0 i=0
for any &> 0. Thus, if ¢ — &> —/ in addition, then the above inequality can be
written as |w[l_, <.#%/e. To obtain an analogous inequality for [w[}, we use

the second inequality of (4.2):

ol < (1 o) o e = (5 + spy—s) 4%

0< e< A+y. Then, minimizing the right-hand side of the above inequality as
a function of ¢ directly gives (4.6). Then, (4.7) follows from (4.3). Q.E.D.
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Since .w (x) = 0 is an element of both spaces S and S,;, it follows from the
definitions of ¢(x) and i@, (x) that Flo)=Fl@y,])=F[0]=0. Thus, both ¢(x)
and @, (x) satisfy the a priori bounds of (4.6) and (4.7}

We come now to a key fact. In [42], it was shown that the element of best
approximation @ (x) in Sy, could be viewed as a projection of the solution @ (x)
on S,; with respect to a fixed inner product associated with a norm of the form
(4.1). Basically, this was possible because the problem considered in [42] was
linear. However, we can still view [9] @, (%) as a projection of @(x) on Sy, with
respect to an inner product which now varies with the subspace Sy;. To show
this, let @, (x) be the element of best approximation to ¢(x) on Sy . Then,

M

Wy (%) = Z,ftiwi(x) satisfies (3.15), i.e.,
1

(4.8) f{gopi(x) Ditgy (%) DV w; (%) + £ (%, @y (%)) wi(x)} dx=0, 1=i=M.

0
Similarly, it is readily seen, after integration by parts, that we analogously have

49 JEAWD s Dw 4 @) wnf =0, 1=i=M.

By simply subtracting (4.9) from (4.8), we obtain

10y J {50109 DI () — (o) DY) 8 ) (B () — ) ()
© =0, 1=i=M,

where gy (%) =1, (% 9 (%) @(x) +(1—9(x) Wy (%)) with 0<®(x)<<1. By hypo-
thesis, we know that gy (¥) is a continuous function on [0, 1], and moreover,
from (1.7) and Lemma 4, we have the bounds )

(4.11) —A<y<gyx)=T,, forall x€[0,1],
where

af ) ; 2K A
412 I = max L (x,u), 0 x£1, ul < 22

Note that these bounds for gy (x) are valid for any subspace Sy of S, a fact
which we shall use to advantage later. Thus, the equations of (4.10) rewritten
in terms of the inner product of (4.4) are just

(4.13) <@M“(P’w4>gmz“—0: 1<i<M.

Consequently, @, is the projection of @ in S); with respect to this inner product,
and thus, using a well known property of inner product spaces concerning the
projection of an element on a closed subspace, we have
(4.14) @y — le, = inf @ — e,

Now, from (4.2), (4.3), (4.11), and (4.14), we obtain the following crucial chain of
inequalities:

[ — @l = K [0 — @, S K| — gl =K inf [ — 0y,

§_K<1 i max%%ﬂiﬂ)* wierfsfu“w — gvﬂy,

which proves the fundamental result of

(4.15)
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Theorem 3. Let ¢ (x) be the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), let S, be any finite dimensional subspace of S and let @, (x)
be the unique {unction which minimizes I'[w] over Sy;. Then, with the constant,

C=K (1 + ﬂg%ﬁwol) which can be explicitly determined a priori, the follow-
ing error bound is valid:
(4.10) (@ — ¢l = K |y — o, = ¢l [ — gl

Moreover, if in addition either (1.5) or (1.5’) is valid, then
~ c . |
(4.17) 1D* (@ — @) = % wl&fﬂ |w— @], forall 0=<E<I.
Next, as an immediate consequence of Theorem 3, we have

Theorem 4. Let ¢ (x) be the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), let {Sy,};2, be any sequence of finite dimensional subspaces
of S, and let {@,(x)}{; be the sequence of functions obtained by minimizing

o]
F[w] respectively, over the subspaces Sy,. If ’91 Sy, 1s dense in S in the norm

[-],, then {@y;, (x)}32, converges uniformly to @ (x). Moreover, if in addition either
(1.5) or (1.5") is valid, then {@{}, (%)}, converges uniformly to ¢ (x) for all
0=k=l
§ 5. Polynomial Subspaces

To give an example of subspaces S, satisfying the sufficient conditions of
Theorem 4, let N be any integer with NV = 2%, where # is the number of boundary
conditions in (1.2) imposed at each boundary point. Then, the polynomial space
PW™) is the collection of all real polynomials of degree N. We observe that the
total number of parameters associated with any element of P®™) is N--1,

Those elements of P™) which satisfy the boundary conditions of (1.2) form
an N-+1—2n dimensional subspace of S, denoted by E™. It is clear that the
elements of ™ are polynomials of the form

F(1—x){ag+Fay x4, +ay_g, ¥V 2.
We now discuss the error of best approximation by elements of ™.
Theorem 5. If u(x)€C*[0, 1], £=n, and u(x) satisfies the boundary conditions

of (1.2), then there exists a sequence of polynomials {py(x)l¥-, with
r=max (t, 2n —1) such that py(x)e ™ and

~ K 1
(5.1) uDk(u"'PN)“Lwé-Ww(D‘u; m)
for all 0=%=<n, where K is a constant which depends only on ¢ and #, and w
is the modulus of continuity.

Proof. Fixing N =7=max(¢f, 2n — 1), the proof is accomplished by recursively
generating a finite sequence of polynomials {g; y(x)}/_, for each N, such that
g; n (%) is a polynomial of degree N —n -7 which approximates D"~7u(x), and
satisfies the boundary conditions

Dtq; 5(0)=D*q; y(1)=0, 0<k=7—1, 1=j<n.

We then will choose ﬁN(x)zqn, ~(%). We now construct the required sequence.
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By a classical theorem [26, Theorem 2, p. 66] of approximation theory, there .
exists a polynomial g, y(x) of degree N —# and a constant K depending only
on ¢ and # such that

‘ K i 1) 7~
(5.2) 1070 = go, o = gy (D‘“ Nem) Nzr
where the modulus of continuity o (f; §) is defined as usual by

w(f; 0) = max |f(x)—f(y)|.

x,y€[0,1]
[x—yl=s
Define recursively
x 1
(5-3) q;, (%) =qu1'~1,1v(x) dx _tj(x)of?i—LN(x) dx, 1=j=n,

where #;(x) is a polynomial of degree 27 —1. As such, g;, v (x) is then a polynomial
of N—n+-j. In order that ¢; y(x) satisfy the boundary conditions D' 7; v (0)=
D'g; y(1)=0 for 0<I<j—1, we take t;(x) to be the (unique) interpolation
polynomial of degree 25 —1 such that

D'(0)=0, o0<I<j—1; Diti(1)=6y,;, O0=I=<j—1.

Thus, for example, ¢, (x)= x. By virtue of our definitions, we now establish
» K’ 1
(54)  DMD T =gy e = (g o (Dus 5, ), Nz,

for 0=k=j and 0=</=w#, where K’ is a constant which depends only on # and ¢
We first prove (5.4) for the case k= 0, using induction. For 7=0, (5.4) is nothing
more than the inequality of (5.2). Assuming that (5.4) is valid for k=0, and 7—1
we write P
D" T (x) — q; n(x) =0f (D"_7+1”(x) —~ g1, 5 (%)) dx +

+12;(%) of Gja, n (%) dx.

1
By subtracting the term #;(x) f D"~7+4(x)dx which is necessarily zero because
)

of the boundary conditions, we obtain
1
| D" () — g x| = (1 + Itj(x)f)of | D=7ty () — i1, n(%)] dx,

from which the case £=0 of (5.4) follows. Because we can express D*q;  (x) -
from (5.3) as ’

B—1 1
D*q; (%) =q;_p n(%) “‘IZODPI tg‘—z(x)of‘?j—z~1,N(x) dx,

the same method of proof can be used to establish the general case of (5.4). Then,
setting g, n (%) =py (%) gives the desired result of (5.1). Q.E.D.
Since o (D‘u ; "Ni—n') by definition is bounded above by 2||D* %, ., we have the
~ 2K
Corollary 3. |D*(u — pp)|L- < =0 [D*frw for all 0=<k=<w, where
Nzmax(t, 2n—1).
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We remark that the result of Theorem 5 gives no estimates such as those of
(5.1) for polynomials py(x) of low degree, i.e., for N<<max(f, 27 —1).
As an application of the result of Theorem 5, we have

Theorem 6. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions of
(1.4) and (1.7), be of class C*[0, 1] with =27, and let $x (%) be the unique func-
tion which minimizes F[w] over P(‘){N ) where N =t. Then, there exists a constant M
depending on ¢, #, and y such that

“ . A
5:5) I — @lie = Kl — 9 = 7= 1D 9l
for all N=t. Moreover, if in addition, either (1.5) or (1.5") is valid, then
N M
(5.6)  |D*(by— 9w = Gergy gy 1D @lee Torall O=k=l.

Proof. With Corollary 3, it follows from the definition of the norm ||, in
(4.1) that there exists a constant M’ such that

3 M
12 — ol = w—py=n 1P Pliw-

The rest then follows from (4.16) and (4.17) of Theorem 3.  Q.E.D.

The importance of the results of (5.5) and (5.6) can be illustrated with the
following examples. If the solution ¢(x) of the linear problem: D2y (x)=f(x),
0< x<<1, with %(0)=u(1)=0, is only of class C2[0, 1], the results of (5.5) with
t=2 and n=1 give us

~ M
low — oo = =gy I1D* @le=. N=2,

i.e., the sequence of polynomials {py (¥)}¥~z converges at least linearly (in h=1/N)
and uniformly to @(x), as N—>oco. Similarly, if the solution ¢ (x) of the linear
thin beam problem:

Dtu(x)=f(x), O0<x<it, D*u(0)=D*u(1)=0, O0=k=1,
is only of class C4[0, 1], the result of (5.5) with ¢=4 and n=2 gives us

+ M
IIPN—(Pané—(ﬁ_—_“Z‘)?uD“q)uLm, N=4,

i.e., the sequence {ﬁN(x)}}’\,L4 converges at least guadratically (in h=1/N) and
uniformly to ¢(x), as N> co. Moreover, as this last boundary value problem is
derived from a strongly elliptic operator, then (1.5') is valid for /=1, in which
case from (5.6) we have

. M
128 — Ve = =gy 1D o=, N 24

Thus, even the sequence of derivatives {D py (%)}%-, converges quadratically and
uniformly to D ¢(x) as N—>oco. Later, we shall derive similar results for other
particular choices of subspaces of S. Tt is worth mentioning that such results,
to the best of our knowledge, are not obtainable from conventional Taylor series
and Gerschgorin-type convergence arguments for discrete methods (cf. [16, p. 2837,
[41, p.165]).
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If #(x) is actually analytic in some open set of the complex plane containing
the interval [0, 1], we can of course apply the result of Theorem 5 for any = 1.
But, an even stronger result, indicating exponential convergence, is possible.

Theorem 7. Assume that #(x) is analvtic in some open set containing the
interval [0, 1]. The, there exists a constant u with 0= u<<1, and a sequence of
polynomials {py (¥)}¥_g,_1 With Py P®) such that

(5.7) , Nl—ijﬂ (|1D* (e — pl=)* = forall 0O=hz=n.

Proof. By a classical result of BERNSTEIN (cf. [26, p. 76)), there exists a con-
stant p with 0=p<1 and a sequence of polynomials {g, »(%)}%=, with

(5.8) Nﬁﬁo(“Dnu _€70,NHL°°)1/N_":,LL,

where g, y(%) is a polynomial of degree N —n. By repeating the construction of
(5.3), we form a new sequence of polynomials {pn (%)} R=pn—1 With P (x)e PE,
such that

|D* (4 — p) e = K (n) | D" u — o, nlr= forall 0=k=n,

where K(n) is a constant. Taking N-th roots in this expression and using (5.8)
then gives the desired result. Q.E.D.

Applying this result now to the solution of the differential Eq. (1.1)—(1.2),
we have

Theorem 8. Let ¢ (x), the solution of (1.1)—(1.2), subject to the condition of
(1.4) and (1.7), be analytic in some open set of the complex plane containing the
interval [0, 1], and let pn(x) be the unique function which minimizes F[w] over
P, where Nz 2n —1. Then, there exists a constant p with 0= p<C1 such that

5.9 T (lfy — ph) =
and consequently from (4.3)
(5.9 Jm (lpy — le=) =g

Moreover, if in addition either (1.5) or (1.5) is valid, then

(5.10) T (10" by — @)l =g forall 0=l
For any basis {w;(x)}V3>** of B™), the element of best approximation
N—2n+1 '
Pu(d)= 2 wu;w;(x)in B isdetermined (cf. (4.8)) from the solution of the non-
-1

linear matrix equation

(5.11) Au-t+gu) =0,

where the (N —2n-41) X (N —2n+1) matrix 4= (a; ;) and the column vector
g (u) are given by

(5.42) = J{ S0 Dy (01D, 9] = i,

k=
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and
1 N—Zryx i1
(5.13) gilw) = [1(3, 3 wy0,(x) 0y () dov,
i} K 3

=1

It is, of course, always possible to select an orthonormal basis for DM, ie., one
for which a; ;= ¢, ;, and such a choice makes the numerical solution of (5.11)
comparatively easy. But what is important is that in certain special, but never-
theless interesting cases, it is easy to deduce explicitly such an orthonormal basis.
For example, for n=1, p, (¥) =1, p,, () =0, the polynomials

(5.14) wk(x):]/”j’ /Lk(x)dx, k=1,2,...,
0
satisfy
1
(5.15) w (0)=w,(1)=0;  [Dw,(x) Dw, (x)dx=,,,
0

where L, () is the k-th Legendre polynomial of degree % for the interval [0, 1].
This example will be further discussed in §0.

We remark that if one instead chooses the basis functions {&" (1—x)" A}
for F{™, the resulting matrix 4 of (5.11) closely resembles a segment of the Hilbert
matrix. As such, it signals the fact that the numerical solution of (5.11) based on
direct matrix inversion may be numerically unstable with regard to the growth
of rounding errors when N is large.

In the next two sections, we shall consider certain finite dimensional sub-
spaces of S of piecewise-polynomial functions. The study of such subspaces is
important in that the minimization of the functional F [w@] over these subspaces
gives nonlinear matrix equations of the form (5.11) which closely resemble the
corresponding nonlinear matrix equations arising from discrete techniques applied
to (1.1)—(1.2), (cf. [17, 19, 24, 32]). Moreover, such Rayleigh-Ritz techniques for
piecewise-polynomial subspaces of S can be efficiently solved on high-speed com-
puters. Further, as we shall see in § 8, these piecewise-polynomial subspaces of S
are especially useful in solving two-point boundary value problems which admit
internal physical interfaces.

§ 6. Piecewise-Polynomial Subspaces

To give other examples of subspaces of S which have connections with prac-
tical computation, we begin with the notion of the smooth Hermite space H™ (7).
Here, 71: 0= xy<< 2,<<--- <<y, =1 denotes a partition of the unit interval with
joints %;, and m is a positive integer. Then, H™ (z) is the collection of all real
piecewise-polynomial functions w (x) defined on [0, 1] such that w(x)eC™ 1[0, 1],
and such that on each subinterval [x;, «; +1] defined by =, w(x) is a polynomial
of degree 2m — 1. An equivalent way of describing an arbitrary element of H™ (r)
is as follows. At each joint x;, consider m interpolation parameters d¥, 0< k<
m—1,0=¢=N+1. In each subinterval [x;, x,,,], there is a unique interpolating
polynomial v,(x) of degree 2m —1 such that

(6.1) Droy(x)=da®;  Dro(x;)=d¥,, 0<h=m—1.
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This type of interpolation is actually a special case of Hermite interpolation
(cf. [44, p. 1)), and accounts for the naming of H" (). The associated function
v (x), defined on [0, 1] by the v, (x) on each subinterval of 7, is of class cmo, 1],
and is thus an element of H ) (7). As the number of parameters ;" associated
with any element of H (7) is m(N+2), then H () is a linear space of di-
mensionm (N -+2).Asin[42], a convenient basis for H"(z)is {s; » (%: 73 a) AL
where the element s;  (¥; 7 ) is defined by

(6.2) D’s,—)k(x,-;m;n):éi’,él’k, o<i=m—1, O0=ji=N-+1,

so that the support of s; ;(%; 7 7) is contained in (%1, ¥i1)- More explicitly,
with B;=%;, — %;, the basis function s; o(x; 13 ) for the special case m=11s
the piecewise linear function

(x'—xiﬁl)/h’i—lr xi-—1§ x =%,
3«;,0(%§ 1; )= (xi+1""x)/hi» PG - Y
0, xe{[o"l]'—'[xi—l’xi—}—l]}’ié'iéN’
- (%, — ) [hos 0¥ =,
So,o(x’ ; ) = 0, x1§x§_1,
L 0, 0L ¥ = %y,
SNH’O(x’ tm= (x — ) P s wEr=1,

sometimes called the «chapeau’” or «roof” function, which is drawn in Fig. 1A.
Similarly, the piecewise—cubic basis functions s; o(¥; 25 n) and s;,(%; 25 7) are

shown respectively in Figs. 1B and 1 C.
Slope +1
- _}Cx N

Xi-1 X Xjel Xij-1 i Xjs+l
B C
Fig.1

Those elements of H (™ (7) which satisfy the boundary conditions of (1.2)
form an m(N-+2)—27 dimensional subspace of S, denoted by H, m (7). This
amounts to the restriction that m=n and that AP =df),=0 forall 0= k<=n—1.

We now discuss the interpolation error in such piecewise~Hermite interpolation.

For notation, let ﬁ(”):o‘é‘%’iv h; where 7= %;1— %
k2

Theorem 9. Let 7 (x)€C* [0, 1] with {=2m, let m be any partition of 0,11,
and let @ (%) be the unique interpolation of 7 (x) in H ) (7), i.e., D'7 (x,)=D' (x;)
for all 0 1< N+1, oslsm—1. If xelx;, %;41), then

2m g |l o ¥
62 D@ —r )] S [ e APt
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for all £ with 0==2=m. Hence,

W g D27 g w0 (72 (7)) 2m—L P
(64) “I) (w - 7/) HLW g 22"1___2%7‘;! 7(2771“‘2/?)7’ 0 gk =M.

Proof. Although the expression of (6.3) is an easy extension of a known result
([14, 17, 44]) corresponding to the case k=0, we have not found this more general
result in the literature. Because of its specific use in results to follow, we sketch
its proof for completeness. Let ¢ be any point of (x;, x,,,) and consider-

Fom) (W= zigy) Pt
(6—x) (6—7iy,) |

(6.5) w(x)=D*(W(x) — 7 (x)) —{D* (z?) (o) —~r(o“))}

for all x€[x;, %;,,]. Then, D'y (x,)=D'y(x;,,)=0 for 0=I<m—k —1, and in
addition y(0)= 0. Hence, repeated applications of RoLLE’S Theorem shows that
a point £ in (x,, x,,) exists such that D*"=2k4 (&)= 0. Thus,

0= D2m—2k1/)(§)
=D*"H(@ (&) —7(£) — ((2m — 2R) ) {D*(@ (0) — 7 (0))}/[(6 — ) (6 — %:3) 1",
and substituting the resulting expression for D*(i (o) —7(0)) in (6.5) gives

2m—k (5 (£) —y
p ()= DX (3) —r () — ROt O 1y (o 1t

Since ¢(0)=0 and o is an arbitrary point in the open interval (x;, #,,,), then
using continuity gives us that

m—k (43 —
66 DB —r()) = PIIEOr @ 1y g

for all x€[%;, %;1,]. It then remains to get an upper bound for | D*"~* (i (&) —r )
in terms of [D*”7 . If Q(x)=1 (x) —7(x), then 0=D'Q(x,)=D'Q(x,,,) for
0=!/=m—1, and RorLLE’s Theorem again gives us that there exist points 7, in
[%:, %;41] such that D**=1~"Q(y )=0, 0<r=2m —1. But as % (x) is a polynomial
of degree 2m —1, then

D2m—1Q(x)=nf Dzm‘Q(Ql) d91=ﬂf Dzm’(@l) 4oy,
and in general

& ['7] [}
D kQ(E)= [dop [ do,_,y ,,f D7 (g,) d ;.

Nk—1 Nk—2

Thus,
| DE=hQE)] = | D2 H (@ () — 7 ()] = [D*™ 7 | BEfRL.

This proves (6.3); the inequality of (6.4) is then an obvious consequence of
(6.3). Q.E.D.

As an application of this result, we have

Theorem 10. Let ¢ (%), the solution of (1.1)—(1.2) subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1], with t=2m=2u, let x be any partition
of [0, 1], and let @, (x) be the unique function which minimizes F[w] over H, o ().
Then, there exists a constant M, which can be determined a priori and is inde-
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pendent of -7z, such that
(6.7) [y — @l = K @0, — ¢, = KM 1D g (A ()

1f the stronger hypothesis of (1.5) or (1.5) is valid, then there exists a similar
constant M’ which can also be determined a priori and is independent of =,
such that

(68) HDk (,&;,m o V’)”im § KM ”1)2»; ¢ EIL’“ <77 (7[)>2m~n’/:1—k

for all integers & with 0=k = l.

Proof. To establish the basic inequality of (6.7), let Syy=H{" (7) with m=n,
and let % (x) be the interpolation of ¢(x) in H{" (7). Then, the inequality of (6.4)
of Theorem 9 gives us the bounds

~ D2m o« ;L 2m—k
(69) nDk(w - (P)“L"" é ‘lzzm—(};”;kl ([2,,(””1]2]2)! ) Og,ké%

Next, the coefficient functions p;(x) are, by hypothesis, at least continuous,
and hence bounded in [0, 1]. Thus, from the definition of the norm -], in( 4,3)-

it follows that H@ _ wi}y <0 “Dzm (anw (ﬁ (%))2m~n’

where ( is a constant independent of & and can be determined a priori. The.
desired result of (6.7) then follows from the inequalities (cf. (4.15))

~ ~ ~ —;0) Vi~
(6.40) [ — by = [ — Do 15 — 9l = (14 2L 5 — g,
where I'y, 7, and A are all independent of . Similarly, if the stronger hypothesis
of (1.5) or (1.5") is valid, then one makes use of (4.17) of Theorem 3 to establish
(6.8). Q.E.D.

As an obvious consequence of the fact that the constant of (6.8) is independent
of 7, we have

Corollary 4. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1] with fixed {=2m=2n, and let {m;}i2; be
any sequence of partitions of [0, 1] such that tli)rr;o % (7;)=0. If the sequence of
functions {@,,(%; 7}, is obtained by minimizing I7 [w] over H{"(m,), then
{®,,(x; 7;)}321 converges uniformly to @ (7).

As in §5, the importance of the results of Theorem 10 and Corollary 4 can
be illustrated with the following examples. If the solution ¢(x) of the linear
problem: D%u (x)=f(x), 0< %<1, with u(0)=wu(1)=0, is only of class C*[0,1],
then the results of (6.7) with t=2, m=n=1, give

[@— @lie = KM|D* | (2 (),

ie., if {m}%, is any sequence of partitions of [0, 1 such that lim /% (z;)= 0 then
i y seq p Jm AT,

the sequence of functions {@,,(x; m,)}72, converges at least lincarly (in h(m;))
and uniformly to ¢ (%), as i— co. Similarly, if the solution @ (%) of the linear thin
beam problem: D*u(x)=/f(x), 0<<x<{1, DFu(0)=D*u(1)=0, 0=k=1, is only
of class C%[0, 1], the result of Theorem 10 with t=4, m=n=2, gives us

[@ — @l = EM[D* ¢l (B ())*,
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i.e., the sequence of functions {@,, (x; 7;)}iZ 1convcrgcs at least quadratically and
uniformly to ¢(x). Moreover, |D (@, — @) »= | D @ (B ()2 Thus, the
sequence {D @,,(x; 7,;)}i2, converges quadrdtmally and uniformly to D ¢ (x).

For the smooth Hermite spaces H{" (x), one can vary the parameter m as
well as the partition n, and convergence results, analogous to Corollary 4, can
be proved for a sequence of smooth Hermite spaces {H{™(7)}i2, for a fixed
partition 7 of [0, 1]. One such convergence result which can be proved is based
on the interpolation result (6.4) of Theorem 9 and assumes that ¢ (x)cC*[0, 1],
with growth conditions

(6.11) lim {

—> 00

| D2 | oo (;; (7))2ms | (2omi)
22mi (2m;—2n) |

=o<1.

But, recognizing that P is a subset of H{" (x) for any partition of [0, 1] if
2m —1=N, then the following stronger convergence result follows as a con-
sequence of Theorem 6.

Corollary 5. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1] where {= 2#, and let {m,}{2, be any sequence
of positive integers with m,=¢ and 11_1?010 m,= - oo. If the sequence of functions
{@;(x)};2, is obtained by minimizing F[w] over H{™ (x), where s is a fixed
partition of [0, 1], then {@,(x)}{2, converges umformly to @(x). -~

The basic result of (6.7), based on a relatively crude mterpolatlon theory,
gives us that the exponent of /() is not less than 2m —#, and one might suspect
that this exponent is not sharp. Therefore, it is of interest now to show that this
result in the norm |-, is actually best possible in the following sense. If 7: 0=
Ky %<+ <<ayy;;=11s a .partition of [0, 1], define %(n) 2022\7 h; where
b= %y — %5 T

Lemma 5. Let {m;};2; be any sequence of partitions of [0,1]. Then, for
@ (%)= %" (1—x)?™"", m=n, there exists a constant K independent of 7 such that
(6.12) wégg(n)um w— @) = K (k())?" ", forall i=1.

Pyoof. First, select any particular partition x; of the sequence. Then, we can

write
Ny

S\t
643 10" — = 2(5) [ 0" Lol i) —wloy - By 1128

for any we H" (x,), where o;= (x;,,+ %;)/2 and ;= h,/2 both depend upon ;.
Because ¢@(x) is a fixed polynomial of degree 2m, the Legendre expansion of
D" (a;4f;t) in [—1, 1] can be expressed as

2m—n—1

(6.14) Do+ pit) =6 Lomn®) + 2 ¢;L; (1)

i=0
for suitable coefficients ¢;. As is readily seen, the coefficient ¢, can be expressed as
Co = M(h7 (ﬂi))zm—n,

where M depends on # and #, but is independent however of 7;. Next, any ele-
ment w of H{™ (x;) is a piecewise-polynomial function of degree 2m —1 in each

28 Numer. Math. Bd. 9
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subinterval of z,. Hence, the best choice of D"w in each subinterval of m; which
minimizes the integral A

+1 ‘ .
T, = [ AD" (@l + Bi8) —w (o + B;0) 1} di
-1

2m—n—1
is, from (6.14), just 2, ¢;L;(t). Thus, for any we H™ (n;), we have
i=e
-~ 2M2(]Lf(ni)>4"1_2’1 — ! dm—2n
Iy (4m—2n+1) 2M <h7(ﬂ1)) ’

This inequality applied to (6.13) gives, with the hypothesis of this lemma,

D" (w — @)

Ny
=M Y (hj (ﬂi))4m—2n+1 =M (ﬂ (Yli))le_zn,
j=0

As this is valid for any we H{" () and any partitioning s;, we have the desired
result of (6.12). Q.E.D.

Theorem 11. Assuming the special case of (1.5"): |[D" v | < K| v|, for all v€S,
let {m;};2; be any sequence of partitions of [0, 1] let @ (x; ;) be the unique
function which minimizes F[w] over H{ (z;), and let ¢ (x)= x" (1— x)*>”~" where
m=n. Then, there exists a constant M, independent of the partitions, such that
615) [@(x @) —g@l= inf Jw—ol =M (k@) izt
Thus, for partitionings =, satisfying o & (z;)=h(x,) for all =1 for some con-
stant ¢>0, the exponent of %(x) in (6.7) of Theorem 10 cannot in general be
improved.

Proof?. The first inequality of (6.15) is obvious. Then, the hypothesis K o], =
[D"v|s for all ve S, coupled with the result of Lemma 5, give the final inequality
of (6.15). Q.E.D.

Another interesting observation can be deduced from the inequality of (6.15).
Instead of minimizing F[w] over H{ (x) to find an approximation to ¢, let Z,,
be the element of best approximation in H{™ (x) to ¢ in the norm |.|,, i.e.,

20— ob =, inf Jw— ol

wEH{™ (n
Since S is an inner product space with respect to the inner product {, ), of (4.4),
then Z,, is uniquely determined in H{™ (x). Although Z,, is not in general @,,,
the inequalities of (6.15) of Theorem 11 and (6.7) of Theorem 10 nevertheless
show us that no improvement in the exponent of %(7) can in general be made
in the error bound by considering Z,, instead of @,, in H{™ (x)..

The piecewise-Hermite subspaces H{™ () just considered are but rather special
piecewise-polynomial subspaces of S, and we can generalize the preceding material
in two essentially different directions. First, we observe that increasing the param-
eter m in Hg’”) (7) forces us in applications of Theorem 9 to consider both higher
order interpolations at the joints of 7z, as well as smoother functions 7(x), i.e.,
r(x)€C'[0, 1], £=2m. In one direction of generalization, we shall consider low

2 We are indebted to Professor GARRETT BIRKHOFF for having pointed out to us
this result for the special case m=2, n=1.
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order interpolation by very smooth piecewise-polynomial functions, and this leads
naturally to the consideration of splime functions. This will be treated in the next
section. Another direction of generalization of the preceding material is to con-
sider subspaces of piecewise polynomial functions which are less smooth then
the smooth Hermite polynomials, but sufficiently differentiable so that they are
subspaces of S. This may be described as follows. Let 77: 0= xy< x,<C -+ < x4 1= 1
be any partition of [0, 1], and m and % are positive integers with m=2%. Then,
the Hermite space® H(m; k; m) is the collection of all piecewise-polynomial func-
tions w(x) such that w(x) is a polynomial of degree m —1 on each subinterval
[, %;4] of , and if 4}, 0<I<k —1, 0=7<N--1, are any real interpolation
parameters, then

D'w(x;+)=D'w(x;—)=4d¥, 0sI<hk—1, 0=i<N-+1.

The elements of H(m; k;m) are thus of class C*~'[0, 1]. Moreover, specifying
the parameters d{) and d{),, to be zero, 0=I<n —1 gives us the subspace
Hy(m; k; m) of S. We remark that for even greater generality, one can similarly
vary m and % at each joint of zz. The basic results we shall obtain for H(sx; k; m)
extend easily to this case, but for notational simplicity, we shall consider only
H(mw; k; m) in what is to follow.

The elements of H(zx; k; m) can be represented as follows. Let %;(x) denote
the unique Hermite interpolation polynomial defined on [x,, x,,,] of degree
2k —1 which interpolates all the parameters d{" and 4}, , ie.,

D'h;(x;)=dp), D hi(%;40) = dt(’{i)-l’ 0=l=k—1.

Then, the elements in H(7; k; m) associated with the interpolation parameters d{’

can be represented as
m—2k—1

(6.16) w(x) = h;(x) + (x — xi)k (x — xH—l)k Z a; «, x€[x;, %]

It is thus clear that H(x; k; m) is of dimension 7=m(N+1) —Nk. Similarly,
Hgy(x; k; m), a subspace of S, is of dimension 7 —2#n.

Two convenient ways of selecting a basis for H(s; ; m) suggest themselves.
The first is to supplement the obvious basis for the Hermite interpolation piece-
wise-polynomial functions 4;(x) by the basis functions (x—x;)*(x — ;)47
0=j=m—2k —1. The second is to add arbitrary (but fixed) new distinct points
y; to the joints x; of = to define a new partition n’ of [0, 1], and to assign positive
integers k; to these new joints so that the sum of these integers in any subinterval
[#;, %,41] of 7 is precisely m. Then, one can view the elements of H(x; k; m) in
terms of general Hermite interpolation (cf. [44, p.1]). -

Since H{™ (7) C Hy(7v; k; 2m) we may use the result of Theorem 10 to estimate
the error involved in using the subspaces Hy(x; k; 2m).

Theorem 12. Let ¢(x), the solution of (1.1)—(1.2) subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1], with t=2m=2k=2#, let = be any parti-
tion of [0, 1], and let @, ,,(x) be the unique function which minimizes F[w] over

# It is worth pointing out that both the smooth Hermite spaces H(m) (n) and the
Hermite spaces H(x; k; m) can be regarded as generalized spline subspaces [38].

28
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Hg(7; k; 2m). Then, there exists a constant M, which can be determined a priori
and is independent of z, such that

(6,17) ”ﬁ’ ko @“Lm g K iii’lk,m - Q””y g KM an q}HLm (E (n))?ﬂ”*’?‘

If the stronger hypothesis of (1.5) or (1.5') is valid, then there exists a similar
constant M’ which can also be determined a priori and is independent of =,
such that

(6.18) 1D (@ 0 — P = KM [D¥ 0, (B ()22~
for all integers 7 with 071

Corollary 6. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1] with fixed t=2m=2k=2n, and let {m}2,
be any sequence of partitions of [0, 1] such that lim R (7;)=0. If the sequence

of function {@, ,(%; m;)}i2, is obtained by minimizing F[w] over Hy(m; k; m),
then {@ ,,(x; 7;)}721 converges uniformly to ¢ (x).

As with the smooth Hermite subspace, we may show that the exponent of h
in Theorem 12 cannot be improved in general. The proof of the following result
is exactly the same as the proof of Lemma 5.

Lemma 6. Let {7}, be any sequence of partitions of [0, 1] and let m=k=n. -

Then, for ¢ (x) = " (1 — x)2”~", there exists a constant K independent of 1 such that

: 7 . > Y\2m—n > .
(6.19) wEqu(Irlrf,k,m) D" (@ — @) = K (B (7)) , forall t=1
When the degree, m —1, of the Hermite polynomials under consideration is
greater than or equal to f, the degree of differentiability of the solution, @,of
(1.1)—(1.2), we may invoke the approximation theory results of §5 and obtain
improved error estimates. We now discuss an analogue of Theorem 5.

Theorem 13. Let 7 (x)eC*[0, 1], £=n, where 7 (x) satisfies the boundary con-
ditions of (1.2), let 7 be a fixed partition of [0, 1], and let % be a fixed positive
integer with k=n. Then, there exists a sequence {p;(¥)}{ pax( a6 Of Plecewise-
polynomial functions with p;(x)e Hy(7; k;1-+1) such that

(6.20) D7 (4 —p ) = —(;:%:; (h (7)o (Di“ e’—lk)

for all 0=<j<u, where K depends only on # and ¢, but not on = or ¢, and w is
the modulus of continuity.

Proof. Consider the subinterval [x;, x,.,] of m. Because we can express any
element of H,(s; ; 4) in the form (6.16) with m=1, it follows that we can regard

this problem as the approximation of (r(x) —h;(x)) by polynomials of the form
i—2k—1
(¥ — %, (v —x;1,)* 2, a;#. As such, we can apply (5.1) of Theorem 5, reinter-
j=0

=

preted for the subinterval [x;, x;,] rather than for [0, 1]. But this gives rise

to the additional factor (x4, — ;) "< (7 (#))~! which gives (6.20). Q.E.D.
As an application of this result, we have

Theorem 14. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
(1.4) and (1.7), be of class C*[0, 1], =2n, & be a fixed positive integer, 7 be any



i
Nonlinear Boundary Value Problems. 1. 415

partition of [0, 1], and let @, ;(x) be the unique element which minimizes I'lw]
over Hy(m; k; 1) where 1 =max(f, 2/). Then there exists a constant depending
only on y, &, ¢, and » such that

o~ e o » Dig 7 —n
©21) @i —ple SKJE, gl = LR Gy

Moreover, if in addition, either (1.5) or (1.5’) is valid, then

_ M)

Lo =g w:;;ﬂ D gl (k)" 0 .

(6.22) | DV(@y ; — )

IA
AN

;
It is now clear that uniform convergence of the w; to ¢ can be obtained by

either selecting a sequence of partitions s, with % (s;) =0 or fixing the partition &
and letting ¢ in H,(sr; k; 7) tend to 1nf1mty This gives us the following corollaries.

Corollary 7. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), be of class C*[0, 1] with = 2n and let {m}$2, be any sequence
of partitions of [0, 1] such that lim 4 (s,)= 0. If the sequence of functions {75;(%)}}2 1

j—>00
is obtained by minimizing F[w] over Ho(nj; k; 1), with ¢=max(¢, 2%) and k=,
then {w,(%)}32, converges uniformly to ¢ ().

Corollary 8. Let ¢(x), the solution of (1.1)—(1.2), subject to the conditions
of (1. 4) and (1.7), be of class C*[0, 1] with = 2#%, 7 be a fixed partition of [0, 1],
and @, (x) be the unique element that minimizes F[w] over Hy(x; k; 1) where &
is fixed with k=#» and 1= max (f, 2%). Then, {@; (%)} .x ;2% COnverges uniform-
ly to @ ().

As an example of the importance of Theorem 14, consider the following result.
If the solution ¢(x) of the linear problem:

2u(x) = f(x), 0<x<1, with %(0)=u(1)=0,
is only of class C?[0, 1], then the results of (6.21) with {=1=3, k=n=1 give

fins — gl = O Pliee )

ie., if {m,}§2, is any sequence of partitions of [0, 1] such that hm h( ;)=0 then

the sequence of functions {@ ;(x; 7;)}3>, converges at least quadmncally (in
% (m;)) and uniformly to ¢ (x).

§ 7. Spline Subspaces

As another example of subspaces of S which have connections with practical
computation, we consider now the spline interpolation spaces Sp™ (m), m=1,
first considered by SCHOENBERG [36], With the partition 7: 0= xy<< x,<< --
< %yi1=1 of the interval [0, 1], we define Sp (n) to be the collection of all
piecewise-polynomial functions w(x) defined on [0, 1] such that w(x) is a poly-
nomial of degree 2 — 1 in each subinterval [x;, x,,,], 0= < N, determined by =,
and such that w(x)cC*”~%[0, 1]. As such, Sp™ (x) is a subspace of H"™ ().
More precisely, if m=1, then Sp) ()= H® (7) is the collection of all continuous
piecewise-linear functions on [0, 1]. For m>1, Sp™ () can be described as
follows. Given the m (N +2) numbers d{", 0<I<m —1, 0=i=N-+1, we know
that there is a unique function w (x)c H™ (7) which interpolates these numbers



416 PG, CiarLeT, M. H. ScHurTz, and RR. S, VARGA:

2 in the joints x, of . Regarding the 2# -+ N numbers ay, df) 0=1<m 1,
a9 1<i<N, as parameters, we now determine the remaining numbers 40,

1=l=m—1, 1=/=<N, so that w(x)€C* =210, 1], ie., D=2y (x) is to be con-
tinuous at all the joints x;. This gives rise to a system of linear equations in these
numbers 4", 4®, . AU << N, whose associated matrix is a nonsingular
block-tridiagonal matrix having principal submatrices of order (m —1). In other
words, given the parameters for the end joints ag, a0, 0=k<m—1, and the
A9, 1<i=<N, there is a umique interpolation function (cf. [5]) w(x) in Spt ()
with D*w (0) = dfp), Drw(1)=df,,, 0=k<m— 1, and w(x)=d", 1<i< N. As
such, Sp (z) is a linear space of dimension N+ 2m, and for m=n, we denote
by Spi (7) the subspace of Sp") (7)) whose elements satisfy the boundary con-
ditions of (1.2). Thus, Spi (7) is an N +2(m —mn) dimensional subspace of S.
For a comprehensive coverage of the topic of splines which includes an extensive
bibliography, we recommend [4] and [38].

In analogy with Theorems 5,7,9, and 13, we consider the approximation error
in such spline interpolation, Because eachelement we Spi™ (n) satisfies D" g (x)=0
on every open subinterval of 7, the following result is a special case of results
of AHLBERG, NILsoN, and Warsy [1]. ‘

Theorem 15, Let 7 (x) e C* [0,1],¢=2m, let {m;}i2., be any sequence of partitions
of [0,1] with lim %(z,)=0, and let w;(x) be the unique interpolation of 7(x)

m Sp(z), ie., D*r(0)=D*%,(0); Dir()=D*@&,(1), 0<k=<m—1, and .
7 (%) =W, (%), 1=7(2) < N(Z). Then,
(7.1) | D¥ (r-z?/i)HL_mgK"Dz"’rl]Lm (/?(ni))z’”"l“k, O=k<m—1,

where K is dependent on  but js independent of the 7;. Moreover, if the parti-
tions {z;} | are such that 0 k(m;)=h(x;) for all i=1 for some >0, then

(7.2) D" @) < KD 7 (B(m))2=1F o< h<om — 2,

where K’ is dependent on 7 but is independent of the ;.

As an application of these inequalities, we have

Theorem 16. Let ¢ (x), the solution of (1.1)—(1.2), subject to the conditions
of (1.4) and (1.7), be of class C* [0, 1] with t=2m> 24, let {732, be any sequence

i=1
of partitions of [0, 1] with lim h(7;)=0, and let @, (%) be the unique function
1> 00

which minimizes F[w] over Sp§™ (7r;). Then, there exists a constant M, independent
of the ;, such that

(7.3) |, — @)= =K|o; — ¢, < KM|D* @l (Z(ﬂi))ém—lhn’ t=1,

If the stronger hypothesis of (1.5) or (1.5") is valid, then there exists a similar
constant M’ independent of the 7; such that

74) 1P @i = g)lr S KM D g (Bm))m=i—mt, o< p1.

for all /=1. The conclusions of (7.3) and (7.4) remain valid if m— #, provided
that there exists a positive constant ¢ such that o k(7)) = h(m,) for all i>1.
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The results of (7.1) and (7.2) of Theorem 10 are similar to that of (6.4) of
Theorem 9, the difference being that the exponent of z(x) in (7.1) and (7.2) is
one less than that in (6.4). What is probably true in general is that (7.1) and
(7.2) are also valid for the exponent 2 — k. In fact, for m=1, we already know
that Sp{) ()= H{" (), and the result of (6.4) is sharper than that of (7.1) or
(7.2) in this case. For the case m==2 of cubic splines, BIRKHOFF and DE Boor [3]
have established (7.2) with the exponent 2m — k. This work has recentlv been
extended by SHARMA and MEIR [40] who have proved the following rather sharp-
analogues of (7.1) and (7.2) for the case m=2. If »(x)<C?[0, 1], then

75) DM =@ =5 (R () P (DA R(A)),  0=h=2,

where w is the modulus of continuity. If the partitions =; are such that ¢ & (7;) =
7 (m;) for all =1 for some ¢>> 0, then for »(x)cC?[0, 1],

76) 1D =)o = 14 o1+ 0] (b)) o (Dor h(x),  0SE=3.

The importance of these last two results lies in the following observations. If we
minimize the functional F[w] over the subspaces Sp{ (7r;) of cubic splines where
{m;}i_, is any sequence of partitions of [0, 1] with lim %(#;)=0, then weneed

only assume that the solution ¢(x) of (1.1)—(1.2) for the case n=1 is of class
€2[0, 1] in order to establish that the sequence {@,(x)}>, converges linearly and
uniformly to @(x). As an application, if the solution ¢(x) of the linear problem
D2u(x)=f(x), 0<< x<<1, u(0)=u(1)=0, is only of class C%[0, 1], the use of cubic
splines nevertheless gives a sequence of functions which converge linearly in
i(7;) to @(x). Similarly, if the solution @(x) of the linear thin beam problem:
Diu(x)=f(%), 0< x<<1, DFu(0)=DFu(1)=0, 0= k=1, is only of class C*[0, 1],
the use of spline functions gives a sequence of functions which converges quadrati-
cally in h(7m;) to @(x). Such results, as far as we know, are not obtainable from
Taylor series and Gerschgorin-type convergence arguments for discrete methods
(cf. [12, p. 348], [41, p. 165]).

Returning to the previous comment that the exponent of %(x) in (7.1) and
(7.2) is probably 2m —k instead of 2m —1—k, we remark that the proof of
Lemma 5 in § 6 is necessarily valid for functions of Sp{™ (z), since Sp{™ () is a
subset of H{" (). Consequently, the exponent of % (z) cannot in general be greater
than 2m —k. A similar conclusion was reached in [I], but by a different proof.

In analogy with Corollary 5, let w now be a fixed partition of [0, 1]. Again,
recognizing that P{™ is a subset of Sp{™ (z) for any partitionof [0, 1]if2m—1=N,
then we have the

Corollary 9. Let ¢(x), the solution of (1.41)—(1.2), subject.to. the conditions. .

of (1.4) and (1.7), be of class C*[0, 1] where t=2n, and let {m 3>, be any sequence
of positive integers with m;=¢ and lim m;=--oc. If the sequence of functions

i—> 00
{#,;(x)}i_, is obtained from minimizing F[w] over Spi™) (x), where x is a fixed
partition of [0, 1], then {®;(x)};_, converges uniformly to ¢ (x).

For practical computations, the choice of a basis for Sp™ (7) is very important.
The most natural choice for a basis for Sp™ (z) is probably the cardinal functions
C;(%) (cf. [4, p. 168]), which are the analogue of the basis functions s; , (¥; m; )
for the smooth Hermite space H™ (), defined in (6.2).
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It 7 0= wy<Cay<T - <Cxy ;=1 1Is a partition of [0, 1], then C,(x)cSp (x)
1s defined by
Cy(xj)=0 0=j=N+1, D'C(0)=D"C;,(1)=0, 0=k=m —1
for 1=<i= N,
Cyiil) =0, 0=J=N-+1, D'Cyyy(0)= 0, DFCyyi(1)=0,
OZhkh=m—1, for 1<l m,

i

(7.7)

Cnsmr (%) =0, 0=J=N+1, DFCyipu)(0)=0, D*Cyppii(t)=0,,,
0O=k=m—1, for 1</ <m.

It is easy to see that the support of each C,(x), 1<{<N-+2m, is the entire
interval [0, 1]. Thus, the inner products (C;, C,>, are in general nonzero. Con-
sequently, the use of these cardinal functions as basis elements in Sp™ (z) results
in nonlinear matrix equations (cf. (5.11) and (5.12)) for which the coefficient
matrix A is full, ie., certainly not sparse. This necessarily complicates data
storage and generally means slower convergence of iterative techniques on digital
computers. Because of this, the following basis elements in Sp® (m) are more
suitable for practical computation. Since any element w (x) of Sp™ (z) is a poly-
nomial of degree 2m —1 on each subinterval of & with w(x)cC?”~%[0,], then
D=2 (x) is a continuous piecewise linear function on [0, 1]. The object then
is to select a particular continuous piecewise linear function which, when inte-
grated yields an element of Sp™ () with minimal support in [0, 1]. In general,
the support is on 2m adjacent subintervals of [0, 1] (cf. [37]). For the case of
m==2 of cubic splines for a uniform partition s, i.e., x;=1%, 0<{< N--1, these
functions s, (x) are given explicitly by

(x—x;9)%  wel[x; 5, %, 4],
P43 (% —x;_q) +3h(x — x;_1)2—3 (x —x9)% xe[xq, %],
(7.8) si(%) =B+ 3% (x40 — %) + 30 (%40 — 2)2—3 (%0 — %)%, %€ [x;, %44],
(Fira— %)% X€[Xi49, %yl

zero otherwise,

for 2<7< N —1. If we extend the uniform partitioning = outside of [0, 1], we
can then use (7.8) to define the functions s_; (x), so(%), s;(%), and sy (%), sy (%),
Syia(%) in [0, 1]. Then {s;(x)}7="% is a basis for Sp™ ().

In order to obtain a convenient basis for Sp{? (=) for computations, it is
necessary to modify these basis functions somewhat. Let $,(x)=s,(x) —4s5_1(x);
(%) =s1(%) —s-1(x), 8;(%)=5,(x), 2= 1= N —1, sy () =5y (%) —5y2(); Sy 41 (%)
=Sy11(%) —4sy(x). Then, {§;(x)}h* is a basis for Sp{? (n), and the support of
each §;(x) is on at most four adjacent subintervals of [0, 1].

Finally, we must remark that the spline interpolation spaces Sp™ (z) can
themselves be generalized substantially. Noting that w(x)eSp™ () implies that
w(x) satisfies the differential equation M*M[w]= D?*"w=0 on each open sub-
interval of 7, one can then define generalized splines [1] through the solution of
the linear self-adjoint differential equation M* M [w]= 0 on each subinterval of x,
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where M is a differential operator of order m. This is closely related to the Ros’s
use of a patch basis [34] to solve two-point second order linear boundary value
problems, in which one uses local solutions of (1.1) on subintervals of . We
simply state that the result of Theorem 15 is valid for such generalized spline
spaces, as is its application in Theorem 16.

§ 8. Extensions

In this section, we extend our previous results to cover more general non-
linear boundary value problems. Moreover, we show how to obtain a posteriori
error bounds.

First, it is easy to verify that all of our previous results hold if we make the
following weakened assumptions about /(x, ). We again assume that f(x, u)¢
Co([0, 1] X R), but in place of (1.7), we assume that there exists a constant y
such that

Mo =10t 2y 4, forall xe[o0,1],
8.1
(8.1) and all —oo<<u, v<T -+ o0, with # == v,

and for each ¢> 0, there exists a number M (c) such that

5.2) wv, |u]=c, |v]=c implies ﬂfﬁq%}iiﬁﬂ)_gM(c)<oo
(8. for all x€[0,1].

Second, there is an important class of problems which do not satisfy a con-
dition of the form (8.1), but can however be treated via the techniques we have
thus far described.

For the boundary value problem (1.1) —(1.2), we assume that

(8.3) 1(—”:»’%-:%&”—)20 if u,v=0, u==v,

in place of the assumption of (8.1). A typical example is f(x, w)=u*", m=1. In
addition, we assume that A of (1.6) is positive and that (8.2) is valid for non-
negative » and v.

As is the case for the second order problem, i.e., n=1 in (1.1), (cf. [31]), the
general problem (1.1)—(1.2) under the condition (8.3) may have a unique non-
negative solution. If this is the case and we are interested in only that particular
solution, we can solve a modified problem where f(x, #) will be replaced by
g(x, u) =f(x, max {u, 0}). The new function g(x, u) satisfies (8.1), and the new .
boundary value problem:

(8.4) Llu]=g(x,u), 0< x<1,
and
(8.5) D*u(0)=D*u(1) =0, 0=k<n—1

has a unique solution which, as is easily verified, is the unique nonnegative
solution of (1.1)—(1.2).
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For our third extension, we restrict (for ease of exposition) our attention to
second-order problems of the form

(8.0) Dipy () Du ()} = [ (x, 1), 0<< x<< 1,

with the boundary conditions
(8.7) w(0)= (1) =0,

where we have combined the linear term — p,(x)u of (1.1) with the right-hand

side. We assume that the coefficient function ,(x) of (8.6), instead of being

C*[0, 1], is only piecewise continuous, i.e., p, (x) is discontinuous at only a finite

number of points x,,1 <7<k, in (0, 1), hl’fl (%) andxlin}jL #1 (%) both exist, and
X— xy— 7

P1(#) is a strictly positive function, i.e., there exists a constant  such that
(8.8) hH)z0>0, 0=x=1.

We must carefully define what is meant by a (classical) solution of (8.6), (8.7).
Solving (8.6), (8.7) amounts to finding a function @ (x) satisfying the following:
@(x)€C°[0,1], D@(x) exists and is continuous on each subinterval (%, %i11),
0=¢<#, {p; () D p(x)} is continuously differentiable on each subinterval (% Xipq),
0=i=h lm {p()D g} = lim {#()Dp()} 1Si<k D{py(x)D p(x) =
(%, @(%)) on each interval (x;, #,,,), 0=<i<k, and @ (0)=g@(1)=0.

It is not difficult to show that Theorems 1, 2, 3, and 4 hold without modifica-
tion. Moreover, unlike the use of polynomial subspaces, the use of the piecewise-
polynomial subspaces will yield the same high-order error bounds, provided the
discontinuities of p, (x) are always chosen to be joints of the associated partition 7.
We illustrate this point by considering the use of the smooth Hermite subspaces
H® (7) for a “model problem .

Let us assume that p, (%) is of class C3 except at some point y, 0<< y<< 1. Simi-
larly, we assume that 1ir(r)1+ Dipy(x), im Dip, (%), hm+ D'p, (%), and lil’}’l Dt p, (x)
K> L Y K>y Z—>1—

exist for all 4, 0=4<3. Finally, let f(x, #)€C?([0, 1] X R). Under these assump-
tions, the solution ¢(x) is of class C* in each interval [0, y] and [y,1]. The
vector u# which represents a function of H® () has a precise definition: the first
N+2 components of  can be chosen to represent the ordinates at each mesh
point, and the last N2 components represent the derivatives at each mesh
point. However, as stated above, y is always chosen to be a mesh point and the
derivative at the mesh point y is not defined in the present case. All that is
required now is that

(8.9) lim $(x) Do (x)= lim p(x) Dg(x) or p(y—)Dg(y—)=p(y+)Dp(y+).

Accordingly, if the point y is chosen to be the joint x;, the basis function s; , (¥;
2; 7) will be defined as the unique piecewise polynomial of degree 3 satisfying:
s;1(%;; 2; ) =0, 0=<I<N-|1; Ds; (x5 2, m)=0, x;%x;, 0ZiS<N+4A;
Ds;q(%j—;2; m)=p(y+); and Ds;(x;,+;2; m)=p(y—). All the other basis
functions will remain unmodified. With the above basis functions it is easily
verified that condition (8.9) is automatically satisfied for any element in this
piecewise-polynomial subspace.

e

e
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Thus, the ervor estimates are unchanged, basically because the bounds we de-
veloped in § O were obtained by an argument over each subinterval [, %041,
which is still possible in this case since ¢(x)eC* in such intervals.

As our fourth extension, suppose that w(x) is any function in C*=110, 1]
satisfying the boundary conditions (1.2), such that D=y (x) is absolutely con-
tinuous in [0, 1], and D**weL2[0, 1]. For example, it may be the minimizing
function @, (x), as defined in § 3, whenever the subspace S, is composed of suf-
ficiently smooth functions. Then, we can theoretically detérmine the function 7 (x)
defined by:

(8.10) 7(%) = L{w(x)] —/(x, w(x)), 0<<x<< 1,
and, clearly, 7(x)<L2[0, 1].

The following question naturally arises. From the knowledge of 7 (x), can we
deduce anything about the difference [¢(x) —w(x)], where @ (x) is the unique
solution of (1.1)—(1.2)? The answer is given by the following result.

Theorem 17. Assume that A of (1.6) is positive. Then, for any function w ()
satisfying the boundary conditions of (1.2), such that w(x)eC?=1[0, 1] with
D**~'w (x) absolutely continuous in [0, 1] and D**w (x)c L2[0, 1], the following
error estimate holds: x
(8.11) [ = plee = K Jw — g, = = ||
where 7(x) is defined by (8.10).

Proof. The first inequality of (8.11) is just (4.3). Now, define ¢ (x)= ¢ (x) —w (x).
Then, with the notation of (4.1), we have, after integration by parts,

[elp = —J o) Lle ()] dwtp f 1) d.

Using the definition of 7(x), this can be expressed as

1 1
lel? :fez(x) {7‘_ [ @(;fi;:];}(a)w(x)) } ax +f€(x) T(x)dx.
0 0

L3[0,1]»

But with (8.1), this first integral is nonpositive, and thus, applying SCHWARZ's
inequality, we have lel =Teleon - I7 o

On the other hand, the positivity of A in (1.6) gives us that Y4 leleo,= [e],-
Thus, |ef, =A~#7]upy;. Q.E.D.

s we have seen, the sequence {@y, (x)}32, will converge uniformly to the
solution ¢ (x), if the approximating subspaces, Sy, are properly chosen. However,
the residuals 7y, (%)= L[@, ()] —f (%, @47,(x)) need not converge to zero. Thus,

the previous result does not necessarily give a useful error bound. However,

COURANT [13] has suggested the following remedy. If the subspaces S u, consist of
sufficiently differentiable functions, we may modify the functional (2.2) of the
variational formulation by adding terms involving higher order derivatives which
vanish for the actual solution ¢.

To illustrate this, consider any linear differential equation in (1.1), i.e., where
the function f(, u)=/(x) is independent of . Assume also that A of (1.6) is
positive. In place of the functional F [w] of (2.2), consider

1

(8.12) Fl[w]zF[w]—{—-;—of{L[w] —f(x)}2dx,  weS,

PR (R WSHNR S Shersc e P,
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for all elements of S, where S now is the set of all functions w(x) defined on [0, 1]
with w (x) satistying the boundary conditions of (1.2), and D*"~}w (x) is absolutely
continuous in [0,1], with D*"w (x)¢ L?]0,1]. In analogy with Theorems 1 and 2
it is easily seen that the solution ¢(x) of (1.1)—(1.2) uniquely minimizes Iy [u]
over S, and each M-dimensional subspace bw of S possesses a unique element @,

such that Iy [wM]f mf ]* [w]. Writing m,(x)*vu w,;(x), then aFL[g% =0 gives
us, using the notatlon of (4.4), =
(8.43) 0= By, w, >o+ff dx+f{Lw —j()}Llw)dx, 1=iSM.

Since ¢(x) is the solution of L[#]=f(x) with boundary conditions of (1.2), we
similarly have

(814) 0=<Lpw z>0+ff dx—i—f{f-[@]—f o} Lw]ldx, 1=1=M,
and consequently, subtracting yields
1
(815)  0={p—y, wdo+[Llp—By]-Llw;]dx, 1=i<M.
0

Thus, by defining the new inner product

. 1

(8.16) v, vy = (v, ¥>o +0fL[v] -Lly)dx, v, y€S,
on S, then (8.15) can be simply expressed as
(8.17) 0=, — Wy, w;p, 1=i<M.
Hence, if ||-|| denotes the norm on S induced by this inner product, then we
obviously have that
(8.18) @y — gll = inf [l — gl

wESy
But as ||v]|2= sz [v]dx, then

1

(8.19) @8 — @ll* = sz (@ — @] dx:()f’fﬁa (%) dx

where L[@]=/(x)-+ 1y, (x). In this example, if {Sy,}32, are subspaces of S with
U Sy, dense in S with respect to the new norm || - ||, then it is clear that |73, ]rs(0,1

does tend to zero as 1—>co. In this case, the bound (8.41) of Theorem 17 is a
useful one.

§ 9. Numerical Results

In this section, we discuss the numerical results we have obtained for some
concrete examples by using the particular subspaces described in §§ 5, 6, and 7
in the Rayleigh-Ritz procedure. Let us however first summarize the results of
§§ 5, 6, and 7 by comparing the asymptotic error estimates in terms of the total
number of parameters associated with each of the subspaces of S that we have
considered. The total number of such parameters is of course the dimension of
these subspaces.

I ——
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Let @(x), the solution of (1.1)—(1.2), subject to the conditions of (1.4) and
(1.7), be of class C*[0, 1], with jixed t, t= 2m = 2n. 1 P () is the unique function
which minimizes I'{w] over the polynomial subspace P N> then (cf.
Theorem 0),

P —ol 1 7 =Nl —op
91) by — @le=C T En—ty=n] 8 N-—oo, dy=N-+1-2n,
dy being the dimension of P™_ Next, consider a sequence of smooth Hermite
subspaces {H{" ()}, with fixed m (mzn), and assume that the partitions
7t 0= 2; o< 1<---<% n,.1=1 satisfy the regularity conditions that A (7)<
K[(N;+1) for all 1=1, and lim N,= + oo, If i (7;) is the element which uni-

1= 00

quely minimizes F[w] over H{" (n,), then (cf. Theorem 10),

(92) ”ft(ﬂ,)~(p“Lm:(0{m“} as Z~>00, d,zm(Nf{—Z)——Z%,

where 4, is the dimension of H{" (,). Next, let #; be the unique element which
minimizes F[w] over the Hermite space H, (725 k; 1), where m is a fixed partition
of [0,1], % is a fixed positive integer with k=#, and t=zmax(¢; 2k). Then (cf.
Theorem 14),

where 4, is the dimension of Hy(n; k; 1). Here, N is defined from the fixed parti-
tion 1 0= %< %< -+- < Ay 4, = 1. Similarly, let #; be the unique element which
minimizes F[w] over the Hermite space H,(s,; k; m), where {m;}32, is a sequence
of partitions of [0, 1], and % and m are fixed positive integers such that k>#
and m=max (¢; 2k). Then, for E(ni)gK/(Nﬁ%) for all =1, and lim N;= + oo,
we have (cf. Theorem 14) e

(9.4) ||@i—<p“m:@{m} as i—>co, d;=m(N;+1)—Nk—2n,

where d; is the dimension of Hy(s;; k; m). Finally, consider a sequence of spline
subspaces {Spy” (7,)}2; where m is fixed (m=n), and the partitions 7;, as above,
satisfy the regularity conditions that %(z)<K/ (N;41) for all 1=1, with
lim Nj=+-oo. If #(x) is the unique element which minimizes F[w] over Spim (z,),
anate®)

then (cf. Theorem 16),

(9.5) ng - ‘Pan = @{ (di+2n“2;+1)2m~1—n

} as 1—>oco, d;=N;+2(m—n),

where d; is the dimension of Sp{™ (z,).

Thus, in the special case in which ¢=2m and k=, we observe, surprisingly
enough, that these theoretical error estimates asymptotically are all of the form
d= @, where d is the dimension of the subspace of S considered. Consequently,
the selection of the particular subspace for practical computation must depend
upon factors such as the relative ease of programming and ease of solving the
resultant nonlinear matrix Eq. (3.16).

However, in the special case in which #> 2m and k— n, it is clear that the
theoretical asymptotic error estimates favor polynomial subspaces, P, and the
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Hermite subspaces, H,(z; k; m), over the smooth Hermite subspaces, H(()'”)(n),
and the spline subspaces, Sﬁg”) (7). Moreover,-we must report that the numerical
experiments indicated that the polynomial subspaces and Hermite subspaces led
to algorithms which were easier to program, nonlinear matrix equations which
were easier to solve, and numerical results which were in general, for a fixed
amount of computing time, more accurate than the smooth Hermite subspaces
and the spline subspaces.

We now consider in detail the numerical solution of particular examples of

(1.1)—(1.2). As our first example, consider
(9.6) Dru(z)=e,  0<x<1 with u(0)=u(1)=0.

Thus, we verify that (1.4) is valid with K=2, f=o. Similarly, A of (1.6) is n2,
and we can choose y in (1.7) to be zero. The unique solution of (9.6) is [2, p. 41]:

(9.7) @(%) =—In2+2In{csec[c(x —1/2)/2]}, ¢+ 1.3360557,

which minimizes the functional (cf. (2.2))
1
(9.8) Flw]= [{3(Dw(x))*+ " — 1} dx, weS.
0

The numerical results of minimizing this functional F[w] over the polynomial
subspaces PO(N) are summarized in Table 1.1. In this particular case, the basis
functions {w, ()} of K™ were selected to be indefinite integrals of Legendre
polynomials (cf. (5.14)), so that the matrix 4 of (5.11) is in this case just the
identity matrix. The iterative method selected here, to approximately solve in

succession the single nonlinear equation (cf. (5.11))
cuit gy, g, u,) =0, 1SIi<N—1,

in the single unknown #,, was simply one step of NEWTON’S method, which is
known to be convergent [30, 35].

The solution ¢ (x) of (9.6) is from (9.7) analytic in an open set containing the
interval [0, 1]. More precisely, @(x) is analytic in the ellipse with foci x,=0,
%=1 and with semi axes 4.7 and 4.6. Consequently [26, p. 76], the constant u
of Theorem 7 is 4=0.107. Thus, from Theorem §, the error |y, — ¢ | is roughly
0.107 times ||py — @[« for N large, which agrees quite well with the results of
Table 1.1.

Table 1.1 Table 1.2
Polynomial subspaces B{N) Smooth Hermite subspaces H® (7 (b))
Nin B dim (P 16— ellzeo o dim (HP (2 (1)) (B~ elly» -
3 2 4.23-104 1/3 6 1.19-107°
5 4 3.12-107¢ 1/4 8 4.48-1078
7 6 5.03-107¢ 1/5 10 3.69-107%

The numerical results of minimizing the associated functional F [w] of (9.8)
over the smooth Hermite space HP (n), consisting of piecewise cubic polynomials,
are given in Table 1.2. Here, w= 7 (k) was chosen to be a uniform partition of
[0, 1] of mesh-size 4. The associated matrix problem of (5.11) was solved using a
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nonlinear point successive overrelaxation method. Again, one step of NEWTON’S
method was used to approximately solve in succession the nonlinear equations
in a single unknown associated with the nonlinear point successive overrelaxation
method, and this procedure is known to be convergent |33 .

The numerical results of minimizing the associated functional F[w] of (9.8)
over the non-smooth Hermite space Hy(m(h); 1; 4) and the cubic spline subspace
Sp* (7 (h)) are given respectively in Tables 1.3 and 1.4. In both cases, mw= n (k)
is a uniform partition of mesh-size & of [0, 1]. In both cases, the nonlinear point
successive overrelaxation method, previously described, was employed to solve
the resulting nonlinear matrix equations.

Table 1.3. Non-smooth Hermite subspaces

Table 1.4. Cubic spline subspaces
Ho(n(h); 15 4)

Sp) (7o (1)

2 dim (Ho (7 (k); 1;4)) |~ glz= B dim (Sp§2 (m(h)))  ||@a—gllze
1/2 5 2.87-107® 1/4 5 9.16-107¢
1/3 8 6.27 1078 1/6 7 1.72+107¢
1/4 11 2.03-107¢ 1/8 9 7.71 1077
1/5 14 9.13-1077

As our second example, consider
(9.9) D u(x)=F (u(x) +x+1)% O0<x<1 with u(0)=u(1)=0.

In this example, we verify again that (1.4) is valid for K=&, f=0, A=n?,
and that we can choose y in (1.7) to be zero. The unique solution of (9.9) i

(9.10) p(x)={2/(2 —x)} —x —1,

The iterative techniques used to minimize the associated functional

~

w

0=x<1.

1

041 Flwl=f (HDw@m)+ ] (bt =+ 100an}ar,  wes,

L]

over the different subspaces of S are the same as those previously described,
and the numerical results are presented in Tables 2.1 —2.5.

i

Table 2.1 Table 2.2
Polynomial subspaces P{N) Smooth Hermite subspaces H{ (n (h))
N in B{M dim (P{Y)) 15— a0 A dim (H§P (m (1)) ||@h— gll yeo
3 2 3.76 1078 1/5 4 1.45-1072
5 4 1.10-107* 1/10 9 4.22 1073
7 6 3.29:107¢ 1/20 19 1.15-1078

Table 2.3. Smooth Hermite subspaces

Table 2.4. Non-smooth Hermite subspaces

H) ( (h)) Ho(m(h); 15 4)
h dim (HE (7(1))  [|@n—ollz» h dim (Ho (7 (h):1;4)) [|8a—dllz
1/3 6 1.89- 107 1/3 8 1.46 - 1074
1/4 8 7.43+107° 1/4 11 5.46 1070
1/5 10 3.59-107® 1/5 14 2.51-107°
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As in our previous example, the solution ¢ (x) of (9.9) is from (9.10) analytic

m some open set containing the interval [0, 1], and the associated constant p

of Theorem & can be shown to be u=

Table 2.5. Cubic spline subspaces 0.172. Again, this agrees well with the
Sp@) (z () nurmerical results of Table 2.1.

To broaden the scope of these com-
parisons, we now take as our nextexample
104 5 9.10 - 1073 the linear problen:

1/6 7 268107
1/8 9 7.96 - 107°

i dim (Sp{? (= (k) Nen—yllze

D?u(x)=4u(x)+ 4cosh1,

(9-12) u(0)=u(1)=0.

In this case, we again verify that (1.4) is valid with K= }, =0, that A==2,
and that y in (1.7) can be chosen to be zero. The unique solution of (9.12) is

(9.13) @ (%) =cosh(2x — 1) —cosh1, 0=x=1,

which minimizes the functional

1 w(x)
(9.14) F[w]:f{%«(Dw(x))z—}—f[477+4cosh1]d77}dx, wesS.

0 0
The minimization of F[w] over the various subspaces of S is now considerably
simpler since the associated matrix equation to be solved is linear (cf. (3.16)).
In fact, for the polynomial subspaces BV, this linear matrix equation is trivial
to solve for the choice of indefinite integrals of Legendre polynomials as basis
elements in B™, as this choice gives an orthonormal basis for B™. For the
other subspaces of S, either the standard linear point successive overrelaxation
method or Gaussian elimination was used to solve the associated matrix equations.
For band matrices which are positive definite and symmetric, it is known [45]
that Gaussian elimination is quite stable with respect to rounding errors. The
numerical results are listed in Tables 3.1 —3.4.

Table 3.1 Table 3.2
Polynomial subspaces P{N) Smooth Herite subspaces H) (n (1))
Nin P™  dim (B{Y) lox— dlizeo h dim (H (2(#))  ||%a—dllpe0
3 2 8.02+1073 1/5 10 3.66-107°
5 4 6.72 1075 1/10 20 2.66 107
7 6 3.47 1077 1/20 40 2.31-1077
Table 3.3. Non-smooth Hermite subspaces Table 3.4. Cubic spline subspaces
Hy(m(h); 1; 4) SpE (s ()
h dim (H, (n(8); 1;4)) llon—gllzo0 p dim (SpP (n(m))  I1#on— el
1/3 3 1.26-1071 1/5 6 4.23-107°
1/4 11 4.20 - 1078 1/7 8 ) 1.71-107

1/5 14 1.78 - 107% 1/9 10 5.80+107¢
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For this Linear one-dimensional boundary value problem, there are a number
of known discrete methods, such as CoLLATZ'S M ehrstellenverjahren [12, p. 164
(referred to in [12] as a Hermite method) and the Bramble and Hubbard five-
point scheme [7] which have ¢(h%) accuracy at the mesh points. For comparison,
we have solved the corresponding discrete approximations for these methods,
and the results are given in Tables 3.5 and 3.0.

Table 3.5. Collatz Mehrstellenverfahren Table 3.6. Bramble-Hubbard

h Unknowns max l@(ih)—uwyl k Unknowns max l@(ih)—w;!
1/5 4 2.56+-107% 1/5 4 2.06-1078
1/10 9 1.65-10°¢ 1/10 9 1.64-1074
1/20 19 4.10- 1078 1/20 19 1.20 - 1078

For this linear problem, the relatively high accuracy of these discrete methods
at the mesh points is not surprising. In fact, if the right-hand side of (9.12) were
independent of u, for the piecewise linear smooth Hermite subspace H, W (),
7 arbitrary, the unique element of % (x) which minimizes F [w] over H{"(n)
would be infinitely accurate at each joint of =, i.e., if 7r: 0= g <+ < Hyi1=1,
then Rosk [34] proved that

(9.15) : W (x;) = @(x;), 0=71<N-+1.

To give a somewhat different proof of this, let ¢ (x) denote the unique solution
of the linear problem D2u(x)=f(x), 0<< x<1, where u(0)=u(1)==0, and let
N

@ (x) = X, u;w,;(x) be the unique function which minimizes the associated func-
i=1

tional F[w] over the subspace H{"(7) of piecewise linear functions. Here, the
w;(x) are the ,chapeau” functions of Fig. 1A. With the partitioning s, then
(4.10) gives us.

(9.16) of{D(‘P(x) —@(x))} Dw,(x)dx = Or;xfl{D@P(x) — (%))} Dw,(x) dx,
41 SIS N,

since w; (x) is zero outside of [x; ,, x;,,]. As Dw,(x) is a constant and D%, (x)=0
on each open subinterval of 7, then integration by parts in (9.16) yields

1 1 1 1 .
(9.17) “—Ej8£+1+(“ﬁg+m)8i——msi_lzo, 11N,

where ;= @ (x;) —@ (x;) and h;=x,;.; —x;, 0</=<N. But this can be expressed
as the homogeneous vector equation Ae=0, where the N XN matrix 4 is the
matrix of (3.16), i.e., it has entries a; ;=<w,;, w;»,. As such, we know from the
results of §3 that 4 is nonsingular, and consequently g;=0for all 0<j<N-}-1,
which establishes (9.15). We remark that the basis elements {w, (%)}, of HY ()
form a patch basis in the sense of Rosk [34]. See also [23].

It is also worth pointing out that the infinite accuracy at the mesh points in
(9.15) further gives us the improved result for linear problems that

(9-18) lp —@le =KEM|D2 gl (b ()2, @cHP (n),

29 Numer. Math, Bd. 9
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as opposed to the result of Theorem 10 for s — 1, m=1 which establishes the
same result but with the exponent of /i () one Jess, To prove this, the result of
(9:15) gives & (x) as the wnierpolation of @(¥) in HV (), and as such, we simply
apply the case k=0, m=1 in (6.3) of Theorem 9 to establish (9.18). Similar
results can be obtained for some nonlinear problems as well [9°.

As our final example, we consider the fourth order linear problem

(9.19) Doy (x) = (x‘*+14x3+49x2+32x~—12)6", O0<x<1,
Wit
(9.19) “O)=Du(0) = u(1) = Duf1y— o,

which corresponds to the bending of a thip beam, clamped at both ends. In this
Case, we verify that (1.57) is valid with /=1, K=1/x and f=0, that 4 is ap-
proximately 500, and that 710 (1.7) can be chosen to zero, since the problem is
linear. The unique solution of (9.19)~(9.19’) is

(9.20) gp(x):xzu — x)2¢%, O=x<1,
which minimizes the functional
1
(9.21) Flw]=f{% (Dzw(x))2+(x4 —H4x3-f—49x2+32x—-12) e*w(x)}dx, wes.
6
To indicate some of the applications of the previous sections to this particular

problem, consider the smooth Hermite subspace Hf)z) () of piecewise cubic poly-
nomials. Then, Theorem 10 gives us for m— that

(9.22) 1@2(7) — gy < K 21 | Do Pl (k ()2,
and
(9.23) I1D(@s(7) — @) < KM 1D% ¢y (7 (7))2,

where @, (7) is the unique element in HP () which minimizes Flw] of (9.21)
over H® (7). In Table 4.1, a uniform partition was used (h=1/(N +1)).

Table 4.1, Smootp Heymite Subspace HP (7 (h))

A dim (HE® (z (k) |15, (*B)~olze |D (@, (7 (h) ~ o) 3o
1/5 8 6.945 - 10~ 1.090 - 10-2
1/7 12 1.980 - 10-1 4.325 - 103

1/9 16 7.614 - 10-5 2.130-10-3
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