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Abstract. In this paper, we study the problem of unique interpolation and ap-
proximation by a class of spline functions, L-splines, containing as special cases the
delicient and generalized spline functions of AHLBERG, NiLsoN, and WaLsH (3, 5, 6],
the Chebyshevian spline functions of KARLIN and ZiEGLER [27], and the piecewise
Hermite polynomial functions, as considered in [17]. We first give sufficient con-
ditions for unique interpolation by L-spline functions in Section 2. Then, we obtain
new L and L? error estimates for interpolation by L-splines in.Section 4, and show
that these error estimates are, in a certain sense, sharp. In addition, we make a
similar study for the g-splines of ScHOENBERG, cf. [44, 3], in Section 5. In Section 6,
an application of these new error estimates is made to the analysis of the error made
in the use of finite dimensional subspaces of L-splines and g-splines in the Ravleigh-
Ritz procedure for the class of nonlinear two-point boundary value problems studied
in (17].

Because of the rapid growth of the number of papers devoted to or connected
with the topic of splines, we believe that a compilation of papers on splines for the
reader’s use is desirable, and such a list is found in the References at the end of this
paper!,

i. Introduction

For cach positive integer m, let K3'[a, b] denote the collection of all real-
valued {unctions %(x) defined on [a, b] such that weC"~[a, b], and such that
D (x) = w1 (%) is absolutely continuous, with D™u (x)eL?[a, b]. Let L be
the m-th order linear differential opexator defined by )

m

(1.1) Llu(x)] = 2 a;(x) Diu(x)

=0
for any #eC™[a, b]. We assume that a;(x) is in K3'[a, b] for all 0</=<m, and
we further assume that there exists a positive real number w such that
(1.2) a,(¥)=w>0 forall xela,b].
It is a well-known result (cf. [3’, p. 63]) from the classical theory of ordmary
differential equations that the equation
(1.3) , Liu]=0
possesses m linearly independent solutions u,(x), u,(%), ..., #,(x) in C™[a, b],
and the m-th order Wronskian ‘

Uy (x) Uy (%) v 7’{’m(x)

(1.4)  W(x; uy, g, ..., u,) = det Dul(x) Duy(z) ... D“m( %)

D"y (3) D, (3)

* "I'his rescarch was supported in part by NSI' Grant GP-5553.
! Papers not specifically concerned with splines are referred to in the text by
[1/, 2'], ete.
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is not zero for any x€[a, b]. The formal adjoint, L*, of L is defined by
(1.5) Lo (x)] z_?%(-%)"l?"{d;(ﬁd v(x)}.
i=

_ Associated with L is the bilinear concomitant P, v) (cf. [1/, p. 86]), defined by

(1.6 Pl,1) = 5 D" u(s) 3 (= 1) Do (4) ()

w, Ve Ky [a, b]. As a direct consequence of the definition of P(u, v), we have
Green’s formula

(1.7) j{v L{u] —uwL*[v]} dx = P (u(f), v()) — P (u(x), v (e))

for any «, fe[a, b], and any w, vc K3 [a, b].
Let mw: a=x,<x, < <xy<xy,,=0b be a partition of the interval [a, b],
and let @= (2, 2,, ..., 2y), the tucidence veclor associated with 7, be an N-vector

with positive integer components, each less than or equal to m, i.e., 120,8m
for 1<<i<N.

Definition 1. The real-valued function s(x) defined on [, ] is said to be an
L-spline for m and # if and only if s(x)c K3"[x,, #,,,] for each 7, 0<i=<N,
(1.8) L*Ls(x)] =0
for almost all x€(x;, x,,,), for each 7, 0=<i< N, and
(1.9)  DFs(x;—) =D"*s(x;-+) for 0=<hk=Z2m—1—z, 1Z<7ZN.

The class of all L-splines for fixed & and z is denoted by Sp(L, x, z).

We remark that if z,=z,= -+ =zy=1, then Sp(L, &, 2) coincides with the
space of generalized spline functions of AuLBERG, NiLsON, and WaLsH [5], while
if zy=zy=r++=zy=q, Sp(L, m,#) coincides with the space of deficient spline
functions of deficiency ¢ of AHLBERG, NiLsoN, and WAaLsH [6]. Furthermore,
when zp=zy= -+ =2z,=m and L=D", then Sp(L,m, 2) coincides with the
Hermite space H" (7r) of piecewise-polynomial functions (cf. [177).

If f(x) is a given function in C"~'[a, b], we can define four basic types of
interpolates of f(x) in Sp(L, w, 2). In so doing, it is convenient to augment the

incidence vector # with positive integer components z, and Zy4+1, Where 152,
App s it

Definition 2. Given [(x)eC™'[a, b], a function s(x)eSp(L, 7, 2) is said to
be a Sp(L, 5, &)-interpolate of f(x)

of Type Lif (i) Ds(x)=DFf(x), 0=k=<z—1, 1=<i<N, and
(i) Dts(x)=DFf(x), O0=k=Z=m—1, =0 and N+41;

of Type ITif (i) DFs(x)=D"f(x), 0=k<z,—1, 1<i<N,
(%) =DFf(x), 0=k<z;—1, i=0and N1,

\

7
i ey, then 20 (=) D¥ay, 4 (x)) LTs (%)) == 0

sy
for O im0 g, vooO and N4,

@y

v
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of Type IILif (i) Ds(x)=D"f(x), 0=k<z,—1, 1=Zi<N,
(i) DFs(x;)=D*f(x,), 0sh=s2,—1, JL:O“&%\/%‘L
i
(111) if Z,‘<7"t' then Z ("'"Uka (am i+ k( )J’[ [/( ]“I‘[S (xs)]})

k=0
=0 for 0Zjs=m—1—z, z—*Om’N-f«’l and

of Type IVif (i) 7€C"\[a,b], ie. /(x)cC* '[a,b], and
D¥f(a)=DFf() for OShk=2m—1,

) aeCh M a, b]  forall 0=j=m,

(i) DFs(x,)=D"f(x), 0shZ2,—1, 11N,
) DEs(x) = D"/(x,) oskhsa,—1, 1==0, and
) D's(a)=D*s(b)

(v , Eh=Z2m—1.

In essence, interpolation of Type I fixes the augmented incidence components
7o and zyy to be m, i.e., we adopt the convention that zy=zy,,=m in this case.
For Type II and Type III interpolation, z, and zy,, are arbitrary with 1=z,
Zyyi=om, while for Type IV interpolation, z, is arbitrary with 1=<z,<m, and
9= AN

Definition 3. Given a real-valued function f(x)cC"=*[a, b], and given L, =,

and z, the L-Hermite problem of Type I (resp. Type I1, I1I, or IV) is to find a

function u (x)e€ Sp (L, m, 2) such that
(1.10) |  L{u(®)]=0 forall xe[a, b],

and such t]n‘c u(x) is an Sp(L, m, z)-interpolate of f of Type I (resp. Type II,
IIL, or IV). The L-Hermite problem is said to be well-posed® for Sp(L, m, 2) if
and only if it has af most one solution.

We now determine sufficient conditions for the L-Hermite problem of Type I
(resp. T ype 11, I1, or IV} to be well-posed. The well-posed nature of the Z-Hermite

problem is, as we shall see in Section 2, fundamental to the question of unique

interpolation in Sp (L, m, 2).

The rem 1. If the coefficients a;(x) of (1.1) are not all identically zero in
[a, b] for 0=7<m —1, let ¢ be the positive zero of

IW,,, cr (WL-" 1)""1 } M’”"‘l cm—1 cen o
(1.14) nel { mm - (m—1)1 et Mye—1=0,
where
M= sup |D=il¥| i,
</1 A 2) 7 xgi[%z?b] A (%) =1=

Otherwise, define c=b—a. Given s and z, assume that the components of the
augmented incidence vector 2 for Type I (resp. Type II, II1, or IV) interpolation,

2 In the special case L=D", we remark that our terin “well-posed’ corresponds
to the term "m-poised"’ of SCHOENBERG [47].
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for some 05 p=<g< N+1, satisfy the inequality

q
(1.13) [Z zp=m  where %, —x,5c.

=P
Then, the L-Hermite problem of Type I' (resp. Type II, 111, or 1V) is well-posed
for Sp(L, m, #). :

Proof. 1t suffices to show that if f(x) =0 in [, b], then the only solution of
the L-Hermite problem of Type I (resp. Type II, III, or IV) for Sp(L, m, 2) is
1(x)==0. Using a result from the theory of ordinary differential equations [3’,
. 346; 4'], any solution u(x) of L[#]=0 having m zeros (counting multiplicities)
in any subinterval of [a, b] of length ¢ or less must be identically zero. By de-
finition, if L[u]=0 and « (%) is a Sp (L, n, #)-interpolate of Type I (vesp. Type IT,
111, or IV) of /(x)==0, then u(x) has a zero of order z, at each %, 0SS N1,
Thus, by hypothesis (1.13), % (%) has at least m zeros in an interval of length ¢
or less, and consequently #(x)=0. Q.E.D.

For any z; with z;=m where 0=4=< N1, then (1.13) is trivially satisfied,
which gives us the

Corollary 1. Given Sp (L, 7, #), then the L-Hermite problem of some particular
type is well-posed for Sp(L, s, #) if some component z; of the associated aug-
mented incidence vector satisfies z;=m. In particular, the L-Hermite problem
of Type I is always well-posed for Sp(L, , 2).

If we have a sequence of partitions {re,}721 on [a, 0], where 7;: a= af < a2

v <l a=b, and if we define 7= max (#) 1 — 2f"), suppose that lim7;=0.
0575 Ny 1> 00

1f {24032, is any sequence of augmented incidence vectors associated with {m;}7%1,
then, since the positive zero ¢ of (1.11) is fixed, independent of 7, and any com-
ponent of any incidence vector is at least unity, then it is clear that there exist
g; and p; with 0= p,=<¢,= N;~1 such that

qi
(1.14) {};z}‘)gm with  al) —xb)<¢
=y

for all ¢ sufficiently large. This gives us
Corollary 2. Given any sequence of partitions {r;}{2y with lim Z;=0, and any
1= 00

sequence {2732, of augmented incidence vectors associated with {7;}i21, the
L-Heemite problem of Type I, Type IT, Type III, or Type 1V is well-posed for
Sp(L, 7, &%) for all 7 sufficiently large.

If we assume that the differential operator L has Polya’s property W of
(4.45), we obtain a result analogous to (1.13) of Theorem 1.

Theorem 2. Let the differential operator L have property W on some interval
(o, B) < [@, b], e, L{w]==0 has m solutions u; (%), 15 (%), .., u,, (%) such that

Uy (%) (%) v (%)

.
.

(145) W sy, ey ) =dot | D00 D)o D) | g
D""‘ful(x) oo DE Y (%)
for all we(a, B), forall 1=k=m.
“.




L-Splines 349

Given 7 and 2, let the components of the augmented incidence vector for Type I
(resp. Type II, III, or 1IV) interpolation, for some 0L p=g= N1, satisfy the
inequality
(1.16) L n=m whexe Xy, %€ (o, B).

tep
Then, the L-Hermite problem of Type I (resp. Type II, 111, or IV) is well-posed
for Sp(L, m, 2).

Proof. The argument is like that of Theorem 1. If L[u]=0 and u(x) is a
Sp(L, m, z)-interpolate of Type I (resp. Type II, III, or IV) of f(x)=0, then
u(x) has a zero of order z at each %, 0=X/=<N--1. With the hypothesis of
(1.16), it is known [3’, p. 67; 5'] that if «(x) has m zeros in («, §), then u(x) =0,
Q.ED.

I we choose any point w4 interior to [a, b] and let u, (), ..., %, (x) be solutions
Cof Lluj =0 with D'u(p)==0;_; ;, 1=j<m, 0= = m —1, then W(w; uy, ..., uy) =1
for all 1 = k=im. Hence, by continuity, there always exists an interval {, f) [a, b]
with «<Cu<f such that L has property W on («, §). If # —a>c where ¢ is de-
lined by (1.11), then (1.16) is a weaker condition than that of (1.13), and Theorem 2
gives an improved result, :

2, Existence and Uniqueness
The following result is a generalization of Theorem 4 of [5].

Theorem 3. Let 7, 2, and feC"~[a, 0] be given. If the L-Hermite problem of
Type I (resp. Type II, II, or IV) is well-posed for Sp(L, s, ), then there exists
a-unique function s(x)eSp(L, z, ) which is the Sp(L, %, #)-interpolate of f(x)
of Type I (resp. Type II, III, or IV).

Proof. Recalling our original assumption that a;(x) €Ky [a, b], 0<7<m, it

2m

follows that the coefficients §; (x) in L*L[v(x)]== }_J [;’, x) Div(x) are all elements

of L*[a, b]. Thus (cf. [3', p. 43]), there exist 2m hneally independent functions

v;(x)€K3™ [a, b], 1<7<2m, with L*L[v;(x)]=0 almost everywhere in [a, b],

such that if s(x ) isa Sp(L, =, z)~interpolate of Type I (resp. Type II, I1I, or IV),

then on each subinterval (x;, x,.4), 07N, s(x) can be expressed as s(x) =

2m

2 ;v (%), Le., s(x) is determined by 2m coefficients a;,; in each subinterval.

i=1

Thus, thie total number of coefficients determining s(x) in [a, b] is 2m (N +-1).
We now calculate the number of linear equations which constrain these coef-

ficients. At each interior mesh point x,, the differentiability condition (1.9)

yields 2m —z; homogeneous conditions, and thus there are Z (2m —z;) such
=]
equations in all. Next, 1[ s(x) is a Sp(L, m, #)-interpolate of f(x ( ), the conditions

of Definition 2 impose L 2;-+2m constraints in all, mdepcndent of type. Hence,

i=1 N
the total number of constraint equationsis 2m N — ) z;-- Z, 2;-F2m=2m (N --1).
1e=1 f=1

I other words, if s(x) exists, it is obtained from a solution of 2/ (N 1) linear
equations in 2m (N--1) unknowns. To establish both the existence and uni-

Ead
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queness of s{x), it suffices to show that if /(x)=0 on [a, b], then s(x) =0 also
for all xefa, b). '
Consider the integral

. b Xi+t1
(24) J=J (L)) dxmzo [ (Lls(=))2az,
3 =0 xy
where s(x) is any Sp(L, m, 2)-interpolate of f(x)=0 of any type. With u=s
and v==L[s] in (1.7), we can express ] as
x= xuq}
=y )

The first sum of (2.2) is zero since s(x) is an L-spline (cf. (1.8)), and, using (1.6)
and Definition 2, it can be verified that the second sum vanishes for all four
types of interpolation. Thus, [ is zero and consequently L[s](x) =0 almost every-
where in [«, b]. But, as s(x)eSp (L, n, #) implies that se K§"[x;, x,,,] {or each ¢,

V=i = N, then surely L{s](x)=0 for x¢(x;, %;,,), 057 N. Now, letting

1{1(;\) 1¢2(x) oy 1, (x) denote m linearly independent solutions of L{u]=0, we
"m

have s (x) = 2_, B wtty, (%) for all we (x;, x,,4),7=0, ..., N. To show that L[s(x)]=0

Xita

ez J=3 Tt (it ant 2P, 1)

1m0 1y

for all xc[a, b;, we must show that ,a-.ﬂ”l o t=0,...,N—1, k=1,..., m.
© But, it follows from (1.9) of Definition 1 that D¥s (x;—) =D"s (x;+), k=0, ..., m—1,
1==1, ..., N, since each z; is at most m. Hence for each ¢, 01N —1, the
m differences f§; , —f,,,,, satisfy the m homogeneous linear equations

" om

(23) DB D) =0, =0, m—1.

But the determinant of the coefficient matrix in (2.3) is exactly the Wronskian
Wiy, tty, .., 1) of (1.4), evaluated at the point x==x,,,, which we know
does not vanish. Hence, /}, p=Piiin 1=0, ..., N—1, k=1, ..., m,and L[s(x)]=0
for all xefa, b]. But, since the L- chmte problem is well-posed, then s(x)=0
for all xela, b]. Q.E.D.

In the special case that the differential operator L has property W on the
interval (a b), Theorems 2 and 3 give us that interpolation in Sp(L, %, #) is
uniue, if ZJ =m. T hus, Theorem 3 is a generalization of the basic results of

(=1
KarLin and ZIEGLER [27, Theorems 3 and 3'].

3. Integral Relations
The results of this section generalize the first and second integral relations
of [6].

Theorem 4. Let f(x)e K3 [a, b], w, and z be given. If s(x) is a Sp (L, =, 2)-

interpolate of / of Type I, 11, or IV, then the foliowing first mlegml velation is
valid:

6-1) Swtnpan=f @i —apas+ f ez

L&

Y
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Proof. Clearly,
b b b b
(3.2) (L) de= [ (L[f —s])*dx +2 [ L[} —s] - L[s]dx + [ (L[s])*d,
and the first integral relation of (3.1) follows if we can show that the middle

term on the right-hand side of (3.2) vanishes. With w=/-—s and v=L[s] in
(1.7), we then have

fL[/-—s:u[sjdwz T =9 (L)) ax
(3.3) - .
+ {200 = st LD}

As in the proof of Theorem 3, the first sum on the right-side vanishes since
seSp(L, m, &), and the second sum vanishes if s(x) is a Sp(L, &, # 2)-interpolate
of fof Typel, Typell, or TypeIV. Q.E.D.

In much the same manner, we obtain the following second méegml velation

it /2 K3 [a, 0],

Theorem 5. Let f(x)eK3"[a, b], =, and z be given. If s(x) is a Sp(L, =, 2)-
interpolate of (%) of Type I, III, or IV, then the following second iniegral relation
is valid:

‘ b b
(3.4) af(L[/-S])2flx =af (f —s) (L*L[f]) dx

Proof. With #=f~—s and v=L{f—s] in (1.7), we have
fLy—sprax= =9 urLyas
(3.5) -t
+ 3 {P (1 —s(w), LI~ LI5))

i=0

H-n}

since L* L[s] =0 almost everywhere on each interval (x;, %;44), % , N. But,
as before in the proofs of Theorems 3 and 4, the second term on the nght -hand
side of (3.5) vanishes since s(x) is a Sp (L, m, #)-interpolate of /(x) of Typel,
Type 1T, or Type IV. Q.E.D.

[t i&" worth noting in Definition 2 that only the periodic boundary conditions
of Type IV couple the boundary conditions at one end with the other. This
means that we can in fact independently assign boundary conditions of Types I,
11, or III at either end. Thus, it is clear that the result of Theorem 4 is equally
valid for a hybrid interpolate of f in Sp(L, m, #) with a Type I boundary con-
dition at one end and a Type IT boundary condition at the other end. A similar
remark is also valid for Theorem 5.

4, Error Bounds
Let { {7;}32.1 be any sequence of partitions of [a, 0], with hm n-~0 We then

have the following error bounds which generalize Theorem 1 of [6] and Theorem 9
of [17].

“w
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Theorem 6. Let fe Ky (a, b], let {m;}32; be a sequence of partitions of [a, b]

with lim #,=0, and let {#}{2; be any sequence of incidence vectors associated -

Lo O

with {r;}%. Then, there exists a positive integer 4, such that the Sp(L, 7;, #)-
interpolate s;(x) of f of Typel, II, or IV exists and is unique for any =1,
and moreover, there exists a constant 3/, dependent on 7 and m but independent
of 7, such that

1D/ (f i)

Lo g0y S My (7)WL~ 53) |1aa, 1

(4.1) < M, (@)W L f

Li{a,b)»

for any 7 with 0=7<m —1, and any 1=2%,.

Proof. The first part of this result follows directly from Corollary 1 of Theorem 1
and Theorem 3. For the remainder of the proof, fix ¢ large enough, say 121y,
so that s;(x), the Sp (L, m;, 2")-interpolate of / of Type I, II, or 1V, exists and
is unique. If 70,1 a=xy< 2 < *+* < ¥y =0, then, as each component z; of any
augmented vector is at least unity, /(x;) —s;(x;) =0 for all 057 =< N;+1. Because
(f —s,)e C"[a, b], we can apply Rolle’s Theorem to f(x)—s(x). Hence, there
exist points {45517 in [a, b] such that

DIER) — Dis; (i) =0, 0=l N;+1—7, O0=j=m—1, where
(4.2) L as ) <EN < <=0, and

) S EFY < &) forall 0N +1—7, 0giEm—1.
Tt is readily verified by induction that | &), — 0| < (j+1) 7, |a — E)| = (-+1) 75,

and b —EQ | SG+1) &7 for any 0=j=m—1. Now, for each j with
0=7=m—1, let x;¢[a, b] be such that

(43) | DI(f (x)) —s:(x)) | = |D(f = s powamy OSTSm —1.

Again, it is easily seen that there is a &' such that |%; —&P| £ +1) 7. Then,
as DI[f(ED) —s,(E])]=0, we have from (4.3) that ‘

HDi (f—s) HLm (a, b] =

(D) — ;) d,t].

&

For j<tm—1, this integral is bounded above by (j+1) 5| DT —53)|peo(a, 0 -
By repeating this argument, we obtain

DI = $lmtoin S 57 D = 8ot

0o=jsm—1.

(4.4)

<

Sirailarly, using the Schwarz inequality, we obtain

Fm—1

1D (f = $) o ta 0y = f(m[an (1(6) —s:(0) dt

= (Fer = ETNHD" (= i) lirta 0
g V”ni}ii H o" (/ - S“) “L' (a, 0]

(4.5)
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Combining (4.4) and (4.5), we have

1D/t = s ota, 07 = 577 (’ff )OO (F ~ 5) aga, 0

ogygm»a.

(4.0)

Writing .
(%) D" ((5) — 5:(x)) = L[/ (%) — 5, (2)] = 2 a;(%) DI ({ () — 5,(#))

i=0

and recalling the lower bound for a,,(x) of (1.2), the triangle inequality gives us
m—~1
W0 (= ) e, < {HI sdlerta s+ 25 N4ilimta, o0 1D1 = ) |osga, b]}-
7=0

Since
(b — @) | DV (f = 5) |Lonta, 00 2 | D7 (F = 5) | iaa, 670

the bounds of (4.6) thus yield

m—1

; :
—a) ml
{1 Zleilemein C =0 17— 5t
——;;; MLAF ~ s3)leaga, o0+
Thus, there exists a positive integer ¢; and a positive constant H such that

(4.7) ”1. "= s =H

IL(/‘""SJ

L*[a, b] forall =+ g 1:1 .

Combining (4.7) and (4.6), we obtain

(4,8) 107t = 5) | onfa, 07 = Hml l(/m)j - wJ]L — S t2a 5y for OS; =m—1,
for all v=max (iy, 4), which establishes the first inequality of (4. 1). But, the
sccond inequality of (4.1) is a direct consequence of the first integral relation
of (3.1). QE.D. ‘
i we are interested in L2[a, b]-type rather than L™[a, b]-type error bounds,
the result of Theorem G can be improved by the following new result.

Thecvem 7. Let /CK’”[a b], let {m;}21 be a sequence of partitions of [a, b]
with lim 7 7;=0, and let {2}22; be any sequence of incidence vectors associated

t»»m
with {7,}{21. Then, there exists a positive integer 4, such that the Sp (L, 7,, 2% )
interpol: ite s, ;(x) of f of TypeI, 11, or IV exists and is umqu(, for any 1= 4,, and
moreover, there exists a constant M,, dependent on j and s but independent
of 7, such that

(49)  HD(F = i) leata, 0 = M (F)" T | LU — ) Jonga, 005 Mo ()" | L f

L*[a, b]
for any j with 0=7<m and any i=71,.

Proof. The first part of this proof has already been established in Theorem 6.
Now, forany j with 05,7/ m —1, we have from (4.2) that D (f( “,’)) —s;(&S’))) =0
for 011/ N1 —j. ence, applying the Rayleigh-Ritz inequality [2', p. 184],

24 Numer, Math, Bd. 10
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we have
e el

o) [wio=snraes TR [0 - sl
e ef:”

since | £/] 3 —&)| = (j +1) @, and this inequality holds for ¢ with 0Z/=Z N, —7.
Thus, surnming both sides of this inequality with respect to { gives

(hts) (DT — slorep g = -EEE (D = e g

7

for all 0=Zj=m—1. Since (e, gl 2] [a, 0], the special case Je=m—1
and the inequality of (4.7) give

o
@Aty (D7 =) lurageen, g S 10 PR (20 =5 frcan)?

N g-mt2

for all i=1,. Next, the inéquality of (4.8) of Theorem 6 gives us that
ep

(az) [ D100 =s@)Pat= (D = sl ol & —al

é ]Vll(j:zi)i%m«—faj (“L(f — Si) “L“[a,, b])Z fOr all Oéié m-—1, izio,

since | —a| < (7 1) %, Similarly, we have

? ] I tl \2m—2] ; 2
(4.12") eg‘f,,_,_l[D’ () — ;)1 = M EP" ™ (LU — s lercam) ™
0SjSm—1, 1=4.

Thus, summing the ine(iuality of (4.11") with the inequalities of (4.42) —(4.12")
for the case of J=m —1 gives -

(4.13) [D™ = (f —s3) It sy = M (7)) 1L — s lesta 10 (=41

Continuing this argument, we can use (4.11) in conjunction with (4.12) —(4.13)
to establish the desired result of (4.9). Q.E.D.

1f we make the s‘crongér assumption that fe‘K'é"‘ [@,b], we can materially
improve the above error estimates. ‘The following result generalizes and improves
Theorem 2 of [6].

Yheorem 8. Let feK3™[a, b], let {m;}i2; be a sequence of partitions of [a, b]
with lim 7,=0, and let {g"}iZ;be any sequence of incidence vectors associated
jr 00
with {m;}2. Then, there exists a positive integer 4, such that the Sp(L, 7;, 2)-
interpolate s;(#) of / of Type I, IIL, or IV exists and is unique for any 427,
and moreover, there exists a constant My, dependent on j and m but not on i,
such that

(4.14) 1D (f — 53} | Lo ta 01 = Mg (G ypm-i=W | L* Lf]

!L'{a, b]
for any § with 0=7=m —1, and any 1=
Proof. Schwarz's inequality applied to the second integral relation of (3.4)
yields .
(4.45) (LG = s oo S U = s 1L* LU

'3
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Using the first inequality of (4.9) for the case j==0 then gives
(4.16) |LG — s a0 = My (7 )" | L* L] leota, -
Corbining this inequality with that of (4.8) produces

D7 = 5lumtan = gt O Lt

for 0Zjs=m—1,

(4.47)

the desired result.  Q.E.D.

1 we are again interested in L2 [a, b]-type error bounds, the result of Theorem 8
can be improved as follows.

Theorem 9. If the hypotheses of Theorem 8 hold, then there exists a positive
integer 7, and a constant M,, dependent on j and but not on ¢, such that

(4.18) 1Di(f —s;) lrrta, 1 = M4 (7 )2 | L* L] |Lata, 03

for any § with 0=7%=m and any t=1,.

Proof. Just combine (4.13) and (4.16). Q.E.D.

The result of Theorem 9 here generalizes and improves the results of Theorems?2
and 6 of [6], and Theorem 9 of [1 7].

In [6], AMLBERG, NILSON, and WALsH obtain the convergence of derivatives
of higher order of generalized splines to the corresponding derivatives of /. This
can also be generalized and improved as follows. With the hypotheses of Theorems$,
we know from Theorem 8 that there is a positive integer 4, such that the

Sp(L, m;, &")-interpolate of /, called s,(%), of TypeI, ILI, or IV exists and is

unique for any ¢2v,. {v; (%) 2y is any linearly independent set of functions |

in K3"[a, b] such that L*L[v;(x)]=0 for almost all xe[a,b], and if 72 a=
xé')< i< oo < af) pa=0, then s;(x) for any i1, can be represented on each
subinterval of 7; by

2m '
(4.19) s.(0) = 2 AP (%),  xe[s, Ay, 0=R=N, 127
=1
Fixing our attention on the particular subinterval [ng), xﬁﬂﬂ of z;, divide this
' . ) 2
subinterval into 2m equal parts by means of §;= a4 l.(w%l._”;.,_s‘_)*, 0=j=2m.
TJust awsn [6], we form the divided differences

I

. 1 - - {
2Ll o oror 1= e X (=05 6,
(4.20) 2.’”0 )
. St _
h= o B 0_§__f§2m 1,

so that {rom (4.19)
2m

(4.21)  Lls;[Egs by eens &= ZA,W‘){Z’! 0;[Egr E1r e s &1} osls2m—1.
j=3

Thus, regarding (4.21) as 27 linear equations in the unknowns A", the 2m X2m
coolficient matvix C==(c, ) for thesc unknowns has its entrics given by ¢;,==
(=)l oy [Eg reen Eporls 15D g=20m On the other hand (cf. (1.4)), the
24 '
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21 % 2m Wronskian matrix W(x; vy, 0y, ..., Uy,,) = (b, ) has its entries given by
b, q:.:vff’"”(x), 1<p, g=2m, and the connection between these two matrices
“comes from the well-known result which relates divided differences to derivatives,
ie., if g(x)cC/a, 4], then

(422)  lglky, &, e, E]=D"g(z), where ) =(<T<&= x .

Now, we make use of the fact that W(x; vy, v, ..., ¥y,) is nonsingular for any
x¢[a, b].By choosing 7; sufficiently small, i.e., 721, it follows from (4.22) that
the entries of C can be made uniformly close to the entries of W 0y, .00y Vg
and as such, C is nonsingular. Moreover, for =7, there is a constant K, >0 which
uniformly bounds the entries in modulus of the inverse of C for any 0 RE N,
Thus, from (4.21) we have for all 7 and % that

2~

(4.23) |4f0| éK’yZ‘o {01s;[€) &y, oy &) forany izd.

It remains to show that the s;[&,, ..., &) are all bounded for 0=/=2m — 1.

With fe K™ [a, b] and ¢=1,, Theorem 8 gives us that there exists a constant
M, >0 such that

(4.24) |13) —s:(0)] SM ()29 for all  xefe, b].

Using the notation z,; = mkin(xjj_’H — x§), it follows from (4.24) and the definition
of (4.20) that

. ) 2m—(1)
1/[‘.?0, Elt cres &(] "”'Si[fo: Elt ey 6(][ = (4'}71)1M1 %r Og{g 2m —1.

If we make the mesh restriction that there exists a positive constant ¢ such
that o z; =7, for all £ =1, this then becomes ‘

(429) [T vonr €] = $ilE0r oos E] S (hom)f My ()P40, 0SS 2m—1.
But as
|/ [Eor vons &l = | D F @) [0V S |D fleogamltl,  OSE=2m—1,

it is clear from (4.25) that the quantities |s;[&,, ..., &]| are uniformly bounded
for all i=4,, all 0=/<2m—1, and all 0=k=DN;. Thus, with (4.23), we can
assc t, as in [6], that there is a constant J{;>0 such that

(4.26) O APP SK,, for iZi;=max (i, &)

By definition, s; () e K2 [xf?, ) ] for every 0 R V;, and also v;€ Ky™ (4, b]
for all 1=f< 2m. Again, considering the particular subinterval [xf?, xf,] of 7,

it follows from (4.25) that there is a 7, with &< 7,<< &, such that
(4.27) D —s) (0)] S (dom) My ()P~ W, o=f=2m—1.

Thus, for any %€ [#f, #),], we can write

(4.28) DE(f—5) () = DF (=5 (1) = f DIF3(f—s) () dt,  Osts2m—1.

T{ -




(4.29) | DPl(f—sy) ()] = {41 (40 ) My A+ | D (f —s,)
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Tror the case {=2m —1, combining an application of Schwarz's inequality to
the integral of (4.28) with the inequality of (4.27) yields

L, x(Ql)} (7@)k

Now, the representation of s;(x) in (4.19), coupled with the uniform boundedness

SR T k) M ) . . - Dt S -
of the A¥#® in (4.20), gives us that the norms D Sill:)[x;j),x,&gﬂ are also uni
formly bounded for all & and all 1221,, and as [ is a fixed function in Ix’g”’ [a, b],
the same is evidently true for the norms [D*"(f —s;) |, 0 ;- Hence, there is
a positive constant M, such that for ¢=7,,

(4.30) |DFm=2(f —s)) HLw[x;‘l,x;‘ =M, (7)¥ forall 0O=R=N;.

From (4.28), it is clear that this argument can be repeated in the uniform norm
for the lower order derivatives, and we have for 121, that there is a constant M,
such that

(4.31) [D7(F = )l emgatt, sy = Mo (@)=, o=jZ2m—1,

Wi ' ¥pqd T

for all 0=Zkh=N,. Thus, if we extend the usual definition of the L®-norm on
[a, 0] by defining
(4.3 1D = slimton = {1070 — )l it}
we have ’

Theorem 10. If the hypotheses of Theorem 8 hold, and if there is a positive
constant o such that o, =7, for all i=1, then there exists a positive integer 14
and a positive constant M, independent of ¢, such that

(4:32) VD7 (= 53) oot S M5 ()7~

for any j with 0=7=2m—1 and any 1=1,.
It is worth noting that if max A4 =g, then the Sp(L, 7;, 2¥)-interpolate
Sk Ng

5;(x) of /() is in gencral only of class C*"~*~%[g, b] on the entire interval [a, 0].
Thus, for any § with 057 2m -1 —0;, the statement of (4.32) is an inequality .
for the rontinous derivatives Dif —s,) (x).

We siow investigate in what sense the previous theorems (Theorems 6—10)
are sharp, with respect to the exponent of 77;. It sulfices to consider the unit
interval [0, 1] Tet v,(x), v3(%), ..., U5, (%) again be 2m lincarly independent
functions in K2"[0, 4] such that L*L[v;(x)]=0 for almost all x2¢[0, 1], and let
V be the finite dimensional lincar space of all lincar combinations of vy (%), Uy (%),
voy Uy (%), Where 02 2= 1. For each integer i, 0=7=2m—1, and each & with
0= =1, consider the following problem of best Chebyshev approximation. For

any u>0 such that Dia*¢V, let
Goollt) = Ooo(l; 11 1) = ini | D7 (8 — 7 (1)) 1m0, 33

Pecause Vs finite dimensional, o (h) is readily scen to be continuous on
[0, 1], andias DAV, then ay,(h) is strictly positive in 0= 2= 1. Thus, we deline
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013}?3:“1 Ooollts 13 44) =oolfy 1) > 0. We now assert that

(4:33) ing | D (5 — 7 () [oto,n = # e, ) >0,

since, with the change of variables x=1/, 0={=1, we have
e I i i ml,(ff?l)
f&ﬁ 1D (s — 7 (%)) |Logo, iy = B 121; HD (t l

= 1 12; | D7 (¢ — s (th))

1,00, 1]

oo,y 2 W e (f, ) > 0.

The inequality of (4.33) can now be used to show that the results of Theorems 6
and 10 are sharp with respect to the exponents of 7;. TFor Theorem 6, consider
the function £, (x)=x"~W+e 0= x=<1. For each >0, we sce that f,e K5[0, 1].
Morcover, as any collection of functions of the form {¥"~W+en  for ¢, > ¢, 1>
s+ =g, >0 are linearly independent on [0, 1], it follows from the finite dimension-
“ality of ¥ that DifaV for any 07 =m—1 for all £>>0 sufficiently small. Thus,

for any s;(x) of Sp(L, w;, %), we must have that
107 = sl = 1D (s leato, ] = }%; (D (/1 (%) —7 () HL”[O,x(l‘)}

for any 0=j<m—1, where x{) denotes the right endpoint of the first sub-
interval of s;. With (4.33), and the mesh restriction of Theorem 10, 1.e., 0 7= 7;
for all 4221, the above inequality becomes

o

(4.34) DI — s oo, = (f?_)"w(&)—iwcm <j,‘m —_ (*;':) -+ 8), osj=m—1.

In the same manner, we deduce for the function f,(x)=*"~W+*in K"[0, 1]
~the inequalities

(435) |1 (s = sdllcmon =

As these inequalities are valid for all ¢>0 sufficiently small, we have proved

7 \2m— (g —j+e . o
m) " ! ooo<7,2m-—(v;>+e), o< 2m—1.

(02

Theorem 11, Assuming that the hypotheses of Theorem 6 hold and that there
is a positive constant o such that o ;= 7; for all 1= 1, then, for each ¢>0 suf-
ficiently small, there is an element /; (x)€ K3 [, b] and a positive constant My,
independent of ¢, such that

(450) DI = s mtan = Me(@)—i=0%,  ojsm—1, =t

for any s,¢Sp (L, 7;, 2¥). Similarly, assuming the hypotheses of Theorem 8 and
that there is a positive constant o such that o ;= 7, for all 121, then, for each
¢> 0 sufficiently small, there is an element /()¢ /3" [, b] and a positive con-
stant M, independent of ¢, such that

(@37) 1Dy =) oty = Mo @)2-=0, oZjgam—1, =1

for any s;6Sp (L, m;, #%). Thus, the respective exponents of 77, in (4.4) in Theorem 6
and (4.32) of Theorem 10 cannot in general be increased for the classes of func-
tions Iy [a, b] and K™ [a, 0]

To investigate the sharpness of the exponents of 7; in Theorems 7 and 9,
we similarly have the following problem of best Ly-approximation. Tror any u>0

s




o
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such that Dixt¢V, let oy(h)=0y(h, 7, ) = int 1D (¢ —r (th))
7

with 0</A=1. As before, the finite dimensionality of V gives thal ay () is con-

tinuous on [0, 4], and if Di#"4V;, then o,(h) 1s strictly positive in [0, 1]. Thus,

we deline ow/i}}t oy (B 1, 18) == 65 (f, 46) > 0. This gives rise to the following inequality.

Ly T
120,47 for cach %

For any partition #; of [0, 1], we have

Ny "1(:21

(HD’.(X” - Si(x))liv{o,n)z =2 iDi(x“ - Sf("’))lzdx

=0 L0
k=0 50
10

xy' . ‘

=[|D(a" — s:(%))|2dx,
0

and with the change of variables x=¢h where h== «, we have

2

sileh) # o,

i
(”Di(x/jwSa(x))”mo,ll)zg/LZ(H“")H[ll)i(f“““ i

K
= (@i)ﬂ“miwl 2 i ﬂ) .

Now, for Theorem 7, consider the function fy (%)= #"~"W+e, 0= x=1. For alle>0
sulficiently small, /e K5[0, 1] with Dif,aV dor any 0£j=m. Thus, for any
5,.6Sp(L, 7, 27), we must have, with the mesh restriction that o= for
all 7221, that

X . 7 [y . 1 .
”[)7 (fs = s3) HL'[O,l] = (‘C}“) Ca <7r n — (E) + F) , o=sj=m,

{or all >0 sulliciently small. Similarly, with £, (%)= *"~#** in Kim[o, 1], we
deduce that
.\ ) 7T \2m—~j-+8
107 (= e 2 (2

for any s,¢Sp(L, m;, 2%) for all e> 0 sulficientl small. This gives us
Y 8 i y g

Cz(]‘,277’bw7’—(%‘>+6), V=i Em,

Theorem 12. Assuming that the hypotheses of Theorem 6 hold and that there
is o positive constant o such that o 7= 7, for all 1=1, then, for each >0 sul-
ficiently small, there is an element fa(x%)€ Ky [a, b] and a positive constant Mg,
independent of 4, such that

(138) (D — sl = Ma (@)1 0sj=m,  iZ1

{or any s,eSp(L, 7;, 2%). Similarly, assuming the hypotheses of Theorem 8 and
that there is a positive constant o such that oz, = 7, for all 1221, then, for each
&> 0 sulliciently small, there is an element fo (%) e K2" [a, b] and a positive con-
stant M,, independent of 7, such that

(4.39) 1D (/4 — sl = M (@), 0sfsm,  i=d,

for any s;€Sp(L, m;, &%), Thus, the respective exponents of 7, in (4.9) of Theorem 7
and (4.18) of Theorem 9 cannot in general be increased for the classes of functions
Kyt(a, 0] and K3 [a, b]. '

1t is interesting to contrast the result of Theorem 11 with the results of [17]
and of Biriiorr and pi Boor [10]. For the special case of cubic natural splines,
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ie., L=D*% and z;==1, it was shown in [10] that
I Di(f—s,) [roota,p) = M (7e)*, 0=7=3,

assuming f¢C%[a, b]. Similarly, in Theorem 9 of [17], it was shown for Hermite
interpolation, i.e., L=D" and z,=m, that

1D {f = 8o S ME@P",  0Zj<m,

for feC*"[a, b]. Both of these results improve the corresponding exponent of 7;
in (4.32) by &, at the expense of working with functions in C*"[a, b], rather than
K™, b]. In general, Theorem 11 shows that such improvements in the exponent

K27a, b]. This answers in the negative a conjecture of AHLBERG, NILSON, and
Warsit {6].

Using Theorem 10, we may extend the result of Theorem 9 for L2 [a, b]-type
error bounds, where, in analogy with the delinition of (4.31), we define

v ol !
L.Ea’b}:—z{}_, Ty —s) (z))%&} . o=j=2m—1.

k=0 40

(@.31") DI = s

Theorem 13. If the hypothesis of Theorem § hold and if there is a positive
constant ¢ such that o 7;=2 7, for all £=1, then there exists a positive integer 4,
and a constant M,,, dependent on § and m but not on ¢, such that

(@40) D7 (f = s |irgay S My ()", 0=j=m, i,

and
(aa1) |D(f—s)

It follows from the second part of Theorem 12 that the exponent of 7; in
(4.40) is sharp for the class K;™[a, b] for 0=j=m. It is easy to see that the
exponent of 7, in (4.41) cannot exceed 2m —j even for the class C%[a, 0], but it
remains an open question? if the inequality of (4.40) is valid for all 0=7=2m —1
for the class K;™[a, 0].

ot 0 = Mg (@)P"-0, m e isis2m—1, iz,

5. G-Splines

In the special, but important, case in which L[u(¥)]=D"u (%), x¢[a, b], our
pre. fous results may be generalized along the lines of recent work of AHLBERG and
Nirson [3] and SCHOENBERG [47]. As before, let 701 a== xy<< 2y <+ <y <Ay =D
be a partition of the interval [a, 0], and let E= (¢, ;) denote the N X incidence

matriz, 15i=< N, 0=7=m -1, having entries of 0’s and 1’s, with at least one

nonzero entry in each row of E. Further, let ¢ denote the collection of (7, 7) such
that ¢; ;==1. Following [47], we now generalize our Definitions {, 2, and 3.

Definition 4. The real-valued function s(x) defined on [«, b] is said to be a
g-spline of order m for oc and E if and only if

(5.1)  s(x)is a polynomial of degree at most 2im — 1 in cach subinterval (x;, %;5),
0=4i=N, ie., D*"[s(x)]=0 in each subinterval of =,

3 1t has just been shown Ly Me. F. Purrin of Case Western Reserve University
that the inequality of (4.40) is valid for all 05/ =2m—1 (added in proof).
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(5.2) s(x)eC™ [q, 0] and if ¢; ;=0, then s@m=i=1(y) is continuous at x;, L.e,
(i, 7) 4 ¢ implies that s/~ (x;—) = s@m=i= (g4
We deote the class of all g-splines of order m for & and £ by Sp(m, 7, ).

As in Definition 2, if /(x)€C""'[a, b], we can define four basic types of inter-
polation of f(x) in Sp (m, =, £). It is similarly convenient to augment the incidence
matrix £ by the addition of two parameter-like rows, corresponding to 1=0 and
je=N--1, thereby forming the (N--2)xm matrix E*=(e; ;), 0=1=N+1,
0=j=<m —1. Each of these added rows must have m entries consisting only of
0's andd 1’s, and at least one entry must be nonzero in cach added row. We simi-
larly denote the collection of all (i, {) in E* such that ¢; ;=1 by ¢*.

Definition 5. Given f(x)eC" *[a, b], a function s (x)eSp (m, 7, E) is said to be
a Sp (m, 7, E)-interpolate of /(x)

of Type L if i) D's(x;) = DI (%) for all (4, 7)€e™,

(i) €=y, =1 forall 0=j=m—1,
of Type ML if (i) Dis(x;) =D/[(x) forall (i, 7)€e*,

Giy DEr=iTNs(x)=0 for i=0 or i=N-+1, (i, 7) GeX,
of Type TILif (i) Dis(x)=Df{x)  forall (i 7)ce",

() DR (5) = DO [ (x) for =0 or i=N -1,

YL
of Type IVl (i) /feCi"'a, 0], ie., [(#)e€ C*=1laq,b) and
Dl f(a) =D’ [(b) forall 0gj=2m—1,

Qi) Dis(x)=Df{x) ~ forall (,jee,

(ili) ey, ;7= ey, ;= 0o, 0 =Em—1,

(iv) D's(a)=D"s(b) forall 1=7=2m—1.

Definition 6, Given the C"~[a, b] function f (x), the partition s, the incidence
matrix 2, and the positive integer »s, the Hermite-Birkhoff problem of order m
of Type I (resp. Type 11, Type 111, or Type IV) is to find a polynomial p,,_; (%),
vé[a, b], of degree at most m —1 such that p,,_ (%) is an Sp (m, 7, E)-interpolate
of f of Typel (resp. TypeII, Typelll, or Type IV). The Hermite-Birkhoff
problent of order 7 is said to be well-posed for Sp(m, w, ) if and only if it has
at most one solution,

As in Section 4, we now determine sufficient conditions for the Hermite-
Birkliofl problem of order #, (henceforth abbreviated as the IB,-problem) to
be well-posed. For each integer 1, 0<i N1, if ¢; o€e*, let u; be the greatest
positive integer such that ¢; o, €51, +o s €1 —1 85€ all in e If ¢; 0", define u;
to be zero. Since a polynomial of degree m — 1 with 7 zeros must be identically

zero, we have, in analogy with Theorem 1 and Corollary 1, the result of
N1

Theorem 14, If D) u;=m, then the HB,,-problem of Type 1 (vesp. Type 11,
i1
111, or IV) is well-posed for Sp(m, m, E). In particular, the B, -problem of
Type I is always well-posed for Sp(m, v, L).
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As a partial generalization of our Theorem 1, with essentially the same proof
using L[] = D"u, we have the following result which is a slight generalization
to different boundary conditions of results of AHLBERG and NiLsow [3] and
SciroensErG [Theorem 1, 47].

Theorem 15. Let s, I, and fcC" [a, b] be given. If the HB,-problem of
Type I (resp. Type 11, 111, or IV) is well-posed for Sp (m, 71, E), then there exists
a unique function s(x) which is the Sp (m, , E)-interpolate of f{x) of Typel
(resp. Type II, 111, or IV).

Moreover, as before, the following first and second integral relations hold for
g-splines of order .

Theorem 16, Let fe Ky [a, b] and let s(x) be a Sp (m, 7, E)-interpolate of /
of Type I, 11, or IV. Then

b b b
(5.9) df (D" f ()2 dx = [ [D™(}(x) — s (x))]*d +£[ [D™s(x)]2dx.
DProof. Clearly
b b b %
uf (D" 2dx = [ [D"™ ([ —s)]%dx + Zuf (D™ (f —s)] [D"s]dx +C;f [D"s]2dx,

and the first integral relation (5.3) will follow if we can establish that the middle
term above vanishes. Using (4.7) in the special case L[u]=D"u, we have

b AY‘ Kiby .
[ (f —s)) [D"s]dx=(—1)" .2,, [(f—s)(D*"s)dx
a Q=0 ¥
N‘ " :L . i A . £l
_}‘ Z‘ L (“1);;1~;~—1])7 (/ --*S) D2m-/~—ls ‘ ,
i=0 j=0 "'

Since s (x) is o polynomial of degree at most 27, — 1 in each subinterval (¥;, ;)

suin can be written as

Cof o, 0={= N, the first sum cléarly vanishes. Since (f —s)€C"[a, 0], the last

IR Y

3 (= i DI (8) — 5 () DT s (6) — DY (1) = s @) DT s ()

j==0
N
b 2D (f () — s () - D™ s (=) — D%'“jm‘ls(xi”%“ﬂ}r
i=o
For any 17 N, cither (4, f)€e*, in which case Di(f(x;) —s(x;)) =0 by Delini-
tion §, or else (¢, 7)Ge*, in which case DAm=i=3g (g, )= D¥" =1 s (x,—) by (5.2)
of Definition 4, so that the inner sum above vanishes. Similarly, the boundary
conditions force the remaining terms to vanish. Q.E.D.
in the same manner, one readily verifies the second integral relation of
Theorem 17. Let fe K3"[a, b], and let s(x) be a Sp (m, 7, E)-interpolate of f
of Type I, 111, or IV, Then

Ga) 100 st =~ 07 1) = 5] D ) d

To obtain error bounds for g-splines analogous to those of Section 4, we
begin by considering any sequence of partitions (]} 700 [, 0] salislying tlim gty 0.
=X

$




L-Splines 363
It yci a==: mﬂ <x < <9le~l 1==0, we further require, as in [3], that there

(5.5) txﬁijg’{écﬁ,; for all i‘gio, all ogk:gz\fru

I'his Jatter assumption allows us to apply Rolle’s Theorem, as in Theorem 0,
as well as the Rayleigh-Ritz inequality, as in Theorem 7, to the case of g-splines.
Because the proofs of Section 4 carry over with little change, we now state, for
brevity, the following error bounds for g-splines which partially generalize the
results of Section 4.

Theorem 18. Let fe Ky [a, 0], let {73321 be a sequence of partitions of [a, b]
with lim 7;==0, and let {EW}2; be any sequence of incidence matrices associated

i 00

with {o,}72,. Assume that there exists a positive constant ¢ and a positive integer
iy such that for each & with 0= k=N, 1, there is an integer j=7 (1, k) such that
=1 and (5.5) is satisficd for all 1224,. Then, there exists a positive integer 4,
such that the Sp(m, m;, L)-interpolate s;(x) of f of Type I, II, or IV exists
and is unique for any ¢=1;. Moreover, there exists a constant M;, dependent

on 7 and m, but independent of 7, such that
D7 = sl o0 = My (7 )"’“""‘“ |D"(
< M, (7)1 D" f

(5.6) b

) 'L (e, 0]
for any 7 with 0=7=<m —1 and any =1,.

Theorem 19.. If the hypotheses of Theorem 18 are satisfied, then there exists
a constant M,, dependent on j and m, but independent of 7, such that
(5.7) DI — s ote, 1 = Mo (F)" 7 [ D™ fliria, vy
for ahy § with 0=Z7=m and any i =1,

Theorem 20. If the hypotheses of Theorem 18 are satisfied, and fe K3™[a, b],
then there exists a positive integer 7, such that the Sp(m, m;, EW)-interpolate

s;(x) of f of Typel, III, or IV, exists and is unique for any 1=7,. Moreover,
there exists a constant M, dependent on 7 and 7 but independent of ¢, such that

(5.8) “Di(f_ Mo ta, b]gM( 7P HDz"'l‘Huw,bJ

(,,onstaut g such tint 0‘@_2, i; for a.ll zél thcn there e‘usts a posxtwe mtcger 7
and a constant M, independent of 4, such that

(5:9) 1D/~ 5t 10,0y = My (@) 770
for any 7 with 0=/=< 2m —1 and any 1=,

Theorem 21. If the hiypotheses of Theorem 18 are satisfied and fe K3"[a, b],
thien there exists a positive integer 7, and a constant My, independent of 4, such
that the Sp(m, 7;, £9)-interpolate s;(x) of f of Type I, 111, or IV satislies

(5.10) 1D (f == 53} eata, 07 = M5 () | D2 aa, o
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~dor any 7 with 0=7=m and any 722 4,. If, in addition, there is a positive constant
o such that og,= 7; for any 4= 1, then there exists a positive integer 7; and a
“constant Mg, independent of ¢, such that

(5.11) 1D — ) ira 0y = Mg (7,)*™ 7 forany 057 m,  i24,,
and

(5.12) DM —s) o o = Mo (@)W for any m-+1=Zj=Z2m—1, i2=14,.

We remark that the error bounds of Theorem 18 slightly generalize those
of [3], while those of Theorems 17, 19, 20, and 21 are apparently entirely new.
Finally, because L-splines with L=D" are special cases of g-splines, it is
clear from the results of Theorems 11 and {12 that the exponents of 7; cannof in
general be increased in (5.6)—(5.41) for the corresponding function classes, and
our results are thus sharp.
6. An Application

Jn this section, we shall consider the numerical approximation of the solution
of the following real nonlinear two-point boundary value problem, studied in [17],

(6.1) Plu(x)]=](x, u(x), o<wx<i,
with boundary conditions
(6.2) Dru()=Dbu(t) =0, D=, o0sksn—1,

where the linear differential operator £ is defined by

(6.3) Plu(x)) = 2 (— 1) DI [p,(x) Diu(x)], n=1.
=0
The coefficient functions p;(#) are assumed to be of class C7[0, 1], /=0, 1, ..., .

Let S denote the linear space of all {functions in K5[0, 1] which S’ltlsfy‘ the
‘boundary conditions of (6.2). We assume that there exist two real constants
and K such that

| lwll == sup |w(x)] < K
64)  fwle= sup jwi)] S K

for all weS. We introduce the finite quzmt:ty (cf. Lemma 1 of [17]):

£ 13 0,0) (D0 (32 4 (0(20)7] )

0 j=0

1 m
[{ 2 i (x) (Diw ()12} do
(6.5) A= inf 120 .
wseo [w (%)) dx
0
We assume that the functions f(x, ) and G (7,_)_ are real and continuous in
both variables, i.e., (%, u), »-9»-’3%31 €C%([0, 1] x R), and that there exists a con-
-stant ¢ such that
(6.0) i (()t[(“) z=f (1) 2y > —A forall x¢[0,1], andallreal wu.

inally, we assume that a classical solution of {6.1) —(06.2) exists.
The goal of this section is to estimate the error made in applying the classical
Rayleigh-Ritz procedure (cf, [17] and the references given there) to the variational




L-Splines 365

formulation of (6.1)—(6.2), by minimizing over subspaces of L-spline functions,
In so doing, we generalize and improve the results of [17]. .
The following fundamental result summarizes Theorems 1, 2, and 3 of [17].

Theorem 22. (i) If ¢ (#) is a classical solution of (6.1)—(6.2), then @ (¥) strictly
inimizes the following functional

1, #n (%)

6.7) Flw= 15 3,00 (D ()41 1

0 j=0 0

f(x,m) 121]} dx

over the space S, and @(x) is thus the unique solution of (6.1) —(6.2).

(i) If S,;is any finite dimensional subspace of S, then there exists a unique
function, Wy, (¥), in Sy which minimizes the functional F{w] over Sy;.

(i11) There exists a constant C, which is independent of the choice of Sy, such
that the following error bound is valid

(6.) 40 = Pl = K |0~ gy = C it [0~ g

wheie
1

(6.9) Ju], = {Of {2)/) () (DT u(%))2 -y (u (x))zJ d,x};' forall wueS.

It follows from Theorem 22 that, to bound the error in the Rayleigh-Ritz
procedure, it suffices to bound the quantity m{ }}w @l For the subspaces

under consideration, we do this by using the mcf ihm

(6.10) inf o —ol, = |@—q,,

wES i

where @ is the “interpolation’” of ¢ in the subspace Sy, .

I the L-Hermite problem of Typel is well-posed for Sp(L, x, (.,) then,

given any constants af, 02 h=2,—1, 05i{= N1, there exists a unique function
w(x)e Sp(L, 7, 2) with

Dlu () =af, Sh=2,—1, 0=i=N-F1.

Let SpY(L,m, =) denote the finite-dimensional subspace of Sp (L, m,#) of all such
fanctions #(x). We attach a similar meaning to the subspaces SpU(L, 7, 2),
SPUH(L, 7, #), and SPYV (L, 7, 2), and remark that these may have different di-
mensions. If the order of the differential operator L of (1.1) is such that m=n
and 7y, 2y, =, then Spy(L, 7, @), ..., SpIY (L, 7, #) denote subspaces whose ele-
ments satisly the boundary conditions of (6.2). Thus, if the L-Hermite problem
of Type I (resp. Type I, III, or 1V) is well-posed for Sp(L, =, =), there is a
unique Sp(L, 5, #)-interpolate of ¢(x), the solution of (6.1)~(6.2), of Type I
which is necessarily in Spo(L, 7, #). Similarly, we consider finite dimensional
subspaces Sp(m, m, ££) of g-splines with m=n, subject to ihe condition that
¢y =y yy ;=1 for all 0=7=n —1, and Spi(m, x, £) and Spy (m, , ) denote
mbsp&cos of such g-splines satisfying the boundary conditions of (6.2). Because
Hermite and natural spline piecewise-polynomial functions are just special cases
of such Lesplines or g-splines, the [ollowing result, obtained directly from
Theorenis 7 and 19, generalizes and improves Theorems 10 and 16 of [17].




366 M. H. Scuurntz and R. S. VARGA

Theorem 23. Let ¢(x), the solution of (6.1)—(6.2), be of class K5[0, 1] with
tzm>n, let {72, be any sequence of partitions of [0, 1] with il.iz‘gloiz‘izzo, let
{7,172 be any sequence of corrcc;ponding incidence vectors, let L be a differential
operator of the form (1.1), and let @, (x) be the unique function which mmmn/c‘s
the functional F[w] over the subspace Spy(L, 5;, &%) or Spit(L, m;, 29). Then,
there exists a positive integer ¢, and a posmve constant M, independent of 7,
such that

(6.11) @, ““W‘i!mm S K0 — |, = KM (7)™ | L gl

for all ¢=4,. Similarly, if {E¥}{2, is any sequence of incidence matrices which,
with the partitions {r,}{, satisfies the hypothesis of Theorem 18, let @;(x) be
the unique function which minimizes F[w] over the subspace Spg(m, 7;, E) or
Spét(m, 7o, ED). Then, there exists a positive integer ¢, and a positive constant
M ,, independent of ¢, such that
(6.12) | = @l o0 = K@ — g, = KMy (7)" " [ D" @leago,
for all 224,.

The next result follows directly from Theorems 9 and 21. It generalizes and

improves Theorems 10 and 16 of [17].

Thcorem 24, Let (p( v), the solution of (6 1) (6 2), be of class Ké[O 1] with

let L;: }I "1 be any sequence of (‘oxreﬁpondmg incidence vectors, let L be a dif-
{ferential operator of the form (1.1), and let @,(x) be the unique function which
minimizes /7[w] over the subspace Spi(L, n;, w(’)) or Spot(L, 7;, %), Then, there
exists a positive integer 7, and a positive constant M,, m(lependent of 7, such that

(()'}3) AYK’J ’—*(piLm[g i)S[{l'{ -—-(]7” \I(M( )Zm ”KEI*L[WJ L’[O 1]

for all ¢z=4,. Similarly, if {EW}2,, is any sequence of incidence matrices which,
with the partitions {7}, satisly the hypothesis of Theorem 18, let @;(¥) be
the unique function which minimizes F@] over the subspace Spg(#, 7;, E¥) or
Spi' (m, 7e;, EV). Then, there exists a positive integer 4, and a positive con-
stant M, independent of 7, such that

(6.4.1)

for all 724,

o1 = K0 — o, S KM (@) " [ D" o,y

We remark that the asymptotic error estimates given in (6.41) and (6.13)
are independent of the choice of incidence vectors, and independent of the choice
of the particular differential operator L.

As a particular example, consider the case in which the solution ¢(x) of the
jinear problem D?u(x)=/(x), 0<x<1, u(0)=u(1)=0, is only of class K3[0, 1].
In this case, to satisfy the hypotheses of Theorem 23, m must be chosen to be
at least 2, and we obtain for m==2 a sequence of functions which converges
binearly in 7, to ¢(x). Furthermore, to satisly the hypothesis of Theorem 24,
mocon be chosen to be 1 and we again obtain o sequence of functiony which
converges bnearly in 3¢, to %), Such results, as fur as we know, are not obiain-

oy
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able from Taylor series and Gerschgorin-type convergence arguments for discrete
methods applied to such two-point boundary value problems.

Tor results of numerical experiments obtained from applying the Rayleigh-

Ritz procedure to Hermite and natural spline subspaces for two-point nonlinear
boundary value problems (6.1)—(6.2), we refer the reader to [17].
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