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§ 2. Piecewise Hermite Interpolation in One Variable

In this section, we derive upper bounds for the errors in piecewise Hermite
interpolation in one variable. We start by obtaining (Theorem 1) an integral
representation for the error for Hermite interpolation for an unpartitioned interval
by means of the Peano Kernel Theorem [9, 14, 18]. Because of the local character
of piecewise Hermite interpolation on a partitioned interval, we are then able
to obtain global error bounds for piecewise Hermite interpolation (Theorem 2).

To begin, we introduce some notation which will be useful for subsequent
generalizations. We shall throughout denote any closed intervals [a, 8] by [
and [0, 1] by I,.

Definition 1. For m a positive integer, let H™ (I) be the set of all real poly-
nomials of degree at most 2m —1, defined on the interval I.

Definition 2. Given any real-valued function f(x)eC”~1(I), let its H" (I)-
interpolate, for m a positive integer, be any element £, (x) of H™ (I) such that

(24) D'/(@)=D*/,(@); D*f(5)=D*f, (), O=k=m—1, D= -
Since (2.1) is a special case of Hermite interpolation, it follows [9, p. 67]
that each real-valued function in C"~*(I) possesses a unique H"™ (I)-interpolate.

Definition 3. For any positive integer p and any extended real number 7,
1=7r=<+o0, let K»'(I) be the set of all real-valued functions f(x) defined on I,
such that D?~*f(x) is absolutely continuous on I and D?#(x)e L’ (I).

We remark that K?”(I) is actually a subset of the Sobolev space W#’(I),
and that the particular set K?!(I) is used extensively in the work of SARD
[18, p. 12].

Because of the local character of piecewise Hermite interpolation, we can
focus our attention on the unit interval I,=[0, 1]. Now, it is clear that each
element f(x)eK?’(I,) for p=m possesses a unique H" (I )-interpolate f,,(x),
and that the error Df(x,) — D'f,,(%,), for fixed x, with 0=<x,<1, is a linear
functional on K#7(I,). We call this error functional

(2:2) F(f)=D](x) —D'fulxy), 0=j=p—1, jekP"(I,),

which depends on 7, %y, m, P, and r. Next, by the definition of F, we can also
express F(f) as

p—1 1

(2.3) E(f)y=2 [D'f(x) du;(w; %), feK"(L,),

=00
where each u;(%; x,) is of bounded variation with respect to x in I, for each
xp€1,. To give an explicit representation of these functions u, (x; %), let S, 4 (x; m)
and S, ,(x; m) be the polynomials of degree 2m —1 defined by
DfSy (05 m)=0,,; D'Sy,(1;m)=0 forall 0=k /=m—1,
D'S, 4 (0; m) =0; D'S, ,(1;m)=6,, forall 0=k {=m—1,
where ¢, is the Kronecker delta function. Then, the H™ (I )-interpolate f,,(x)
of any feC™ (I,) can be uniquely expressed as

(2.4)

(2:5) Ful) = {(D*£(0)) Soa(x; m) + (D*F(1)) Sy 5 (x5 m) }.

k=0
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With this, it follows that the functions w;(x; x,) of (2.3) can be defined, for
0<< xy<<1, by
0, x2=0,

_DiSO,i(xo;m), 0<% << %,
8, — DSy j(xgsm), xg=x<A1,
5i,j—D730,i(x0; m) ~D7'Sl’£(xo;m), x=1, 0=i<m—1,

(2:6) pi(x; %) =

and

(2.6)) pils o) ={

0, 0= x=x,

, m=iZp—1.
0; 50 H<x=1

Now, we observe that if g(x) is any polynomial of degree at most 2m —1,
then g (x) is identical with its H™ (I )-interpolate g,, (%), i.e., g(%) =g, (). Con-
sequently, Dg (x)=D'g,, (x) for any 1=0. This shows that

(2.7) F(g)=0 for any polynomial g of degree at most p —1, where 1=p=<2m.

But with the expressions of (2.3) and (2.7), the Peano Kernel Theorem?® [18, p. 25]
can be applied, and we thus have

Theorem 1. Given any f(x)c K»"(I,) where p=m, then for any fixed x, with
0= x,=1 the functional of (2.2) can be expressed as

(28) Djf( ) D fm xO f‘D f 7, m,s(t; x()) dt, s:min(;b, Zm)’

0=7=s—1,
where

09 b = LI S [l T

i==0

o F\S—1
We remark that F, in (2.9) means the application of I to {—(%;_%i)'r} con-

sidered as a function of x for fixed ¢, and, as usual [9, p. 70],

_ (x —t)~t for t=x,
(5 —f) =
* 0 for x<<t.

The explicit representations of (2.5) and (2.6) allow us to determine the
kernels &; ,, .(f, x,), and we do this in two particular cases to illustrate the result
of Theorem 1. For the case of linear interpolation, i.e., m =1, consider the partic-
ular choices of j=0 and p=2 of (2.2). Then, the associated kernel & ; ,(¢; %)
is explicitly given by the Green’s function for the two-point boundary value
problem, D?u(x)=g(x), 0<x<<1, u(0)=u{1)=0:

(g — 1), 01Xz,

Ro,1,2(t xo)z{xo(t_Q, ToSt<1.

Similarly, for the case of cubic interpolation, i.e., m=2, consider the particular
choices of j=0 and p=4 in (2.2). Then, the associated kernel %, , ,(¢; %o) is

1 For a proof of a slightly less general result, see [9, p. 70].
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explicitly given by the Green’s function for the two-point boundary value
problem, D%u(x)=g(x), 0<x<<1, #(0)=Du(0)=u(1)=Du(1)=0:

(%0 — 82— (1—1)2[3 26— 23] —3 (1 — )2 [— 3 + %3],
0t %,

(1= [3 5 — 28] —3 (1— )2 [ — 25 + 5],
K=t

6k, 2,4 (E; %o) = .

From formula (2.6), it is clear that each u;(x; x,) is of bounded variation
on I, uniformly with respect to x,€1,, i.e., there exists a constant K, dependent
on j and m but independent of x,, such that

Varu;(x; %) =K forall «,x,¢1,, all 0=7i=s—1.

Thus, as |(¥ —#)*~*'| is bounded in I,, xI,, it follows from (2.9) that the kernel

ki m s(t; %) is uniformly bounded in I, xI,. Consequently, if -;«—}— ~:—,=1, then
the function

1 , 1y
gj,m,s,r(xo) = {0[ !kj,m,s(t; xo)]y dt}

is an element of L9[0, 1] for any ¢ with 1<¢=< -+ oo, and we can define the con-
stants ¢; by

7,m,s,7,q

H g
(2'10) C;',m,s,r,qE {Jlgj,m,s,r(xo) lquo} .
This can be used as follows. First, applying Holder’s inequality to (2.8) gives

(211) !Di(f'—fm) (xﬂ)lé“stf”L’(Iu)'gy',m,s,r(x())f 0§7§3_1’

and integrating the ¢-th power of both sides with respect to x, gives, with the

definition of ¢; , ; , ., the result of

Corollary 1. Given any fe KP7(I,) with p=m, then with s=min (p, 2m),

(2.12) 1D7(F — F 2 = ¢1omys,m,g 1D Fliri

for all 0=j=<s—1 and all 1 =g+ o0.

The inequality of (2.12) is sharp for the set K?7(l,) when g=-+oo, i.e., if
m=p=2m, then given any integer § with 0=7j=p —1, there is a function
F(x)e KP7(I,) for which equality is valid in (2.12) when g= -4 co. Thys, the par-
ticular constants ¢; ,, ; , ., are best possible in (2.12), and they can in principle
be computed from (2.10). Upper bounds for these constants are more easily
determined, and in fact it was recently shown in [7] that

1 1
(2.13) Co,m,2m, 00,00 = 22m (2 | i m,2am, 00,00 < 22m=2j1 (2m—2) ’

1= 7S m.

More recently, the exact values for ¢; ,, g, 0 00 NaVe also been determined in [4]
for the cases m =1, 2, 3.
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To deduce results analogous to those of Corollary 1 for an arbitrary interval
I=1a, b]is now easy. For any f(v)c K" (I) with p=m, Eq. (2.8) can be written as

D {fa+ 5y (b—a)] — f [a+ %, (b—a) ]}

(2.14) ! ‘
=(b—a)* 7 [k, (&) D°f{a+t(b—a)]dt, O=j=<s—1, s=min(p,2m),
0

where 0= x,=<1. Thus, we have

Corollary 2. Given any f¢ K?*(I) with p=m, then with s=min(p, 2m),

(2.15) 1D =t e = 6 —a) ™ 0o, D

for all 0=7<s—1 and all 1= ¢+ o0,

We are now in a position to estimate the global error for piecewise Hermite
interpolation for the general case of a partitioned interval. Let n: a=1x,< %<
-+ << xy,1=0 denote any partition of the interval I. The following definitions
are the analogues for a partitioned interval of Definitions 1 and 2.

L7 (I)

Definition 4. For m a positive integer and n a partition of I, let H™ (x; I)
be the set of all real-valued piecewise-polynomial functions w(x) defined on I
such that w(x)cC" *(I), and w(x) is a polynomial of degree 2m —1 on each
subinterval [x;, x;,,] of I defined by .

Definition 5. Given any real-valued function /()< C”~!(I), and any partition
n of I, let its (unique) H™ (m; I)-interpolate be the element f,, , of H™ (=; I)
such that

(2.46) DFf(x;)=D*f, .(x;) forall 0=<k=m—1, 0=i=N-+41.

If 7= max (x,,, —x,), then we prove
OgigN( i1 @)1 P

Theorem 2. Let z be any partition of I, f(x)e K?"(I) where p=m=1, and
fm,= (%) be the H ) (7; I)-interpolate of f(x). Then with s=min(p, 2m),

.1 1
(2'17) HDi(f ”‘fm,n) HLQ(I) é cj,m,s,r,q<7—i)s_j_7 +? “DsfnL'(I) H

for any g=v, for any 0=7<m —1, and also for j=m if p>m or g=v, and

) o r—q)
(217,) HD1 (f _fm,n) “Lq(l) § cf,m,s,r,r(n)s—7 (b - {,l) & "Dsf”L’(I)’

for any 1= ¢=<r, for any 0=7<m.

Proof. With the above hypotheses, it is clear that DV (f —f,, .)eL?(I) for any
0=j<wm and any 1<¢=<-oo if p>m, while if p=m, then D/(f—f, ,)eLI(I)
for any 0=\j=<m and any 1=g¢=7 and D/(f —f, ,)eL{(I) for any 0O=j=m —1
and any r<C ¢= -} co. With these restrictions on j and g, let us define the quantities

K1 it

v,-:(x{ | D/ (f — fr ) (t)l‘ldt)l/q, w‘:(xf lD‘f(t)['dt)w,

0=71=N.
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From (2.15) of Corollary 2, we have that

i1 .
(2.18) Vi Cmsrg(Fipr— %) "W, 0=Zi<N.
Hence, as (%, — ;) =7, it follows that
; 3 Ve e Ly L A
219) D=y = Z08) " S 0y gl T D)

1==0 i=1

For ¢=r, JENSEN’s inequality [2, p. 18] gives
Ny Ny
(2.20) (Z w?) = (,Z w?) =D ey
1=0 =0
and combining this inequality with that of (2.19) establishes (2.17). To establish
the inequality of (2.17'), consider the-case ¢g=7 of (2.17):

For 1<¢=r7, the (integral) Holder inequality applied to the left-hand side of
the above inequality then gives the inequality of (2.17'). Q.E.D.

Lr(I) = Ciom,s,r,7 (ﬁ)s—j HDsw"U(l) .

As a direct consequence of Theorem 2, we have the

Corollary. Let {x;}{2; be any sequence of partitions of I such that lim 7z;=0.

If f(x)eKP7(I) where p=m=1, and f;(x) denotes the unique H™ (a;; I)-inter-
polate of f(x), then the sequence {Di 1:(2)}521 converges unsformly to Dif(x) in
Iif 0=Zj<s — é— and 0=7<m —1 in the case that p=wm, and if 0=j=s— %
and 0<7=m in the case that p>m.

§ 3. Best Exponents in One Variable

It is natural to ask if the exponents of 7 in (2.17) and (2.17’) are best possible
for the set K#7(I). The main result of this section (Theorem 3) is a proof that
these exponents are indeed best possible.

As in [19], let ¢ be any extended real number with 1=g=+-oo, let m be a
positive integer, and consider any function x# on I,,= [0, 1] such that y>m—1— 1?
and such that x#¢V =span(1, %, ..., ¥~ 1). For each & with 0=A=1, form

(3.1) o, (5 1, ps m)Eiél;f'{[Di(x“—r(hx))uj_quu), o=sj=m—1.
As o,(h; §, u, m) is positive and continuous with respect to % in I, then

(3.2) Juin o, (55 7, m) = ¢ (7, 4, m) > 0.

This will be used in the construction to follow.

Choose any positive integer p with m= p=2m, and choose any two extended
real numbers » and ¢ with 1=<7, ¢< +oo. For each positive integer # and any
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e with 0<<e<(1 such that e=1/r, define the function f,(x) in C*~'(I,) by

(3.3) F) =Tt o=xsifn, e>o0,
and
(3.4) D, (5)=0, jnsx=t,

ie., f,(x) is a polynomial of degree p—1 in [1/n, 1]. Note that f,e K»"(I,) for
all » =1. For each positive integer », we form the uniform partition =, of I,
with mesh length 1/, so that z,=1/n. It follows that for amy function s(x)
in H™ (n,; 1), we have

”Dj (fn(x) - S(X))’[Lq(lu) = ”Di (fn(x) “s(x))”Lﬂ[o,l/n]

.5 ;
(3-5) = inf [ D1 (Fa (%) — @ (%)) |ego, 1)

for 0=7=<m —1if g=7 and p=wm, and 0=7=m otherwise. But, with the change
of variables x=t/n, the definitions of (3.2) and (3.3) give

1 \p—i= et &

; . 1
(3.6) ”D] (fn(x) "“s(x))”Lq(lu)% (7[) ! cq(7’p—7+3’ ’WL) >0
for all #==1. On the other hand, we directly compute from (3.3)—(3.4) that

(3.7) 1D fulirisg =55 Ba(po7e),  nzt,

where B;(p, 7, €) is independent of #. Since 77,=1/#n, it follows that

Di(fp—s)] .

(3.8) P”‘ ! LA =M, (j,p,7r,e,m) >0 foral n=1,

N

(n) T D? fulla,y
for any function s(x) in H" (x,; I,), and M, is independent of ». In particular,
this inequality must be valid with s(x) equal to the H"™ (=, ; I, )-interpolate of
/. (x). Thus, if we choose g=7, we see that the exponent of & in (2.17) cannot
in general be improved.

Similarly, for each positive integer p with m=<p=<2m and for each positive

integer #, we define the function g, (¥)cK?”(I,)~C*~1(1,) by

1
5:9) g () =27, 0=x=—, >0,
and - . ‘
(3.10) Df’gn(x)sz’gn(x—%> for %—gxgi—{——;—, 0=i<n—1,

i.e., the p-th derivative of g, () is periodically extended over intervals of length 1 /x.
It follows from (3.9) and (3.10) that
1
1\ 5
(3.11) 10?7 g,erry = (;) By(p,7,8)>0, nz=1.
Consider now any s(x)c H" (z,; I,). By definition, for any 0<j<m —1 if ¢=v
and p=m, and 0=4=<m otherwise, we have
n—1 ({+1)/n

n
(312) (I!Dj(gn—S)HLQ(I“))"ZEO m{ 1D (g, (%) —s(x))|7d,
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but it is clear from (3.9) and (3.10) that

. NS a2t
Di(g,(x)=Dlllx——] 7 +o,(x)],
(5.13) ante) =2 7;) " )
osl{<n—1, *J§x§"%i’

where o,(x) is a polynomial of degree p—1, determined in each subinterval
[—Z—, ﬁ;’;—q so as to make g, (x)c C?7* [0, 1]. Substituting (3.13) into each integral
of (3.12) gives

(+1)n

q
dx,

O ) s

e

n

fin
and as o;(x) —s(¥) is a polynomial of degree at most 2m —1, each of these

. 11— “1;+6—7‘) arlr o 1 LA
integrals can be bounded below by (;) [cq (7, p—-, +s mﬂ , using
the definitions of (3.1) and (3.2). In this way, we can establish that, for any
s(x) e H™ (m,; 1),

1)p—%+e~i

644 D= = 5 &l p—++em) >0

for all #==1. With (3.11), we then obtain

107 (gn—5) Lz, .
= - ¥ > >1.
(@27 1D? gullprg,y = My(j, p, 7, e,m)>0 forall nz=1

(3.15)

Thus, choosing =7 in (3.15) shows that the exponent of 7 in (2.17') cannot be
improved. This proves

Theorem 3. For any fixed choice of p with m=p=2m, any extended real
numbers 1<7, g<+oo, and any j with 0=j=m —1 if ¢>7 and p=m and
0<j<m otherwise, there exist sequences of functions {f,(¥)}s=s and {g,(%)}52:
in K»"(I) and constants M; and M,, independent of %, such that the inequalities
of (3.8) and (3.15) are valid for all #=1. Thus, the exponents of & in (2.17)
and (2.17') cannot in general be increased for the class K" (I).

§ 4. Piecewise Bivariate Hermite Interpolation: Method of Sard

In this section, we now give upper bounds for errors in piecewise Hermite
interpolation in two variables. To obtain these bounds we use the results of
SARD [18], which are extensions of the Peano Kernel Theorem to higher di-
mensions.

Definition 6. Let R be the rectangle [a, b] X [¢, d]. For any positive integer m,
let H™ (R) be the collection of all real polynomials in the variables x and y of
degree 2m —1 in each variable, ie., g(v, )¢ H™ (R) if and only if

2m—1 2m—1

glmy)=2 Xa; 2y, (% 9)eR.
f=0 1=
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Definition 7. Given any real function

Fm, 9)eCm I UR), e, DPOf(x, y) = LS

axb oy1
is continuous in R for all 0<p, g<m —1, let its H™ (R)-interpolate be any
element f,,¢ H™ (R) such that

(4.1) DO} (x, y)=D®9f (x,v) forall 0=p,g<m—1,
where x,=a or b and y,=c or d.

The H™ (R)-interpolate f,,(x, ¥) of an element of C"~%"~1(R) is determined
by the 4m? linear conditions of (4.1), and it is known (cf. [1]) that this inter-
polate is unique.

Definition 8. For any positive integer p and any extended real number » with
1=<r=<-+o0, let SP"(R) be the set of all real-valued functions f(x, y) defined
on R such that

(4.2) D¥=biteI7(R) forall 0<i<p,
and
(4.3) DENfeCOR) forall 0<itj<p.

We remark that the set S*#7(R) is actually a subset of the set B, ,(R) of
SARD [18, p. 172]. If p=2m, each element f of S»’"(R) obviously possesses a
unique H™ (R)-interpolate f,, and each function f(x,y) has a finite Taylor
series (cf. (4.4)). For convenience, we restrict our attention to R,=1[0, 1] x [0, 1].
We now apply a general method of SARD [18, p. 163].

Lemma 1. Given any f(x, v)cS?"(R), with p=2m, then for almost all

(%o> Vo) E Ry, N (p—w N
f(x,y)= Z (x i'xo) (ﬁ’ A!yﬂ) D(M)f(xo,yo)
i+j<2m 7
4 +3 O pam—i pen=iif (4, )
* j<m
+Z x xD T2m th,zm @)f )
i<<m
. +T£”T§"D(m’m)f(x, )
wiere
(4.5) Lt y)=[tty)dt;  Tf(x ) ff x,8)d

Proof. Since D%2"=9fc17(R,) for each 0=<7<2m, then Fubini’s Theorem
gives us that D%2"=9f(x, y,) is integrable as a function of x on [0, 1] and
DB2m=i (., ) is integrable as a function of y on [0, 1] for all 0= =< 2m, for
almost all (x,, ¥o)€R,. With this, one can directly verify that the analysis of
SARD [18, p. 163] applies equally well to this case, giving the lemma.

Now, consider the linear functional F depending on %y, ¥y, b, and £, defined
on $**(R,) by

(4.6) F(f) “":D(h’{)f(xo» Yo) —D(h'l)fm(xo» Vo) (%, o) fixed in R,, feSP"(R,),
where

4.7) h, ¢ nonnegative with 0Z<h-+-/<2m —1.
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As in the one-dimensional case, we must show that this functional has a form
(cf. (2.3)), to which Sard’s extension of the Peano Kernel Theorem is applicable.
To this end, we make use of the polynomials S, , (%) and Sy (%), of degree 2m —1,
defined in (2.4). With these polynomials, we can represent the H"™ (R,)-interpolate
of any f¢SP"(R,), p=2m as

m—1
[ (%, 9) =Z£} .Z(P“’”ﬂ“’ B) S, :(%) Sp,;(5),
& f 1=
where a=0 or 1, =0 or 1, and consequently,
(4.8) D0ty (5, o) =2 ; DD, ) S ko) S ()

Lemma 2. Given any f(x, y)€S?"(R,), the functional F(f) of (4.6) is the sum
of the Riemann-Stieltjes integrals

=2 ffD“" (s, 8) dps,i(s,0)

i,j<m 0 0
' pl (s, o) 4
» Zf LR
+Z fD17 %0, d:“w]()
H—]gjm 0

for all (x,, ¥o)€ R,,, where the u;, ; are of bounded variation.

Proof. From (4.8), it is clear that the term D*f, (x,, y,) can be represented
by the double integrals of (4.9) for all %, ¢ satisfying (4.7). The same is true of
D™} (5., y,) if 0= h, £ < m. Furthermore, if for example, A= m so that 0=/ =m—1
from (4.7), then by means of a step function with a unit jump at the x,, we can
trivially write

1
D™ f (%, ¥) =0f D®OF(s, yo) dpn,(5),
which establishes (4.9).

Next, it is easily seen that

(4.10) F(g)=0 for 'any g(x, y) a polynomial of degree less than or equal to
2m —1 in each variable.

Consequently, with Lemmas 1 and 2, we can apply the Kernel Theorem of SARD
18, p.175]:

Theorem 4. Let fc S?7(R,) where p=2m and %, { satisfy (4.7). Then for almost
all (%9, yo)€ R, the functional F of (4.6) can be expressed as

F(f) = D*(f — f,) (%0, yo) = 2 sz’" D1t yo) ko, () At

j<m 0

(4.11) +2 fD(’ 0 f (%0, ) Biyp s (F) A

<m0

11
+[[ D™t 8 Ry, (8 ) dEAY,
00
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where the kernels may be expressed as

(xﬁz)zm-y'-—l
Gm—j—1)1 ¥
x¥—2xg)0 (y—t)rm—i—1
i am—i—1)1 ¥
(x—t)m—1 (y—tym—1

11 ¥ (0. 4 %) "‘%/M“W(yo: v, y)], 0<t, <,

— )i
(xo,t,x)iy—j,!‘i)-}, 0<t<<t, 0Z7<m,

Ram—j,;(t) =F

(4.12) k,.,m,i(t)zp{( (xo,zf,y)], 0<i<1, 0<i<m,

b6, 1) =F |
where in general
1 if agix
(4.13) pla,t,x)={—1 if x=t<a
0 otherwise.
To illustrate the result of Theorem 4,i let us first consider the case of bilinear

Hermite interpolation m =1, with s=1, and /=0. Then, the kernels %, ¢(?),
koo (f), and &, ; (¢, ') are explicitly:

£, 0=t<x,
—1, x,=t<1

1=y, 0=t'=y,
— Yo yogtl-:—\—'l'

kz,o(t) = ko,z(t) = {
(4.14)

k1,1 (t’ t’) - {

Because the kernels of (4.12) are of bounded variation, uniformly with respect

to (%, ¥o)€ R,, as in the one-dimensional case described in §2, we can define

for %— + % =1 the following constant

M=MMh,{, m,7)

! 7 17 A ’ 7 ’ 7
(415) = sup {(f{km_j’,.(t; %or 70)| dt) 5 (1 B 6,25 %0, 90) [ dt 22 }
(%0, ¥0)ERy ~'0 00
0=j=2m
iEm

Thus, applying Hélder’s inequality to the terms of (4.11), we have from the
definition of M that

| D% (f —1,) (%0, ¥o)] gM,;m(o”D(M_MN’ yo)!7dt>1/r

(416) —i—MZ (J[D(i»2m—i)f(xo, t)lrdt)llw

r<m
11 /
M ([f| DM ey atar), o=h+t=2m—1.
00

Now, as 7 is fixed by the assumption that feS?"(R,), p=2m, consider the
function :

Y| plem—id rarl”
g(yo)E(OHD PEE 30)] dt) .
By definition

1 1 1 .
(Hé’ (o) “Lf(Ru))' =6f [g(yo) l’dyo zof dyoof l D(M_j'j)f(t» Yo) ‘ydt= (“D(zm—j’”]‘“u(ku))r,
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ie.,

(417) le ooy = 1D Hlnizy -

With this, taking L’-norms in (4.16) then yields
Corollary 1. Given any feS?"(R,) with p=2m, then

(4.18) DO — ) lrimg = M é; 1D fl iy

for all 0 A< 2m —1.

To deduce similar results for an arbitrary rectangle R={[a, b] X [c, 4] in the
(x, y)-plane is again easy. The analogue of (4.11) is simply

DO —£,) [0+ 20(b — @), ¢+ yold —0)]
= (b (a0 DO fla 10 —a) o34 — ]

j<m
Rom—j,i(t) 4t
(4.19) + 2 (b —a) M@ - H[Dwm Dfla+ x,(b—a), c+td—c)]
- y Buam-s() dt
+O—a)" A= [ D™ flatt(b—a), c+t(d—0c)]
b kWt t)dtdt
for almost all (x,, y5)€[0,1]x[0, 1], 0=h-+{=2m —1. Next, we note that

< |-

{ofloj}]y(a-i—xo(b~a), ¢+ (d-«c))]"dxodyo}

1 1

=[(b—a)(@— "{ffmu.dm}

In other words, calculating the L’-norm in R, introduces a factor in (b —a) (d —c),
relative to R={a, b] X [¢, d]. Now, if we compute L™-norms in (4.19) in R, the
same factor appears in each term. Consequently, we have the following result.

Corollary 2. Given any feS?"(R) with p=2m, then

(4.20) DO —fp) |y = M Z @) (@ — o) DO
for all 0 A=< 2m —1.
We consider now arbitrary partitions in each coordinate direction of R:

A=Ky << %y <<y =0,
(4.21)

!

A e=y <y < <Yy =4,

where N and N’ are nonnegative integers. We say that o=z X2 defines a
partition on R.

Definition 9. For any positive integer m and partition g=nxa" of R, let
H"™ (0; R) be the set of all real-valued piecewise-polynomial functions w (%, )
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defined on R such that D(i’f)wECO(R) for all 0=4,j=m —1, and such that
w(x, ¥) is a polynomial of degree 2m —1 in both x and y in each subrectangle
(%, %;401] X [¥;, ¥j41] defined on R by .

Definition 10. Given a real-valued function f(x, y)cC* »" 1(R), let its
H"™ (0; R)-interpolate be an element f,, , of H" (g; R) such that

DO f(x,, y) =DOf  (x%,y,) forall 0<k=ZN-+1,

(4.22) ) o
0ZL/EN'+1, andall 0=id,7=m—1.

We remark that the H™ (g; R)-interpolate of any function in C"~b""1(R) is
again uniquely determined (cf. [1]). Moreover, it is again Jocal in the sense that
the restriction of the interpolate, £, ,, to the subrectangle [x;, %511] X[ s, ¥r11],
0= k=N, 0=/=<N’ depends only on the 4m2 numbers D*"/(x,, v,), p=Fk, k+1,
r={,{-+1, and 04, 1< m —1.

With the result of Corollary 2 of Theorem 4, we need the following definition
to obtain a two-dimensional analogue of Theorem 2.

Definition 11. A collection, C, of partitions, p=znX=', of R is said to be
regular if and only if there exist three positive constants ¢, 7, % such that

(4.23) wn=or, o =Zocn forall geC
and
=/
(4.24) n§;.i~ =7 forall peC,
where
= m;fix(xiﬂ —%), T'= mjax(yiﬂ — i)
V_T_Em}n(xwl’xi)» :;_E'En}in(yi“——yi).

Let C be any regular collection of partitions of R and let R, , be any sub-
rectangle of a fixed p= = X #'cC. Applying (4.20) to R, , gives

2m .
(4.25) [D#D(F — o Miriry, g =M '(ﬁ)z""k_lgo 1D iy 0

where M’ depends on M, ¢, 7, and 7. Raising (4.25) to the power 7 yields

2m . R . r
(4.26)  (ID™G = fo, etz )" = ) (@) " 770 (j;onD‘“’”"”flier,,.,)) :

Applying the discrete form of the Holder inequality to the last term of the above
inequality then yields
(“D(h’[) f— fm,Q) HL"(Rp.q))r .
4.27 ne —vr(am—i—t) [ 31 j, 2m—j r
22 S ay e ay @] 3 (D5 e, o}
=

Assuming feSP’(R) with p=2m, then f, ,, its H"™ (g; R)-interpolate, is such
that DWOf  eL"(R) provided that O=<h,{=m and 0=h-+{=2m—1, and the
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L (R)-norm of D™ (f—f_ )(x,y) in these cases can be represented by
(4.28) (ID* ¢ —f, ) lerm)” = {,Zq (ID®G — o, Meria) -

Thus, adding the inequality of (4.27) over all rectangles R, , of R and making
use of (4.28) for the cases when 0= h, /=m and 0= A-+/<2m —1, yields

2m

4.29) (|ID®F = f, Merm)” = MY () @4 (2m - 4)’//,20 (ID%27D fl i)
iz
Then, taking »-th roots in (4.29) gives us

Theorem 5. Given any regular collection, C, of partitions g=nxa’, of R
and any feSP"(R), where p=2m, if f,, , is the H" (g; R)-interpolate of f, then
there exists a constant K such that

(4.30) UD(}”I) (=T ![L'(R) < K(ﬁ)zm—h_r,

for all geC and for all 0=k, IS m with 0= A< 2m —1.

We remark that we could have used =’ in place of = in (4.30), because of the
assumption of regularity.

Next, we make use of the fact that Hermite interpolation is local. Thus, the
results of Theorem 5 apply to any rectangular polygon, i.e., any polygon whose
sides are parallel to the coordinate axes in the plane, such as an L-shaped region.
We remark that any rectangular polygon can be expressed as a union of rectangles

B

‘UlRi such that R;,~R;, 1=1,{=Fk is either void, or a subset of an edge of R;
=

and an edge of R;. In this case, we say that the rectangular polygon is composed
of the rectangles R,.

Definition 12. Let T be a rectangular polygon, composed of the rectangles
R,=1a;, b} x[c;, d;], 1=9=Fk, in the (x, y)-plane and C be a collection of par-
titions of T, i.e., each p=n x #’cC defines a partition =; X z; of each rectangle
R, of T. Then, the collection C is said to be regular if and only if there exists
three positive constants ¢, 7, 5 such that

4.31)  m;=2om; and mi=ox; forall 1=<i=k andforall pcC,
and
(432) 1=

S

=, forall 1=<7/=<% andforall geC.

A

From Theorem 5 and Definition 12, we have in a similar fashion

Theorem 6. Let T be a rectangular polygon composed of the rectangles
R;=Ia;, b;)x[c;, d;], 1=1=k, in the (x, y)-plane, and let C be a regular collection
of partitions of 7. If feS?"(T) where p=2m and f,, ,is the H™ (9; R,)-interpolate
of f on each R;, 1<¢=<k, then, setting v= max 7,, there exists a constant M,
such that 1=k
(4.33) ID®(f — £, Moy S M@)E"*~f forall peC,

and for all 0= A, /< m with 0 A+ 2m —1.

18 Numer, Math,, Bd. 11
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§ 5. Best Exponents in Two Variables

It is again natural to ask, as in §3, if the exponent of @ in (4.30) is best
possible for the set S?"*(R), where p=2m. The result of this section (Theorem 7)
is that this exponent is best possible, in the same sense as that of §3, when
r=-+oo. In fact, we show that it is best possible for the set of all polynomials
in x and y. Whether the exponent of % in (4.30) is best possible for 1=7< oo
remains an open question.

Analogous to the construction of §3, we consider the function f(x, y) = (¥24-3%"
defined on R, =0, 1] x [0, 1].

Theorem 7. With f(x, v) = (¥2 -+ y%)™, let {n, X m,}oe; be the regular collection
of partitions of R, with

= v o= 1
Ty, = Ty =Ty — nT gt

Then, there exists a positive constant M, dependent on % and 7, but independent
of »n, such that
(51) ”D(k'[? (f —_ fn) "L“'J(Ru) = M(ﬁn)zm"k—[ forall = 2 1,

for any f,e H™ (n, x n,; R,), and for all 0=<k-+/=<2m —1. Thus, the exponent
of % in (4.30) of Theorem 5 cannot in general be improved for the special case
7 == o0.

Pyoof. Consider the uniform partition z, X «, of R,, n =1, and let f,€ H™ (z, X
7,; R,). By definition

(5.2) DB (f — f) | Z ID® O (F = £ Lone0, ymix 0, -

On the other hand, since f(x, y)=(¥*+ %", we have that

R f(x, y) [ 1\2m—h—t GRHLf(Z ) ¢ s
ot = )T e where w=gp and y=op
Thus, we can write that
1\2m—k—{
(53) 1D —f) o mom Z () ID®O (@ 5) —ents ) [

where g,(t, s) =/, (t/n, sjn) n®”~*~0, which is also an element of H"™ (R,). Just
as in §3, we use the fact that (x2+ y%"¢H"™ (R,), since the elements of H" (R,)

2m—1
are polynomials of the form Y ¢, ; #*y’. Thus, we form
%,§=0
G4 Ouolhs b tim) = _ind [D®O (62 45" —g (b, 1)) |ueiz-

As o, (h; k, £, m) is positive and continuous in % for 0=/#<1, then

(5.5) Oglglcw(h; k,f,m) =cy (B, £, m)>0.
With this definition of ¢, (%, £, m), it follows from (5.3) that

1 \2m—k~f
(5.6) ID®O(F — F) |ewico, ymr< 0,1 Z ( )

n

Coolk, £, m) > 0.
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Thus, as_max (ID%2"=7f(x, y)|r»(r,) is @ constant K, then from (5.2) and (5.6),

D) (f— fu) oo,

(| D-2m=i) |,
osn;ax Il e (Ru)

(57) %( )2m —hk—t M

where 7,=1/n, and M is a positive constant independent of % and f,, which
establishes (5.1). Q.E.D.

§ 6. Piecewise Bivariate Hermite Interpolation: Method of Stancu and Simonsen

We have found it convenient, especially for the applications of §4 to boundary
value problems for differential equations in rectangular domains, to have started
with the Taylor series development of Lemma 1 which restricts the indices ¢ and §
in (4.4) through ¢-+j<2m. This results in (4.11) in a representation of the func-
tional F of (4.6) in terms of integrals of the derivatives D®*™~9f It is also
possible to make a similar analysis based on a Taylor series development in which
the indices ¢ and { in (4.4) vary over the rectangular grid 0=4, j<2m —1. This
is the approach of SiMONSEN [20] and StaNcu [22], and this approach results
in a different representation of the functional F of (4.6).

To make matters precise, let K»"xK”"(R,) be the collection of all real-
valued functions /(x, y) defined in R,=[0, 1] %[0, 1] such that D®"fcC°(R,)
for all 0=<4,j<p —1, and D fe L"(R) for all 0=4, f<p.

Lemma 3. Given any fc K»”x K?"(R,), then for all (xy, y,)€ R,

—1p-1 1‘ . 4 —f\p—1
F(x, ) :Z Z xo yj‘yg) D(“)f(xg,yo)—i—fl{fg)"l—D(p'O)]‘(t,y) dt

x—1)p— z)p
’i‘f%/ )1 DO ¢ xzdz——[f Jimdl )IID({”"))f(t,Z)dtdz.

Proof. The proofs of StMONSEN [20] and Stancu [22] for the case feC??(R,),
extend to the case fe K" x K»"(R,).

We consider again the functionals depending on x4, ¥, 4, and 7,

(6-2) F(f) = D™} (x5, yo) — D", (%9, o).

(%9, Vo) fixed in R,, fe K" x K»"(R,) where p=m, and the integers 4 and /
are now restricted by

(6.3) 0Sht<p—1.

Note that when p=m, any fe K»’x K?"(R,) possesses a unique H™ (R )-inter-
polate f,, (%, ¥). If m<p=2m, then, as in the one-dimensional case, F(g)=0 for
any polynomial g(x, y) of degree less than or equal to 2m —1 in each variable
x and y.

Based on the representation of (6.1), SIMONSEN [20] and StaNcu [22] have
given the following integral representation for F(f) for feC?#(I), which also
holds for FeK*"x K" (R,).

18*
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Theorem 8. Let fe KP* x K»"(R,) where p=m, [, be the H™ (R, )-interpolate
of f(x, ), and R,=[0, 1] x[0, 1]. Then,

E(f) =D®A(f —1,) (%0, ¥o) zéfkh,m,s(t; %) DOOf(E, y,) dt

(64) +6fk(,m,s(2; yO) D(h,S)f(xO’ 2) dZ

11
- ffkh,m,s(ti xO) kf,m,s(z;yo) D(s,s)f(t, Z) dtdz
00

for all 0< A, f<s—1 where s=min(p, 2m) and where the kernels %, ,, (¢, %)
and %, ,, (¢, ¥,) are defined in (2.9).

Using the definition of the constants ¢; ,, ; , , of (2.10), we now apply Holder’s
inequality to each term of (6.4), which results in the

Corollary. Given any fe K*" x K#*(R,) with p=m then

1D — Fu) e = Ch,m, 0,6 1D HlLrma F €t,m, 5,0, ID® 9 Hlir (o

+ Ch,m,s,nq th’,m,s,y,q “D{S' # f“L’(Ru)

(6.5)

for all 0<A, /<s—1, for all 1<g=-+ oo, and for all 0=k, /<, if g7, where
s=min (p, 2m).

Before we extend the results of Theorem 8 and its Corollary to full partitions,
we briefly discuss the case of equality in (6.5). Using further results of SIMONSEN
[20] and Stancu [22], based on the constancy of sign of the kernels &, , 5.,
it is possible to show that (6.5) is indeed sharp for the case when g= oo, h=7/=0,
and m is even. We have not investigated this question for other values of the
parameters.

The extensions of the results of Theorem 8 and its Corollary to the case of
partitions of an arbitrary rectangle again follow quite closely the method of SARD.
Thus, we can omit obvious details, and we simply state

Theorem 9. Let g =z X n’ be any partition of R=[a,b] X [¢,d], fc KP"xK?"(R),
where p=m, and f,, , be the H"™ (o; R)-interpolate of /. Then with s =min (p, 2)

_pi 1
”D(h’[) (f "“fm, Q)"LW(R) = Ch,m,s,7,q (ﬁ)s T 7 “D(S’i)]‘"L"(R)
et 1
(66) +Cl,m,s,r,q(7_i’)s oy ¢ ”D(h’S)fHL’(R)
gt 11
+Ch,m,s,r,qcl,m,s,r,q(ﬁ)s S ¢ (n’)s ot e HD(S,S)f”L'(R)

for any g=7, for any 0= h, f{<m —1 and also for 0= A, /<m if p>m, and

r—q

]lD(h’[) T HL«(R) = Ch,m,s,r,q(y—z)smh(b —a) 14 “D(s’l) f”Lr(R)
r—¢
(66') + C[,m,s,r,q (ﬁ’)s”{ (d - C) e “D(h’ °) fHL"(R)

7

r—q —q
+ Chom,s,r,q Ct,m,s,r,q (ﬁ)s-h (nl)s_[ (b - a) e (d - C) e “D(S’S)f“L'(R)

for any ¢=7, for any 0<h, {<m —1 and also for 0< A, f<m if p>m.
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Note that the inherently less complicated bounds of (6.6) and (6.6") require
no mesh uniformity. This, as we shall see, is at the expense of assuming higher
order smoothness in f, in which detracts from its applicability to differential
equations.

Finally, the analogue of Theorem 6 which follows is less complicated, again
because we need no assumption of mesh uniformity.

Theorem 10. Let T be any rectangular polygon, composed of the rectangles
R,=[a;, b;] X[¢c;, 4;], 1=<¢=k, in the (x, y)-plane, p=n X 2’ be a partition of T,
i.e., the restriction of wXa’ to each rectangle, R;, is a partition =; X}, and
fEKi" x K?7(T), where p=m. Then with s=min(p, 2m) and v= max (s, 73),
there exist constants M and M’, independent of g, such that =k

(6.7) |2 (f—fm,Q)]iL«mgM(v)s“‘“““)‘ﬂ?,
for any g=v, for any 0=h,/<m —1, and also for 0k, /<m if p>m, and
(6:8) [D#O(F — f, Miaizy S M (w) 2250,

for any ¢=<r, for any 0=<h,/<m—1, and also for 0= A, = m if p>m.

§ 7. Sobolev Norms
Starting with the one-dimensional results of §2, let = denote a partition of
I=[a, b], feK?"(I) where p=m, and f,!, be its H" (x; I)-interpolate. The
Sobolev norm [26, p. 55] of f is

b
(7.1) fes={ 2, S It} forany osr=p—1.

Since f —f,, .18 an element of K™ (I) if p=m and < 2 and an element of K™*(I)
otherwise, we can interpret the result of Theorem 2 in the norm of (7.1). Specifi-
cally, we have

Theorem 11. Let z be any partition of I. If f(x)e K?"(I) where p=m and
fm,n denotes the H™ (a; I)-interpolate of f(x), then, with s=min (p, 2m), there
exists a constant M, independent of #, such that

(7.2) ][f——jm,nll,,,z§M(ﬁ)s;(_l'+%, forany 1=7=<2

for any 0=/=<m —1, and also for f=m if p>m or r=2, and

=2
(7.2)) Vf = Fale,e = M (b —a) 2 ()
for any r=2 for any 0/ =m.
The interpretation of the two-dimensional results of §4 in terms of Sobolev
norms follows similarly. Let us now consider any partition p=m X7’ of a rec-

tangular polygon T, and any element feS*’(T), r=2, p=2m. Let f, , be the
unique H" (p; T)-interpolate of f. The Sobolev norm of f is

(7.3) [fla={ _ 2 _ I[Pt (xy)pdxdy)?

Sotost T
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for any 0<¢<p. Since f—/,, , is an element of S™*(T), we can interpret the
results of Theorem 6 in the norm of (7.3). Specifically, we have

Theorem 12. Let C be any regular collection of partitions p=nxa' of T,
1eSP1(T), p=2m, r=2, and f,, , be the unique H™ (g; T)-interpolate of f. Then,
with v=max (7, 7') there exists a constant M, independent of the particular
partition in C, such that

(7.4) ”f —fm,gﬂf,zéM(v)z’””"
for any 0</=<m, and any p<C.

§ 8. An Application to Elliptic Differential Equations

To give some applications of these preceding error bounds, let us consider
the Galerkin method for approximating the solution of the Dirichlet problem
for a class of linear elliptic differential equations in the interval I and the rec-
tangular polygon, T, in the plane.

Let the Hilbert space W/2(I), £ =1, be the completion of C3(I), the space
of infinitely differentiable real-valued functions with compact support in the
interior of I, with respect to the Sobolev ||, , norm of (7.1). By Sobolev’s
inequality [26, p. 174], there exists a constant Q such that |D'f| e =Q /| 2.
0=7=<{—1,forall fe W('f’z (I). We consider the class of linear ordinary differential
operators in divergence form

I3
(8.1) Llu] =j§0(*1)in[Pj(x) Diu(x)], (=1,

such that the coefficients p,(x) are real-valued uniformly bounded functions in /
and for some constant K>0

(8.2) Kl\u"?zg
for all weW)2(I).

If these conditions are satisfied, we say, following CEA [6], that the bilinear
Dirichlet form (cf. [26, p. 92])

(83) o af{Zp, %) Diu () Div ()}

H{E o0 0

is Wi (I)-elliptic. Moreover, by our assumption, there exists a constant C>0
such that

(8.3 |a(t, v)| < C |ull s |2], o
for all
w,veWPA(I), (eg., C=max |p;(®)|req)-

075/t

The function #(x) is said to be a weak solution of the homogeneous Dirichlet
problem

(8.4) Llu] (x) =f(x), =xel, f(x)eLl2(l),
(8:5) DPu(a) =DPu(b)=0, O0<p=f—1
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if and only if
b
(8.6) a(u,v)=[f(x)v(x)dx forall veW*(I).

By the Riesz Representation Theorem in Hilbert spaces, (8.6) is equivalent to
(8.7) a(u, v) = (8 V)2

for some unique geW’?(I), where (-, ), , denotes the inner product in W}>*(I).
Similarly, let the Hilbert space, W/*(T), be the completion of C3°(T), the

space of infinitely differentiable real-valued functions with compact support in
the interior of 7', with respect to the Sobolev |-, , norm of (7.3). We consider
the class of linear partial differential operators
(8.9) L= 3 (—1)7D%(c,, ,,(x y) D&

stst

q+r=t
in divergence form, having coefficients ¢, , ,(¥, y) which are real-valued uni-
formly bounded functions in T and there exists a constant K>0 such that

(8.9) K|ulf . <

ff{ ) cs,,,q,,u,y)D“’”uDM}dxdyl
T s+ist

grrst
for all we W>3(T).

If these conditions are satisfied, we again say, following CEA [6], that the
bilinear Dirichlet form (cf. {26, p. 92])

8.10)  a(mo)=Jf { 3 Congr(9) D5, ) Dwv(x,y)}dx dy
T sttt
g+r<?

is Wi (T)-elliptic. Moreover, by our assumption, there exists a constant >0
such that |a(u, v)| < Clluf, ;0] 5 for all u, ve W) 2(T).

The function u(x, y) is said to be a weak solution of the homogeneous Dirichlet
problem

(8.11) Llu] (%, ) =/(x9), ®y)eTl, [ y)el(T),
(8.12) D®Ny (%, y) =0, (%,y)c0T, 0=p+r=f—1,

where 07 is the boundary of 7', if and only if
(8.13) a(u,v) =[x, y)v(x,y)dxdy forall veW*(T).
T

By the Riesz Representation Theorem in Hilbert spaces, (8.13) is equivalent to
(8.14) a(u, v) = (g, v)e,2

for some unique g W/*(T), where (-, ), , denotes the inner product in Wy**(T).
Under the above hypotheses, the Dirichlet problems (8.4), (8.5), and (8.11),
(8.12) has a unique weak solution, #, by the Lax-Milgram Lemma [26, p. 92].
We consider Galerkin’s procedure for obtaining an approximate solution of
(8.7) or (8.14). More precisely, let S be any finite dimensional subspace of W;"*(I)
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Resp. Wp»2(T)). Consider the approximate problem of finding a w<S such that
P pp P g
(8.15) a(w,v) =(g,v),,, forall veS.

CEA in [6] has proved the following

Lemma 4. If the Dirichlet form a(u,v) is W;*(I)-elliptic (Resp. W52(T)-
elliptic) and S is a finite dimensional subspace of W/2(I) (Resp. Wy 3(T)), then
(8.15) has a unique solution weS.

Moreover, the following error estimate holds.

Theorem 13. Under the hypotheses of Lemma 4, there exists a constant, namely
CK™'>0, (cf. (8.2) and (8.3")) independent of S, such that

(8.16) C K (inf | — v, )= | — ] .

Proof. From (8.44) and (8.15), we have a(u,w—v)=(g, w—uv),, and
a(w, w—v)=(g, w—uv),, for all veS. Thus, a(x —w, w —v)=0 and

Ol —wlygu —v

o=l —w, u—o)]

(8.17) =|aw—w,u—w) +aluw—w w—0o)

=la(u—w, u—w)|=K|u—wlf},.

The result then follows from (8.17). Q.E.D.

Theorem 13 was obtained in the one-dimensional case for second order prob-
lems in [24].

Combining Lemma 4 and Theorems 11 and 13 with SOBOLEV’s inequality, we
obtain the following results which sharpen the results of [24, 7, 19].

Theorem 14. Let the Dirichlet form a (s, v) be Wy *(I)-elliptic, = be any
partition of I and the solution, %, of (8.7) belong to K”*(I), where < 2. Then,
setting S=H"(x;I) in the Galerkin procedure, where either p>m=¢ or
p=m>{, there exists a constant M, independent of =, such that if w is the
solution of (8.15),

; i1
(8.18) 1D (4 — ) ey S Qe — w0l e = M (7)™ 7 B,
0=7=<{—1, where s=min (p, 2m).

Theorem 15. Let the Dirichlet form a(u, v) be W/ *(I)-elliptic, = be any
partition of I, and let the solution, #, of (8.7) belong to K?’(I), where »=2.
Then, setting S=H®™ (x;I) in the Galerkin procedure, where p=mz=/, there
exists a constant M, independent of =, such that if w is the solution of (8.15),

(819) D/ —w)|ey S Ku — vl S My (@), 0=j=L—1,
where s=min (p, 2m).

Corollary 1. Let the Dirichlet form a(#, v), corresponding to a second order
operator, ie., £ =1, be W;"?(I)-elliptic, = be any partition of I, and the solution,
u, of (8.7) belong to K»”(I). Then, setting S= H® (x; I) in the Galerkin procedure,
there exists constants M, and M, independent of =, such that if w is the solution
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of (8.15)

(8.20) ot —@|pwp < Kllu —w|; s < Mz(ﬁ)%_%, if r=2
and

(8.21) [ —wlpwn < Kllu —w|, g = M7, if r=2.

Setting S= H® (x; I) in the Galerkin procedure, there exist constants M, and M
such that

— 3__{, if <2
(8.22) [ —wlpoy < Ju —wh =M@z 7> & 7=
and »
(8.23) “M—w”Lm(I)gK‘]% _w‘|1’2§M5ﬁ, if 7’22.

We remark that the problem D2%u(x)=f(x), where f(x)cL"(I) but f is not
continuous satisfies all the hypotheses of the above Corollary. It appears, at
least theoretically, from (8.20), (8.21), (8.22), and (8.23), that piecewise linear
Hermite subspaces yield as accurate results in the Galerkin procedure as piece-
wise cubic Hermite subspaces.

Corollary 2. Let the Dirichlet form a(«, v), corresponding to a fourth-order
operator, i.e., /=2, be W>?(I)-elliptic, = be a partition of I, and the solution,
u, of (8.7) belong to K**(I). Then, setting S = H® (=; I) in the Galerkin procedure,
there exists constants Mg and Mg, independent of =, such that if w is the solution
of (8.15),

(824) HDT(M “w)ﬂLM(I)éKH“ “MHZ,zéMG(ﬁ)Z’ 7'207 1, if r=2,
and

. 5_1
(8.24,) "D’(u——w)lle(I)gKu% ——Z?)”z’géMé(i)z r, 7:0, 1, if 1’§2

We now move on to two-dimensional results. Combining Lemma 4 and
Theorems 12 and 13, we obtain

Theorem 16. Let T be a rectangular polygon, composed of the rectangles K,
1=<i=<k, the Dirichlet form a(u, v) be W}**(T)-elliptic, C be a regular collection
of partitions of 7T, and the solution, %, of (8.14) belong to S?*(T), where r=2
and p=2¢. Then setting S=H"™ (o; T) for any g<C in the Galerkin procedure,
where /<m<}p, there exists a constant M,, independent of g, such that if w
is the solution of (8.15) and v= ax (%),

(8.25) Joe — o, o < M (0.

In [13], NitscHE and NitscHE discussed the application of the discrete five-
point difference scheme on a uniform mesh of side 4 to the second order elliptic
problem, in the unit square R, i.e., the case /=1 of (8.8):

(8.26)  L{u](x, y) =a (%, p) s+ 20(%, )ty + ¢ (%, y) uy, = (%, 3),

(x, ¥)eR,=[0,1] %[0, 1]
with

(8.27) u(x,y)=0, (% 9)€0R,,
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where the coefficients a(x, ), b(x, ), and ¢(x, y) are continuous in R, feL2(R,),
and the operator L is uniformly elliptic on R,. They showed that if »eS22(T),
then the discrete solutions w; ;(4) of the corresponding standard five-point dif-
ference problem satisfy
(8.28) Jmax [u(ih, j5) —w, ()| <y, h=%,
where C, is independent of 4. Using Theorem 16, we obtain an analogous result
(cf. Corollary 1 below).
In [11], KELLOGG obtained on error bound for a discrete solution of the form
| —w,; ;J,=< Cyh, where |||, is a discrete L2-norm and its first divided differences®.
The following is an analogue of the results of [11] and [13].

Corollary 1. Let T be a rectangular polygon, composed of the rectangles R;,
1=4¢=k, the Dirichlet form a(u, v), corresponding to a second order operator,
ie., =1, be Wh?(T)-elliptic, C be a regular collection of partitions of T, and
the solution, %, belong to S*”(T), where »=2. Then, setting S=H® (g; T) for
any p€C in the Galerkin procedure, there exists a constant My, independent
of g, such that if w is the solution of (8.15) and v= nax (7;)

(8.29) e —u,ly o < Mgo,.

In the above Corollary, the approximations w are in H®(p; T), and thus
the w are piecewise bilinear functions. The determination of the w leads, interest-
ingly enough, to a system of linear equations which corresponds to a nonstandard
nine-point difference approximation of (8.26). In particular, when a==c=1 and
b=0 in (8.26), this nine-point difference approximation is

8w, j— (Wipq,; T+ Wi 1,;F Wigy 11+ @ 51
F W gt @iy e T W Wy ) =8

This answers a question raised in [3, Sec. 16].

As a final application of the above results, consider any fourth-order operator,
i.e., /=2, which we assume to be W»*(T)-elliptic. An example of such an operator
is given by the bitharmonic operator

(830) L['M’] (x’ _')/) zuxxxx(x' y) + zuxxyy(x’ y) +%yyyy (%, y) ‘_;f(xr y); (x: y) eT
with
(8.31) u(x, y) =u,(x,y) =u,(%,y) =0, (x,¥)coR.

Using piecewise bicubic (m=2) Hermite interpolation, we have, with the aid
of Sobolev’s inequality [26, p. 174], the

Corollary 2. Let T be a rectangular polygon, composed of the rectangles R;,
1=1=k, the Dirichlet form a(u, v), corresponding to a fourth-order operator,
ie., /=2, be W»*(T)-elliptic, C be a regular collection of partitions of 7, and
let the solution of L{#]=f be in S*"(T), co=r=2. Then, setting S=H® (o; T)

2In [12], he obtained a bound of the form [u—w; ;y=M, k2 where |- is a
discrete L2-norm.




Piecewise Hermite Interpolation in One and Two Variables 255

for any peC in the Galerkin procedure, there exist constants M,y and My, in-
dependent of o, such that if w is the solution of (8.15) and v= max (7,),

(8.32) ot — ], < M|l — Wy, o £ Myy0*

We should remark about the fact that Corollaries 1 and 2 are both based on
the Sard extension rather than the Stancu-Simonsen extension of the Peano
theorem to rectangular polygons. Of course, results can also be obtained from
the Stancu-Simonsen form of the Peano theorem, but the differentiability as-
sumptions are different. To illustrate this, let us combine the results for £=1
of (8.16) of Theorem 13 and for r=2 of Theorem 10 and apply them to the
problem (8.14). To obtain a positive exponent of v in (6.7), it is necessary to
assume now that =2, and thus ue K»*x K**(T). Then setting S=HY(g; T),
where  is any partition of T, in the Galerkin procedure, there exists a constant
My, independent of p, such that if w is the solution of (8.15) and v= max (7)),

(8.33) e —wl; s = Myv.

The assumption that ue K*2xK>2(T) implies that u,,,, exists almost every-
where in T, an assumption which is considerably stronger than ueS%2(T).

The results we have obtained can be extended to higher dimensions, but the
smoothness assumptions necessary for applications to the approximate solution
of elliptic differential equations make these results far less interesting.
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