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§ 1. Introduction

If a given irreducible # X # complex matrix 4 admits an isolated Gerschgorin
disk, then it is well known that this disk contains exactly one eigenvalue of 4.
For improved bounds for this isolated eigenvalue, it is natural to consider positive
diagonal similarity transformations applied to 4 to reduce the radius of this
isolated disk, and in fact, it was shown in [3] and [4] that algorithms exist which
yield the smallest such isolated Gerschgorin disk under positive diagonal similarity
transformations which contains this isolated eigenvalue of 4.

The main purpose of this note is to show that the basic iteration of the first
(linear) algorithm of [4] majorizes a similar iteration which can be applied directly
to the original » X% matrix 4, and this latter iteration actually converges to the
isolated eigenvalue of the matrix 4. In other words, the first algorithm of [4]
can be used to directly estimate the isolated eigenvalue of 4, rather than its best
bound via Gerschgorin-type arguments.

§ 2. Main Result

To begin, we assume as in [4] that the given irreducible # X% complex matrix
A= (a; ;) admits an isolated first Gerschgorin disk, i.e., there exists a vector >0
with 7= (%, %,, ..., %,) such that

(1) |1 —a; | —A;(@) — A (@) z0 forall 2=j=u,
where
1 .
(2) A (x) =% D2laia] m, 1=j=n.
=1
kg

Thus, B, defined as the set of all vectors &> 0 for which (1) is valid, is nonempty.
We partition 4 as follows:

A

(3) Ao |l ®
w \APN

where 4, 5 is an (n—1) X (n —1) matrix, and § and ¥ are vectors with (z —1)

components. With B=4 —a, ,I, mz@WHmw.m —ay 11,_,, it follows from (3) that

2

(4) B =

o|B”
¥ B



On Smallest Isolated Gerschgorin Disks for Eigenvalues. IT 321

Now, we define an # X7 matrix @, used in [4], which will majorize the matrix B.
Specifically, let?
o | eI
(5) 0=|— 151
=¥l ©

where the (n—1) x Aslé matrix 0 = (@, ), 1=1,]=n—1, is defined from the
(n—1) X (n —1) matrix B= S ) 1=1,j=n—1, by

(6) Gi,i=1bs,q
As in [4], it is convenient to normalize all vectors xc, by setting x;=1. Denoting
the remaining column vector with # —1 components by &, let

(7) sup|B|T@=0; inf |f|T@=p.

xEP X e Py

DG =—lbyl, i A= i=n—1.

Since A is irreducible and P, is nonempty, it follows that both x and o are positive
real numbers. We shall also assume for simplicity that 0<u<Co, the case u=o
being essentially trivial.

Lemma. For any complex number z with |z| <o, B —z1, 4 1s an H-matrix,
and

va _AM\W.:» NN§ ..H_ A _ _ n-—1

Proof. 1f |z| =0, then (@ —|z| I,_,) is an M-matrix from Lemma 2 of [4].
Moreover, from

o) |0, !mﬁw_mﬁ d =1zl =8,:—|z|, 1<i<n —1,
9 s . L
[0; ;] =—q; ;0 i, 1=ij=n—1,
it follows that _m!NNx 1 =( —|2| I, ,, which proves that B—zI, , is an
H-matrix as defined originally by OsTrowsKI {2]. The inequality of (8) is then a
well known consequence of [2], mogwiwnm the proof.

The previous lemma shows us that A —z1I,_ ;)™ is defined for any z with
| z| =0. With this, we now define the following mapping Tz} for any complex z
with |z] =

(10)  Te)=—RT B, )Y,

and we consider the method of successive substitution

(11) Aprr=T ()

applied to any initial 2, with | ;| =¢. In the notation of [4], we can write that
(12) () =|BI"@ —sL-)77|

for any real number s<o¢. From (8), (10), and (11), it follows that

(13) [ el =g A,

1 Here, we are using the notation that if C = (¢; ;) is an m X » matrix, then [C] =
(l6;41) is the associated m X n matrix with nonnegative elements,
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if |2,] <o. Thus, defining {,=|4| =0, and 4,.,=¢g (%), k=0, we have from
Theorem 1 of [4] that the sequence {#, }.q is monotone decreasing with lim ,= > 0.

t—>00
Moreover, since g () is strictly increasing for any /<o (Lemma 3 of [4]), it follows
inductively from (13) that
(14) 2] =6, k=0,

This gives us that the sequence {4,}3 is at least bounded. We now show that the
sequence {4, i, is convergent. For any 4 with | 1] <o and any ¢ sufficiently small,
consider the function 7°(4 -+ ¢). From (10), we can write T'(A -+ ¢) as

(15) T(+e)=—B I, ,—eSA}ISH) ¥,
where
(15" SA)=B—AL, )™

For ¢ sufficiently small, expanding the matrix (I —&S (1)) in a power series in &
yields

(16) T(A+e)—T(2)=—R (S () +e2S* () + -} S() ¥,

which shows that T() is analytic. Since | S (4)] < (( —| 2] I,_;)™ from the lemma,
then

(17) T (A)=—B"S2()) ¥,
so that
(18) 1T D <] BI"@ —| 4] I,_) 2| ¥| =¢ (| 4]),

the last equality following in a similar way from (12). Since g(s) is monotone
increasing for any real s with s< ¢, then g’ (s)> 0 for all s<o. Moreover, it can be
verified from the results of [4] that g’ (u) <1 and g’ (6)>1 (cf. Fig. 1 of [4]). Thus,
there exists a{ with y<<¢<¢ such that g'(s)<<1 for all s<< ¢, and it therefore follows
from (18) that | 7" ()] <1 for any complex number with | A| <. This brings us to

Theorem 1. Let A be an irreducible # X 7 matrix which admits a first isolated
Gerschgorin disk, and assume that the quantities y and o of (7) satisty u<<o.
For any | 4,| <o, the iterative method Aip1=T(4;) is convergent, i.e., lim 4,= 21,

1> 00
and A is the unique eigenvalue of the matrix B in the disk |z] =p.

Proof. For any A, with | 24| <o, we have from (14) that | 2] < ¢, for all k=0,
and from [4], we have that the #, decrease monotonically to u. Thus for all %
sufficiently large, it follows that | 4,| <¢, and thus | 7" (4,)| < 1 for all & sufficiently
large. But this is a well known sufficient condition for the convergence of the
method of successive approximations. Hence,

(19) lim 4,=4, and T())=2.

k—>00
From (10), this means that
(20) A=—BT(B—AL,_)"¥.

As in [1], this implies that 2 is an eigenvalue of B. More precisely, the vector w
with first component unity and the remaining # —1 components given by w= —
(B—AIL, ;)™ ¥is then easily seen to be an eigenvector of B, corresponding to the

n—
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eigenvalue 1. That | A| < p is obvious from (14), and that A is the unique eigenvalue
of B in the disk |2| =p is a simple consequence of the fact that the matrix 4
admits an isolated first Gerschgorin disk, which completes the proof.

In applying this procedure, we remark that it is sufficient to start with any
a <P, for which strict inequality is valid for at least one 7, 2= < u,in (1). With this
vector @, one can define Ay= @7 +¥; the strict inequality for at least one com-
ponent in (1) then yields both that y< o and that | 4] <o, and convergence is
then guaranteed by Theorem 1.

§ 3. An Example
To illustrate the preceding results, consider the following matrix
1 )2 i[2
(21) A= |12 4 12|,
1/2 1/2 6
which was also considered in [4]. As mentioned in [4], each of the eigenvalues of 4
can be isolated by positive diagonal similarity transformations, and in fact the
vector £=(1,1,1)7 is simultaneously in the associated sets B, B, and B,. The

following table gives the first four iterates of (11) for each of the eigenvalues of 4,
together with the actual eigenvalues of 4.

Table

k 1+ A, 4+ 6+ 2

0 141 4.5 4 0.5 7

1 1.0254 — 0.11891 4.0822 — 0.1024 ¢ 5.9912 +0.1318%
2 0.9897 — 0.1255% 4.0081 — 0.0708% 5.9935 -+ 0.18901
3 0.9896 — 0.1243¢ 4.0115 — 0.0638¢ 5.9983 + 0.18891
Actual 0.9897 —0.1243% 4.0121 — 0.0642% 5.9982 - 0.18851
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