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§ 1. Introduction

In [3, 4], we considered the numerical approximation of the solution of the
following real nonlinear two-point boundary value problem

(1.1) Llu()]=f(x u(¥), O0<x<d,

with Dirichlet boundary conditions )
(1.2) Dru(0) =DFu(t) =0, D= =, o0=k=n—1,
where

(1.3) L] =5 (DB () D), w1

Basically, the Rayleigh-Ritz-Galerkin method for (1.1) —(1.2) was applied in [4]
to a variety of finite dimensional subspaces, such as polynomial and spline sub-
spaces, these subspaces having been selected in part with an eye toward efficient
digital computation.

Our aim here is simply to extend the results of [4] to nonlinear boundary
conditions. Although such extensions will be explored more fully in [5], we
restrict ourselves here, for ease of exposition, to the case n=1 of (1.1), ie,

(1.4)  Llu(x)] =D {py (%) D (x)} — py(x) % (x) =](x,u(®), 0<x<1,
with boundary conditions '
(15) Du(0)=po(#(0));  Dielt)y =y (u (D).

We assume that p, (x)€C[0, 1], p,(x)€C°[0, 1], and that there exists a con-
stant @ such that

(1.6) p(x)=w>0 forall xc[0,1].

The given real functions g, (f) and g, (f) are assumed to be continuously differ-
entiable for all real ¢, and to satisfy

(1.7) ,(0)=0, v, (0)=0,
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and we assume further that there exist two constants ¢ and & such that
(1.8) Dyy(ty=za, Dy, (t)=0b for all real £.

We remark that the reduction to the case of (1.7) can be made, without
essential loss of generality, by a suitable change of the dependent variable. More
explicitly, if the conditions of (1.7) are not satisfied, then define

u(x) =v(x) +n(x),
( x)=x(1—=x {x"!’l (0) + (1 —x) (0 )}
)=/ (x'v"F’? (%) — Z[n(x)],
()Ewo(t) Dn(0),
P(t) = (f) + Dy (1).

The boundary value problem of (1.4)—(1.5) then becomes

(1.4") Llo(x)]= f(x v(x)), O0<x<t,
and
(1.57) Do(0)=7o(v(0));  Duv(t)=7(v(1)),

where {J, (¢) and ¢, (¢) now satisfy (1.7). Thus, #(x) 5 a solution of (1.1)—(1.2)
if and only if v (x) = u (x) —7 (x) is a solution of (1.4’) —(1.5), and the two problems
are equivalent.

To give a concrete example of boundary conditions which arise in practice
and satisfy (1.7) and (1.8), consider the lincar boundary conditions (cf. [2]) of

(1.5 0u(0) — og D% (0) =0; o (1) +og Du(1) =0, g0, o010,

for which , (f) == —gg tand y, (t)= gll ¢. Problems with boundary conditions (1.5")
arise in linear diffusion theory. Later, in §5, we shall show how radiative-type
boundary conditions can also be considered by our formulation. _

To begin our discussion, we define S to be the linear space of all real-valued
absolutely continuous functions @ (x) defined on [0, 1] such that Dw (x)€L?[0, 1].
As a consequence of the Sobolev Imbedding Theorem [15, p. 174], we remark
that S is in reality the well-known Sobolev space W'2[0, 1]. We assume as in
[4, Eq. (1.4)] that, given the two real constants @ and & of {1.8), there exist a
positive constant K and a real constant § such that

|l = sup [w(x)]
2€[0,1

(19) < K{ [ [0 (Dw () + (b0 () +5) (w())7]
b ay(0) (@ ()2 + b, (1) (w(1))2}

ior all weS. When a and b of (1.8) are nonnegative, we can deduce from the
inequality of (1.6) that such constants K and § do exist (see Lemma 1), i.e., the
Inequality of (1.9) is nof an added assumption in this case.
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Next, we introduce the finite quantity (see Lemma 2)

fl[?&l (%) (D w(x)24po(#) (w ()] dx+ap,(0) (w(0)2+b P (1) (w(1))?

(1.10) A= inf & I ,
wes Jww)rdx
. . of (%, u) . .
and we assume that the functions f(x, «) and g, are real and continuous in

both variables, and that there exists a constant y such that

(1.41) ELE;[“:: (x,u)y =y > —A forall x€[0,1], and all real #,

where A is defined in (1.10). This latter assumption is similar to that in [4].

With these assumptions, the basic results of [4] carry over rather easily, and
for this reason, few proofs will be given here in detail. To outline the subsequent
material, §2 briefly lists the basic results patterned after [4]. In §§3 and 4,
these basic results are applied to the particular subspaces P™ of polynomials,
and to the subspaces Sp (L, 7, z) of L-splines, the later including both the Hermite
subspaces H™ (7) and the natural spline subspaces Spt™ () as special cases.
In §5, extensions will be considered, and in §6, numerical results for a repre-
sentative problem will be described.

§ 2. Variational Formulation

We begin with ‘ N

Lemma 1. If the constants @ and b of (1.8) are nonnegative, then there exist
a positive constant K and a real constant § such that (1.9) is valid for all weS.

Proof. By assumption (1.6), #;(¥) =w>0 in [0, 1], and it follows with

(2:1) Ky=ryp and f=o-+ max (—p()
that ’
(2.2) (] —— {Of [(Dw(%)?+ (w(#))Y] dx}%

< K, {f T (D) (ol) + ) (w0}

for all we S, where |w])ys,: is the Sobolev norm of w. On the other hand, Sobolev’s
inequality [15, p. 174] in one dimension gives us that there exists a positive
constant K, such that

(2.3) [w] - < Ky|w|ym: forall weS,

and thus combining (2.2) and (2.3) yields
oo = K {J () (D)) + (10 +6) (w () Ko =KiKe,

for all weS. The inequality of (1.9) is now evident since, with @ and b nonnegative
by hypothesis, the terms a p,(0) (2(0))% and b p, (1) (w(1))* in (1.9) are non-
negative, and the right-hand side of (1.9) can be bounded below in terms of the
right-hand side of (2.4). Q.E.D.

(2.4)
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Tt is also interesting to remark that the proof of Lemma 1 shows that con-
stants K and § can similarly be determined for the case in which @ and & in (1.8)
are slightly negative. More precisely, with the constant K=K, K, determined in
(2.4) from the Sobolev inequality, the assumption that a=<<0 and =0 with

(2:5) Ki{la] 2,(0) + 8] 21 (1)} <1
again allows one to find constants K and g satisfying (1.9).

Lemma 2. '\’Vith the assumption of (1.9), the quantity A4 defined in (1.10),

satisfies A= 7%2 — [, and A is thus a finite number. .

Proof. Since @]y »=]w|.s, the desired inequality follows immediately from
(1.9). Q.E.D.

As in [4], we make the essential hypothesis that (1.4) —(1.5) admits a classical
solution. This assumption will be discussed in detail in [5]. Then, as in [4], we have

Theorem 1. With the assumptions of (1.9) and (1.11), let @(x) be a classical
solution of (1.4) —(1.5). Then, @(x) strictly minimizes the following functional

Flw] »~f{'~~ %) (D (%)) + 3 po (%) (w0 ()2 +ff (. 7) dv}dx
(2.6) o)
+2:(0 f% yda+p (1 fy> )AL,  weS,

over the space S, and ¢ (x) is the unique solution of (1.4)—(1.5).

Proof. 1t is readily verified with the above assumptions that
. 1
(27)  Flw]=Flg]+ —@gﬂf [0(x) — p(x)]2dx forall weS,
0

from which the result follows. Q.E.D.

We now proceed to describe the approximation scheme. Let S;; be any finite.
dimensional subspace of dimension M of S, and let {w,(x)}"; be M linearly
M

independent functions in S, Upon considering F Lu w;(x)|, the inequality of

(2.7) allows us to prove, exactly as in Theorem 2 of [4] that the minimization
of IFlw] over S,; determines a unique function in S,,. We state this as
Theorem 2. With the assumptions of (1.9) and (1.11), there exists a unique
M
function @, (%) ::.:727- w;(x) in Sy which minimizes the functional F[w] over S,,.
=1
If 4(x) is a continuous function on [0, 1], and a; and b; are two real con-

stants, define
[obha = {J [ () (Do) + (800 +3) (0 () 25

(2.8) .
- a371(0) (w0))? + 83 (1) (w(1))2)

for all weS. If h(x) = p, we write simply |@|,,,s, for [@]ia,e,




Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. II 335

Lemma 3. If I'=h(x)= y'>~-/1 for all x€[0,1], and ¢, =a and b,=0,
then []ya,s, and @] a0 (where y is the constant of (1.11)) are both norms on S,
and they are morcover eguivalent.

Proof. From the definition of A in (1.10) and the hypotheses, it follows that
(0 lha,5)? = (A +y) (@] and (Jw],.0)* = (A +y) (@

for all weS. Hence, these quantities are norms on S. Finally, to establish the
equivalence of these norms, it can be verified from the hypotheses that

l.)?

(2.9) & (| ]ha,)? = (0l 00 = e ([ )ha,s,)

for all we S, where possible choices for the positive constants ¢; and ¢, are given by

max (["—y;
o= {1 PO L Kr (0 — )11 (0) + (5 0) 41 )]
(2.10) [ g 0) ] .
A+ )
and
m \ —— O
]

where K, 8, /A, and y are the constants of (1.9)—(1.11). Q.E.D.

The following consequence of Lemma 3 is proved exactly as in [4].

Corollary. If assumyption (1.9) is satisfied for some real §, then it is also satis-
fied for every o' with y'>—/.

With this corollary, it is now evident that, for the constant y of (1.11), the
inequality of (1.9) is valid for f==y, and we write this now as

(2.11) ' || =< K|wl|,,, forall weS.

In the spirit of Lemma 3, we similarly establish

Lemma 4. If the constants a and b of (1.8) are nonncgatlve then the Sobolev
norm [[@ |y, of (2.1) .5 are equivalent on S.

Next, the following a priori bounds for both the solution ¢(x) and any best
approximation @, (x) can be established. The proof, which makes use of the
basic assumptions of (1.9)—(1.11), is similar to that of Lemma 4 of [4], and is
omitted. We remark that the assumptions of (1.7) are explicitly used at this point.

Lemma 5. Let w(x) be any function in S such that
(2.12) Flw]<0=F[0].
Then, the following a priori bound is valid:

(213) lwo], =< L

where L is a known function (cf. [4, Lemma 4]) of A,y, and 4 where .# =
01}1g1§§(1}f(x, 0)]. Consequently, from (2.11),

(2.14) “w”Lw < L,
where L' is a known function of K, 8, A4, y, and 4.
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Having selected some finite-dimensional subspace Sy of S of dimension M,
spanned by {w,(x)}/L;, the unique element @, (%) in SM which minimized F[w]

oF Luﬂi’)( )
over Sy can be characterized by the conditions ——"3——= =0, 1<7< M,
which gives us the equations

(2.15) of {]51(95)])55’51 (%) thw(x) + Py (%) 55’\1(-”) wj(x) “”f (” iy (x)) w](x)} ax
+ 21 (0) v, (7}\”;\1( )) 0) 4. (1 (‘”M 1)) w;(1) =0, 1=7=M.

Similarly, 1f @ (%) is a classical solution of (1.4)—(1. ) an integration by parts
gives us

(2.16) Of{]"l (%) D @ (x) Dwi(x) + po (x) p (%) w; (x) + f (x, ¢ (%)) w; (x)} dx
+£1(0) 0 (9(0)) w;(0) + £, (1) py (1)) w,(1) =0, 1=7=<M.
If we define an inner product on S by

Sty hpgasebn = f{ﬁl Du(x) Do () + po () 10 (%) v (%) + Fyg (%) e (x) v(x)} d
“+an P1(0) u{0) v(0) + by (1) (1) v (1),  w,v€S,

then subtracting (2.16) from (2.15) gives an equation which can be simply ex-
pressed as

(2.17)

(2.18) Doy = P W hpanby =0, 1=J=M,
where
Tnr (%) = [ (%, O, @(x) + (1 — O)) By (), O0=<x=1,
(2.19) @y = Do (O, 9(0) + (1 — 0,) By, 0)), ;
bM:D¢1(9397(1)+(1”‘@)”’M(O))’ 0<0;<1, 1=1,23.

Because the expression of (2.18) shows @, to be the projection of ¢ on S, with
respect to the inner product of (2.18), it follows that

(2‘20) M@M - ‘Pﬂhﬂ axby = inf f‘w (p”bm axpby-

wES

On the other hand, the basic assumptions of (1.8) and (1.11) and the result of
TLemma 5 show us that the quantities %y, @, and b, can be bounded above
and below by

. <y (0) £T= sup 1, (%, u)

(2.21) a<ay <A == sup Dy,(t),
=L

b <by < B=sup Dy, ().

=L
Hence, with the inequalities of (2.9), (2.11), (2.20), and (2.21), we obtain the
following chain of inequalities

18w — @l= = Klin — @lar G
<Coipflle - vlas

—¢ ”hM amby — Clwiélsi“w —@ ”hﬂ auba

(2.22)
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where it is important to observe that the constants C; and C, are independent
of the subspace Sy- We now state this as our main result.

Theorem 3. Let ¢(x) be the solution of (1.4)—(1.5), subject to the assumptions
of (1.8), (1.9), and (1.11), let Sy be any finite dimensional subspace of S, and
let @y, (x) be the unique function which minimizes F[w] over Sy. Then, there
exist a constant M, which can be explicitly determined a priori and is independent
of S, such that the following error bound is valid:

(2'23) H{Z}M - (PHL“’ = KH@M - Qpllrab = ﬁllj&fﬂuw — (p”TAB .

If, in addition, the constants @ and b of (1.8) are nonnegative, then there similarly
e~ist constants M, and M, which can also be determined a priori and are in-
dependent of Sy, such that

(2.24) |83 = Ple = Mol By — @l < M Inf [0 — @l

As a consequence, let {Sy}$2, be any sequence of finite dimensional subspaces
of S, and let {@,,(x)}521 be the sequence of functions obtained by minimizing
F[w] respectively over the subspaces Sy,. If lim { inf |w —g],,,} =0 for all g€S,

i—00 wESM;
then {&, (x)}721 converges uniformly to ¢(x).

The distinction between the error bounds of (2.23) and (2.24) would appear
to be an important one, since approximating ¢ by w in the Sobolev norm re-
quires only L%-estimates for ¢ —w and D(p —w). In contrast, approximating ¢
by w directly in the norm |||, ,, requires from (2.8) the additional point estimates
@(0) —w (0) and (1) —w(1). However, for our choices of subspaces of Sin §§3
and 4, the error bounds to be deduced are independent of the assumption that a
and b of (1.8) are nonnegative.

§ 3. Polynomial Subspaces

In considering particular finite dimensional subspaces of S, we mention first
that in contrast to the treatment in [4], the basis elements of any finite dimensional
subspace of S in the present case need not satisfy the boundary conditions of (1.5).
This is basically a consequence of the well-known distinction between essential
and nonessential boundary conditions in variational formulations [6, 7, 12]. Be-
cause of this, the results we use from approximation theory apply more directly
here than in the case of [4].

For N a positive integer, let P*Y) denote the linear space of all real polynomials
of degree at most N. Clearly, PV is a finite dimensional subspace of S of di-
mension N-+1. If (%), the classical solution of (1.4)—(1.5), is of class Clo, 1],
t=2, let gy(x) be the unique polynomial of degree N —1 of best approximation
to De(x) in [0, 1] in the L®-norm. Then, by a classical result of Jacksow [11,
p. 66], there exists a constant M, dependent only on #, such that

M 1
(31) ”D P — 9N UL“’ = Nt w (Digy; "N—:T) , N=t,
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where @ is the modulus of continuity. Thus, if
- X

(3-2) pn (%)= @(0) +[qy(x') dv’,

0

then Dpy (%) =gy (x) and pye PY). Moreover, it also follows from (3.1) that

- M
(3-3) 12y — @lie = N @ (D‘(p; N11 ) , N=t.

As this is a pointwise bound, we can then obtain an upper bound for |py —@|, 45
using the definition of (2.8). This gives us

Theorem 4. Let @(x), the solution of (1.4)—(1.5), subject to the assumptions
of (1.8), (1.9), and (1.11), be of class C*[0, 1] with /=2, and let py(x) be the
unique function which minimizes Flw] over P™) where N={. Then, there exists
a constant M, dependent on ¢ and y, such that

(3.4) low—@l==Klpy — @l,0 = W@ (Dt ?; ‘KCT)
for all N>t '

If, as in [4], ¢ is only of class C2[0, 1], i.e., =2, we deduce from (3.4) that
the sequence of polynomials {Ay(x)}¥_, converges at least linearly (in h=
1/(N 4-1)) and uniformly to ¢ (x) as N co.

If the solution ¢(x) of (1.4)--(1.5) is known to be analytic in some open set
in the complex plane containing the interval [0, 1], the following stronger form
of Theorem 4 can be proved. Its proof, based on a classical result of BERNSTEIN
{11, p. 76], is analogous to the proof of Theorem 8 of [4], and is thus omitted.

Theorem 5. Let @(x), the solution of (1.4)—(1.5), subject to the conditions
of (1.8), (1.9), and (1.11), be analytic in some open set of the complex plane
containing the interval [0, 1], and let py(») be the unique function which mini-
mizes Flw] over PW™) . Then, there exists a constant # with 0= <1 such that

(3.5) NETEO (2w — @lyas)™ =,
and consequently from (2.11),
(3.6) Jm (B — f=)N =g

We remark that the reciprocal p of the constant x in (3.5) can be given a
precise geometrical interpretation. With p==1/u, let 4 and A’ be the semi-axes
of the largest ellipse in the complex plane with foci xy==0 and x,==1, in which ¢

of the numerical results of §6.

§ 4. L-Splines and ¢-Splines
In this section, we apply the recent results of [14] on L-splines and g-splines
to obtain upper bounds for the errors for approximate solutions of the boundary
value problem of (1.4)—(1.5) in the finite dimensional subspaces Sp(L, =, z) and



Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. 11 339

Spm, =, E). The advantage of this general treatment is that it simultaneously
gives error bounds for approximate solutions in the finite dimensional Hermite
subspaces H™ (i), as well as in the finite dimensional (natural) spline subspaces
Spt () (cf. [4, §6—71).

To first briefly explain the nature of L-splines, let L be any m-th order linear
differential operator of the form

(4.1) Liu(x)] :éoa,. (1) Diu(x), m=1,

where we assume that the coefficient functions aj(x) are sufficiently smooth.
For example, it sufficies to have a; (x)e K™?[0, 1] for all 0= 7 <m, where K™%[0,1]
denotes the collection of all real-valued functions v(x) defined on [0, 1] such that
o (x)eC™ 1[0, 1], and such that D" v (x) is absolutely continuous with D™ ve
12[0, 1]. Note that Kv2[0,1]=S=W%2[0, 1] in the notation of §1. Next, let
7 0= %<l X< " < xy41=1 be any partition of the interval [0, 1], and let
2= (2, %, ---» 2n), the incidence vector associated with =, be an N-vector with
positive integer components z; with 1=z;<m for all 1= i< N. Then, Sp(L, 7, 2)
denotes [14] the collection of all real-valued functions s(x), called L-splines,
defined on [0, 1] such that '

L*L[s(x)] =0 for all we(x;, #;4,) and for eachs,
0£i=N,
(4.2) . o »
DFs(w;—) = D¥s(x;4) forall 0Lhk=2m—1—2z;
1=+=N,

where L*[v(x)]= 2 (— 1) D[a;(x) v(x)] denotes the formal adjoint of L. As an
i=o

important special case, suppose L[u])=D"u. With Z;=2,= """ =3%y=1, the ele-
ments of Sp (D™, =, Z) are then simply the natural spline Junctions, and Sp (D™, =, Z)
becomes Sp¥ () in the notation of [4]. Similarly, when L[u]=D"u and z;=
f,== - =Zy=m, the elements of Sp (D™, 7, z) are then simply the Hermite piece-
wise polynomial functions, and Sp (D", s, Z) becomes H (57) in the notation of [4].

Given a function j(x)eC”*[0, 1], where m is the order of the differential
operator L of (4.1), there are various ways in which one might interpolate [ in
Sp(L, 7, ). As a particular case, if there is an element s(x)¢Sp (L, 7, 2) such that

(43) DFs(x) =D*f(x), O=k=z—1, 1=i=N,
and
(4.4) Dbs(x)=DFf(x), O=k=m—1, =0 or i=N+1,

we say that s(x) is an Sp(L, m, z)-interpolate of f(x) of Typel. It can be shown
[14] that, for any partition sz and any associated incidence vector z, an Sp (L, 7, 2)-
interpolate of /(x) of Type I always exists and is in fact unique. Thus, given
any parameters o, 0= k=2, —1, 0<i<N-1 (where we define for convenience
2o == 2y, == m), there exists a unique function u(x)cSp(L, =, 2) with

(4.5) Dru(x) =alf), 0=k=z—1, O0=i=N-+1,

k2
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and we denote by Sp'(L, =, 2) the finite-dimensional subspace of Sp(L, z, 2) of
all such functions.

With the notation ;zorsnax (%41 — ;) for the partition s: 0= x,<C - <2y
1SN

=1, consider now any sequence of partitions {z;}?>, of [0, 1] with the property
that lim 7,=0, and consider any sequence of incidence vectors {z}$, as-

100

sociated with {z,}$°,. It is known [14, Theorems 6—9] that, if f(x) is of class
K™*®[0,1], m=1, there exists a constant M such that the following inequalities
hold:

(4.6) 107 (f — sl = Mz )"~ | L f]1s, 0=7=<m,
and
(4.7) 1D (f —=s)|pe S M(E)" 3 |Lf]., 0=j=<m—1,

where s, (x) is the unique Sp'(L, n;, z21)-interpolate of f(x), for each 7. Similarly,
if f(x) is of class K*™2[0, 1], mgﬂ we have:

(4.8) D7 (F — s)los < M ()27 | L* L {0, 0=ji<m,
and
(4.9) 1D/ (f — s)oe < M()*" | LX Lf s, 0<j<im—1.

Thus, we can bound the norm |s;,— /|, defined in (2.8), by applying the
cases =0, j=1 of (4.6) (resp. (4,8)) to the integral terms of (2.8), and by applying
the case 7==0 of (4.7) (resp. (4.9)) to the boundary terms of (2.8). Applying this
to the solution of ¢ (x) of (1.4)—(1.5) results in

Theorem 6. Let {m,}3° | be any sequence of partitions of [0, 1] with Jim 7,0,
let {Z"}2 be any sequence of corresponding incidence vectors, let L be a dif-
ferential operator of the form (4.1), and let @,(x) be the unique function which
minimizes the functional F[w] of (2.6) over Sp' (L, m;, 2). If @(x), the solution
of (1.4)—(1.5), subject to the conditions of (1.8), (1.9), and (1.11), is of class
K™?[0,1] with m=2, then there exists a positive constant M, independent
of 7, such that

(4.10)  ||@; — |- < K|®, —@f]yabSM' )" L., foral i=1.

Cimilarly, if @(x) is of class K*™2[0, 1] with m=1, there exists a positive con-
stant M, independent of 2, such that

(411) ;= @le = K|D; — @l ap = M ()" 7 [ L* L o]

725 for all ’Lg 1.

As a simple application of the above results, suppose that the sclution ¢ (x)
of the nonlinear problem of (1.4)—(1.5) is only of class C2[0, 1]. We may then
choose m=2 in (4.10) and m =1 in (4.11), and we deduce that the sequence
(@2, of elements in Sp!(L, =, 2)) converges at least linearly in 7, to ¢ (%),
as 1-> oo.

In the special case that L[u(x)]==D"u(x) for x¢[0, 1], the previous results
may be further generalized. As before, let m: 0= x,<<x;< -*+ <<%y, ;=1 denote
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a partition of [0, 1], and let E= (e, ;) denote an N Xm incidence malrix, 1<1<N,
0=<j=<m —1, having entries of 0’s and 1’s, with at least one nonzero entry in
each row of E. Further, let ¢ denote the collection of (7, 7) such that ¢; ;=1.
Then, Sp(m, 7, E) denotes [14] the collection of all real-valued functions s(x),
called g-splines of order m for m and E, defined on [0, 1] such that

s (%) is a polynomial of degree at most 2m — 1 in each subinterval (x;, ;. ),
0<i<N, ie., D¥s(x)=0 in each subinterval of &, and
(412) §(x) € ¢™1[0, 1], and if ¢; ;= 0, then D*™ /"5 (x) is continuous at x;,1.e.,
(1, ) € e implies that DI g (g, —) = DP T ().

In analogy with the case of L-splines, we say that, given a function f(x)e
C"10, 1], s(x)eSp(m, =, E) is an Sp (m, z, E)-interpolate of F(x) of Typel if

(4.13) Dfs(xi):-Djf(xi) forall (7, 9)ee,
and
(4.14) Djs(xi):Dif(xi): 0=7=m—1 for i=0 or 1=N-1.

Tt can be shown [14] that, for any partition z and any incidence matrix E, an
Sp (m, z, E)-interpolate of f(x) of Type I always exists and is unique. We now
simply point out that analogues of Theorem 6 are also valid not only for g-splines
of Type I, but also for L-splines and g-splines with more general boundary inter-
‘polations than those of (4.4), referred to in [14] as interpolations of TypesII
and IIT. We again refer the interested reader to [14] for details.

§ 5. Extensions

In this section, we extend our previcus results to cover more general non-
linear boundary value problems with nonlinear boundary conditions,

First, as in [4], it is easy to verify that we may make the following weakened
assumptions about f(x, #), without affecting the validity of Theorem 3. We again
assume that f(x, #)cC°([0, 1]X R), but in place of (1.11), we assume that there
exists a constant y such that

RACHC b 1CT) RSN A,h for xe[0,1], and
(5.1) u—v '

for all —oo<<u, v<-+oo, with u=v,
and for each ¢> 0, there exists a number M{c) such that
HE O E 0 < pe) < 4o, forall xc[0,1], and

forall |u|<e¢, |v]=c, with w==v.

Similarly, difference quotients may be also used to weaken the assumptions
on the functions v, (#) and v, (¢) of (1.5). Specifically, in place of (1.8), we may
assume that g, (1) € C?(R) with

(5.3) wolh) = vt >a, forallreal i ==1,,

24 Numer. Math., Bd. 11
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and that for cach ¢> 0, there exists a number M, (c) such that

ﬂﬁ)ﬁ%ﬁ%@d&l = My(e) < oo, forall |4]<e,
-
(5.4) : [t <c, with ¢ 44,

Obviously, an analogous weakened hypothesis can also be made for . (£).

Perhaps a more interesting extension concerns the numerical approximation
of a boundary problem with radiative-type (or STEFAN-BOLTZMANN) boundary
conditions. Consider the radiation problem: .

(5.5) Diu(x)=f(x), O<x<1, where f(x)<O0,
(5.6) u(0)=0, Du(l)=— (u(1))%.

This problem combines one essential boundary condition (i.e. of Dirichlet-
type) with a nonlinear and inessential one. Tt can be shown that this problem
has a unique nonnegative solution (cf. [1, 5]). Hence, if we are only interested
in this particular solution, we might as well replace the second boundary con-
dition of (5.6) by

(5.6") Du(t)=—wp,(x(1)), where ,(f)=Max {4, 0}.

This leads us to consider what might be called a generalized yadiation problem:
(5.7) D2u(x)=[(x,u), O0<x<1,
(5.8) u(0)=0;  Du(t)=—y,(u(1)),
where

0

(5-9) -5"5(%,%)20, O=x=1, —oco<<u<+oo,
and
(5.10) Y, (0)=0, Dy, ()=0 for all real ¢.

We now describe how to apply a variational scheme to this problem. Since
the boundary condition at the origin is of the essential type, it must now be.
satisfied by the admissible functions. Hence, we let S be the space consisting
of all absolutely continuous functions w (x) such that Dw(x)eL%[0,1] and such
that @ (0)==0. As in Theorem 1, the unique solution @ (x) of (5.7)—(5.8) with the
hypotheses of (5.9)—(5.10) minimizes strictly the following functional over the
space S:

1 @ (%) @ (1)
G40 Flwl=[{E(Dwla) [T dnhax+ Ly,

As before, the approximation scheme is defined by minimizing the functional
Flw] of (5.11) over finite dimensional subspaces S, of S. Similarly, a convergence
theorem similar to Theorem 3 can be established, in the WL2{0, 1]-norm.

§ 6. Computational Methods
To our knowledge, little has been published in the literature about numerical
methods for solving two-point boundary value problems with nonlinear boundary
conditions. Recently, KELLER [9] has suggested a shooting technique, combined
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with a {inite difference approximation, for numerically solving somewhat more
general problems in one dimension, but no numerical results or error estimates
were presented in [9]. Also, KELLOGG [10] has suggested a very clever numerical
technique for solving radiative-type problems of the form (5.5) —(5.6). In essence,
a three-point difference approximation to (5.5) is made, and the associated tri-
diagonal matrix problem is solved via Gaussian elimination. Because the non-
linearity of the problem (5.5) —(5.6) occurs only on the boundary, just one non-
linear equation in one unknown need be solved in the Gaussian elimination
technique. The same numerical efficiency also applies to the use of the Hermite
subspace H® () for this special problem.

To illustrate the results of the previous sections, consider the numerical ap-
proximation of the solution of

(6.1) D2y () = (1 (%)) —(cos x 4-1)® — cos x, O0<<x<1,

with boundary conditions

(6.2) Du(0)=0;  Duft)=— Tt

A solution of (6.1)—(6.2) is readily verified to be

(6.3) @(x) =cos x+1.

Tor this example, w,(t) =0 and y, (f) = TEC;é?W’ and as such, Egs. (1.7) and

(1.8) are satisfied with a=5=0. It then follows from Lemma 1 that real con-
stants K> 0 and f exist such that the inequality of (1.9) is valid for all w(x)€S.
Moreover, the constant A of (1.10) is positive, and is at least =% Thus, as
f,(x, )=3u? then f, (¥, u)=0>—A and we see from Theorem 1 that @(x) of
(6.3) is the umigue solution of (6.1)—(6.2). The associated functional of (2.6) in

this case is
1

(6.4)
sin 1 w(1))%
S weS)

and this functional is minimized over the finite dimensional subspaces P™) of
polynomials, and over the finite dimensional subspaces of piecewise cubic (m=2)
Hermite and spline subspaces H® (x(h)) and Sp® (7 (k)), with a uniform mesh
7 (k) on [0, 1]. As in [4], the associated nonlinear matrix equations were solved
using a nonlinear point successive over-relaxation method [13]. The efficient
computational treatment of such techniques is considered in detail in [8]. The
numerical results are given in the tables below.

For this case of the polynomial subspaces P of S, we can take advantage
of the fact that the solution @(x) of (6.3) is an entire function, i.e., it can be
extended to be analytic in the whole complex plane. As such, Theorem 5 applies
with u==0, and consequently

(6:5) Im ([By () — @ (@) =0.

24%
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For this example, we thus have rapid convergence of the sequence {jsN(x)}ﬁ=l
to @(x) as N-» oo, as is corroborated by the numerical results of Table 1.

Table 1. Polynomial subspaces PN)

Nin P™) dim (PN 150 — o),

0 1 2.61 - 1071
2 3 3.50-107%
4 5 1431075
3 6 7 1.82- 1078
8 9 1.49 - 10711
Table 2 Table 3
Smiooth cubic Hermile subspaces H<2)(7r(h)) Cubic spline subspaces Sp® (= (b))
2 dim (H@ (2 (1)) ||, — @ o R dim (SpD (7 (7)) iy —@lLe
1 4 . 4.04-107% 1/4 7 5.53-107¢
1/2 6 4.97-1078 1/6 9 1.43- 1078
1/4 10 4.52- 1078 1/8 11 4.47 - 1077
1/6 14 1.03 - 107 1/10 13 2.23-1077
1/8 18 4.47 - 1077 1/12 15 1.19-1077
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